Global exponential stability of nonautonomous neural network models with delays

Salete Esteves, Elçin Gökmen, José J. Oliveira

July 8, 2014

Departamento de Matemática e Aplicações, CMAT, Universidade do Minho

Neural Network Models

- *Pioneer Models:
 - ► Cohen-Grossberg (1983)

$$x_i'(t) = -a_i(x_i(t)) \left(b_i(x_i(t)) - \sum_{j=1}^n c_{ij} f_j(x_j(t))\right), i = 1, \ldots, n.$$
 (1)

► Hopfield (1984)

$$x'_i(t) = -b_i(x_i(t)) + \sum_{i=1}^n c_{ij} f_j(x_j(t)), \quad i = 1, \dots, n.$$
 (2)

where

 a_i amplification functions; f_i activation functions;

b_i controller functions;

 $C = [c_{ij}]$ conection matrix.

* Nonautonomous system of delay differential equations

$$x_i'(t) = -a_i(t, x_t) [b_i(t, x_i(t)) + f_i(t, x_t)], \quad t \ge 0, i = 1, ..., n$$
 (3)

* Nonautonomous system of delay differential equations

$$x'_{i}(t) = -a_{i}(t, x_{t}) [b_{i}(t, x_{i}(t)) + f_{i}(t, x_{t})], \quad t \geq 0, i = 1, ..., n$$
 (3)

* Phase Space: $C_n := C([-\tau, 0]; \mathbb{R}^n)$ for $\tau > 0$,

$$\|\phi\|=\sup_{s\in[- au,0]}|\phi(s)| \quad ext{ with } |x|=|(x_1,\ldots,x_n)|=\max_{1\leq i\leq n}|x_i|$$

$$x_t \in C_n$$
, $x_t(s) = x(t+s)$, $s \in [-\tau, 0]$

* Nonautonomous system of delay differential equations

$$x'_{i}(t) = -a_{i}(t, x_{t}) [b_{i}(t, x_{i}(t)) + f_{i}(t, x_{t})], \quad t \geq 0, i = 1, ..., n$$
 (3)

* Phase Space: $C_n := C([-\tau, 0]; \mathbb{R}^n)$ for $\tau > 0$,

$$\|\phi\|=\sup_{s\in[- au,0]}|\phi(s)| \quad ext{ with } |x|=|(x_1,\ldots,x_n)|=\max_{1\leq i\leq n}|x_i|$$

$$x_t \in C_n$$
, $x_t(s) = x(t+s)$, $s \in [-\tau, 0]$

- ▶ $a_i : [0, +\infty) \times C_n \rightarrow (0, +\infty)$ are continuous functions;
- ▶ $b_i : [0, +\infty) \times \mathbb{R} \to \mathbb{R}$ are continuous functions;
- ▶ $f_i: [0, +\infty) \times C_n \to \mathbb{R}$ are continuous functions.
- * Initial Condition

$$x_0 = \bar{\varphi}, \quad \bar{\varphi} \in C_n$$
 (4)

* Definition

The solution $x(t,0,\bar{\varphi})$ of (3)-(4) is said *globally exponentially* stable if $\exists \delta > 0$ and $M \geq 1$

$$|x(t,0,\varphi)-x(t,0,\bar{\varphi})|\leq Me^{-\delta t}\|\varphi-\bar{\varphi}\|,$$

for all $t \geq 0$, $\varphi \in C_n$.

* Definition

The model (3) is said *globally exponentially stable* if $\exists \delta > 0$ and $M \geq 1$

$$|x(t, 0, \varphi_1) - x(t, 0, \varphi_2)| \le Me^{-\delta t} ||\varphi_1 - \varphi_2||,$$

for all $t \geq 0$, $\varphi_1, \varphi_2 \in C_n$.

For each $i = 1, \ldots, n$,

For each $i = 1, \ldots, n$,

- ▶ **(A1)** $\exists x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$ a equilibrium point of (3);
- ▶ **(A2)** $\exists \rho_i > 0$:

$$0 < \underline{\rho}_i \le \inf\{a_i(t,\varphi) : t \ge 0, \varphi \in C_n\};$$

For each $i = 1, \ldots, n$,

- ▶ **(A1)** $\exists x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$ a equilibrium point of (3);
- ▶ **(A2)** $\exists \rho_i > 0$:

$$0 < \underline{\rho}_i \leq \inf\{a_i(t,\varphi) : t \geq 0, \varphi \in C_n\};$$

▶ (A3) $\exists \beta_i : [0, +\infty) \to (0, +\infty), \forall u, v \in \mathbb{R} \ u \neq v$:

$$(b_i(t,u)-b_i(t,v))/(u-v) \geq \beta_i(t), \quad \forall t \geq 0;$$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

For each $i = 1, \ldots, n$,

- ▶ **(A1)** $\exists x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$ a equilibrium point of (3);
- ▶ **(A2)** $\exists \rho_i > 0$:

$$0 < \underline{\rho}_i \leq \inf\{a_i(t,\varphi) : t \geq 0, \varphi \in C_n\};$$

 $(A3) \exists \beta_i : [0, +\infty) \to (0, +\infty), \forall u, v \in \mathbb{R} \ u \neq v:$ $(b_i(t, u) - b_i(t, v))/(u - v) > \beta_i(t), \quad \forall t > 0;$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

▶ **(A4)** $\exists l_i : [0, +\infty) \to (0, +\infty)$

$$|f_i(t,\varphi)-f_i(t,\psi)| \leq |f_i(t)||\varphi-\psi||, \quad \forall t \geq 0, \ \forall \varphi,\psi \in C_n;$$

For each $i = 1, \ldots, n$,

- ▶ (A1) $\exists x^* = (x_1^*, \dots, x_n^*) \in \mathbb{R}^n$ a equilibrium point of (3);
- ▶ **(A2)** $\exists \rho_i > 0$:

$$0 < \underline{\rho}_i \leq \inf\{a_i(t,\varphi) : t \geq 0, \varphi \in C_n\};$$

 $(A3) \exists \beta_i : [0, +\infty) \to (0, +\infty), \forall u, v \in \mathbb{R} \ u \neq v :$

$$(b_i(t,u)-b_i(t,v))/(u-v)\geq \beta_i(t), \quad \forall t\geq 0;$$

[In particular, for $b_i(t, u) = \beta_i(t)u$.]

- $(\mathbf{A4}) \exists \ l_i : [0, +\infty) \to (0, +\infty)$ $|f_i(t, \varphi) f_i(t, \psi)| \le |l_i(t)| |\varphi \psi||, \quad \forall t \ge 0, \ \forall \varphi, \psi \in C_n;$
- ▶ **(A5)** $\exists \varepsilon > 0$ and $\lambda : \mathbb{R} \to (0, +\infty)$ a continuous function:

$$\underline{
ho}_i\left(eta_i(t)-l_i(t)e^{\int_{t- au}^t\lambda(s)\,ds}
ight)>\lambda(t) ext{ and } \int_0^t\lambda(s)\,ds\geq arepsilon t,\, orall t\geq 0.$$

▶ In C_n , consider the FDE

$$x'(t) = f(t, x_t), \quad t \ge 0 \tag{5}$$

with $f = (f_1, \dots, f_n) : [0, +\infty) \times C_n \to \mathbb{R}^n$ continuous

▶ In C_n , consider the FDE

$$x'(t) = f(t, x_t), \quad t \ge 0 \tag{5}$$

with $f = (f_1, \dots, f_n) : [0, +\infty) \times C_n \to \mathbb{R}^n$ continuous

* Lemma:[1] If (H) $\forall t > 0, \forall \varphi \in C_n$:

$$\forall s \in [-\tau, 0), |\varphi(s)| < |\varphi(0)| \Rightarrow \varphi_i(0)f_i(t, \varphi) < 0,$$

for some $i \in \{1, \ldots, n\}$ such that $|\varphi(s)| = |\varphi_i(0)|$,

then the solution $x(t) = x(t, 0, \varphi)$, $\varphi \in C_n$, of (5) is defined and bounded on $[-\tau, +\infty)$ and

$$|x(t,0,\varphi)| \leq ||\varphi||.$$

- *Proof of Lemma (idea)
 - $x(t) = x(t, 0, \varphi)$ solution on $[-\tau, \alpha)$, $\alpha > 0$, with $\varphi \in C_n$
 - ▶ Suppose that $|x(t_1)| > ||\varphi||$ for some $t_1 > 0$ and define

$$T = \min \left\{ t \in [0, t_1] : |x(t)| = \max_{s \in [0, t_1]} |x(s)| \right\}.$$

- *Proof of Lemma (idea)
 - \blacktriangleright $x(t)=x(t,0,\varphi)$ solution on $[-\tau,\alpha)$, $\alpha>0$, with $\varphi\in\mathcal{C}_n$
 - ▶ Suppose that $|x(t_1)| > \|\varphi\|$ for some $t_1 > 0$ and define

$$T = \min \left\{ t \in [0, t_1] : |x(t)| = \max_{s \in [0, t_1]} |x(s)| \right\}.$$

▶ We have $|x_T(s)| = |x(T+s)| < |x(T)|$, for $s \in [-\tau, 0)$. By **(H)** we conclude that,

$$x_i(T)f_i(T,x_T)<0,$$

for some $i \in \{1, ..., n\}$ such that $|x_i(T)| = |x(T)|$. If $x_i(T) > 0$ (analogous if $x_i(T) < 0$), then $x_i'(T) < 0$.

- *Proof of Lemma (idea)
 - $\blacktriangleright x(t) = x(t,0,\varphi)$ solution on $[-\tau,\alpha)$, $\alpha > 0$, with $\varphi \in C_n$
 - ▶ Suppose that $|x(t_1)| > \|\varphi\|$ for some $t_1 > 0$ and define

$$T = \min \left\{ t \in [0, t_1] : |x(t)| = \max_{s \in [0, t_1]} |x(s)| \right\}.$$

▶ We have $|x_T(s)| = |x(T+s)| < |x(T)|$, for $s \in [-\tau, 0)$. By **(H)** we conclude that,

$$x_i(T)f_i(T,x_T) < 0,$$

for some $i \in \{1, ..., n\}$ such that $|x_i(T)| = |x(T)|$. If $x_i(T) > 0$ (analogous if $x_i(T) < 0$), then $x_i'(T) < 0$.

$$> x_i(t) \le |x(t)| < |x(T)| = x_i(T), t \in [0, T),$$

$$\Rightarrow x_i'(T) \geq 0.$$

- *Proof of Lemma (idea)
 - \blacktriangleright $x(t)=x(t,0,\varphi)$ solution on $[-\tau,\alpha)$, $\alpha>0$, with $\varphi\in\mathcal{C}_n$
 - ▶ Suppose that $|x(t_1)| > \|\varphi\|$ for some $t_1 > 0$ and define

$$T = \min \left\{ t \in [0, t_1] : |x(t)| = \max_{s \in [0, t_1]} |x(s)| \right\}.$$

We have $|x_T(s)| = |x(T+s)| < |x(T)|$, for $s \in [-\tau, 0)$. By **(H)** we conclude that,

$$x_i(T)f_i(T,x_T)<0,$$

for some $i \in \{1, ..., n\}$ such that $|x_i(T)| = |x(T)|$. If $x_i(T) > 0$ (analogous if $x_i(T) < 0$), then $x_i'(T) < 0$.

 $> x_i(t) \le |x(t)| < |x(T)| = x_i(T), t \in [0, T),$

$$\Rightarrow x_i'(T) \geq 0.$$

► Contradition. Thus x(t) is defined and bounded on $[0, +\infty)$.

Global exponential stability

Theorem 1: Assume (A1)-(A5)

Then the equilibrium of (3) is globally exponentially stable.

Global exponential stability

Theorem 1: Assume (A1)-(A5)

Then the equilibrium of (3) is globally exponentially stable.

- * Proof of Theorem (idea)
- ► The change of variables $z(t) = e^{\int_0^t \lambda(u) du} x(t)$ transforms (3) into

$$z_i'(t) = g_i(t, z_t), \quad t \ge 0 \tag{6}$$

with

$$g_i(t,\varphi) = \lambda(t)\varphi_i(0) - a_i(t,\psi(t))e^{\int_0^t \lambda(u)\,du}[b_i(t,\psi(t)_i(0)) + f_i(t,\psi(t))]$$

and
$$\psi(t)(s) = e^{-\int_0^{t+s} \lambda(u) du} \varphi(s), s \in [-\tau, 0]$$

 $\blacktriangleright \psi(t) \in C_n$

▶ Take $t \ge 0$ and $\varphi \in C_n$ such that

$$|\varphi(s)| < |\varphi(0)| = ||\varphi|| = \varphi_i(0) > 0, \quad \forall s \in [-\tau, 0).$$

▶ Take $t \ge 0$ and $\varphi \in C_n$ such that

$$|\varphi(s)| < |\varphi(0)| = ||\varphi|| = \varphi_i(0) > 0, \quad \forall s \in [-\tau, 0).$$

From the hypotheses and assuming $x^* = 0$

$$g_{i}(t,\varphi) = \lambda(t)\varphi_{i}(0) - a_{i}(t,\psi(t))e^{\int_{0}^{t}\lambda(u)\,du}[b_{i}(t,\psi(t)_{i}(0)) - b_{i}(t,0) + f_{i}(t,\psi(t)) - f_{i}(t,0)]$$

$$\leq \lambda(t)\varphi_{i}(0) - a_{i}(t,\psi(t))e^{\int_{0}^{t}\lambda(u)\,du} \cdot \left[\beta_{i}(t)e^{-\int_{0}^{t}\lambda(u)\,du}\varphi_{i}(0) - I_{i}(t)e^{-\int_{0}^{t-\tau}\lambda(u)\,du}\|\varphi\|\right]$$

$$\leq \varphi_{i}(0)\left[\lambda(t) - \underline{\rho}_{i}\left(\beta_{i}(t) - I_{i}(t)e^{\int_{t-\tau}^{t}\lambda(u)\,du}\right)\right] < 0$$

▶ Take $t \ge 0$ and $\varphi \in C_n$ such that

$$|\varphi(s)| < |\varphi(0)| = ||\varphi|| = \varphi_i(0) > 0, \quad \forall s \in [-\tau, 0).$$

From the hypotheses and assuming $x^* = 0$

$$g_{i}(t,\varphi) = \lambda(t)\varphi_{i}(0) - a_{i}(t,\psi(t))e^{\int_{0}^{t}\lambda(u)\,du}[b_{i}(t,\psi(t)_{i}(0)) - b_{i}(t,0) + f_{i}(t,\psi(t)) - f_{i}(t,0)]$$

$$\leq \lambda(t)\varphi_{i}(0) - a_{i}(t,\psi(t))e^{\int_{0}^{t}\lambda(u)\,du} \cdot \left[\beta_{i}(t)e^{-\int_{0}^{t}\lambda(u)\,du}\varphi_{i}(0) - I_{i}(t)e^{-\int_{0}^{t-\tau}\lambda(u)\,du}\|\varphi\|\right]$$

$$\leq \varphi_{i}(0)\left[\lambda(t) - \rho_{i}\left(\beta_{i}(t) - I_{i}(t)e^{\int_{t-\tau}^{t}\lambda(u)\,du}\right)\right] < 0$$

► Then (H) holds and, from the Lemma,

$$|x(t,0,\varphi)| = \left| e^{-\int_0^t \lambda(u) \, du} z(t,0,\psi(0)) \right|$$

$$\leq e^{-\varepsilon t} \left| z \left(t,0, e^{-\int_0^0 \lambda(u) \, du} \varphi \right) \right| \leq e^{-\varepsilon t} \|\varphi\|.$$

Corollary 1: Assume $a_i(t, \varphi) = 1$ and (A3)-(A5) Then the system

$$x'_{i}(t) = -b_{i}(t, x_{i}(t)) + f_{i}(t, x_{t}), \quad t \geq 0,$$
 (7)

is globally exponentially stable.

Corollary 1: Assume $a_i(t, \varphi) = 1$ and **(A3)-(A5)** Then the system

$$x'_{i}(t) = -b_{i}(t, x_{i}(t)) + f_{i}(t, x_{t}), \quad t \geq 0,$$
 (7)

is globally exponentially stable.

- * Proof (idea)
- Let $\bar{x}(t) = x(t, 0, \bar{\varphi})$. The change of variables $z(t) = x(t) \bar{x}(t)$ transforms (7) into

$$z'_{i}(t) = -\bar{b}_{i}(t, z_{i}(t)) + \bar{f}_{i}(t, z_{t}), \quad t \geq 0$$
 (8)

with

$$\bar{b}_i(t,u) = b_i(t,u+\bar{x}_i(t))$$
 and $\bar{f}_i(t,\varphi) = f_i(t,\varphi+\bar{x}_t) + b_i(t,\bar{x}_i(t)) - f_i(t,\bar{x}_t)$

Corollary 1: Assume $a_i(t, \varphi) = 1$ and **(A3)-(A5)**

Then the system

$$x_i'(t) = -b_i(t, x_i(t)) + f_i(t, x_t), \quad t \ge 0,$$
 (7)

is globally exponentially stable.

- * Proof (idea)
- Let $\bar{x}(t) = x(t, 0, \bar{\varphi})$. The change of variables $z(t) = x(t) \bar{x}(t)$ transforms (7) into

$$z'_{i}(t) = -\bar{b}_{i}(t, z_{i}(t)) + \bar{f}_{i}(t, z_{t}), \quad t \geq 0$$
 (8)

with

$$\bar{b}_i(t,u) = b_i(t,u+\bar{x}_i(t))$$
 and $\bar{f}_i(t,\varphi) = f_i(t,\varphi+\bar{x}_t)+b_i(t,\bar{x}_i(t))-f_i(t,\bar{x}_t)$

Zero is an equilibrium of (8) and from the Theorem 1

$$|x(t)-\bar{x}(t)|=|z(t)|\leq e^{-\varepsilon t}||z_0||=e^{-\varepsilon t}||\varphi-\bar{\varphi}||, \quad \forall t\geq 0.$$

Corollary 2: Assume (A3) and (A4)

▶ If $l_i(t)$ are bounded and there exists $\alpha > 0$:

$$\beta_i(t) - l_i(t) > \alpha, \quad \forall t \ge 0,$$
 (9)

then the system (7) is globally exponentially stable.

Corollary 2: Assume (A3) and (A4)

▶ If $l_i(t)$ are bounded and there exists $\alpha > 0$:

$$\beta_i(t) - I_i(t) > \alpha, \quad \forall t \ge 0,$$
 (9)

then the system (7) is globally exponentially stable.

* (Proof) For $I_i(t) < L_i$, from (9), we have

$$\beta_i(t) - l_i(t) \left(1 + \frac{\alpha}{2nL_i}\right) > \frac{\alpha}{2}.$$

Taking
$$\varepsilon_i^* = \frac{1}{\tau} \log \left(1 + \frac{\alpha}{2nL_i} \right) > 0$$
 and $\varepsilon = \min_i \{ \frac{\alpha}{2}, \varepsilon_i^* \}$,

$$\beta_i(t) - I_i(t)e^{\varepsilon \tau} > \varepsilon.$$

With $\lambda(t) = \varepsilon$, the condition **(A5)** holds.

Periodic systems

Assume that the system

$$x'_{i}(t) = -b_{i}(t, x_{i}(t)) + f_{i}(t, x_{t}), \quad t \geq 0$$
 (7)

is ω -periodic, $\omega > 0$, that is:

$$b_i(t, u) = b_i(t + \omega, u), \quad \forall t \geq 0, \ \forall u \in \mathbb{R};$$

$$f_i(t,\varphi) = f_i(t+\omega,\varphi), \quad \forall t \geq 0, \ \forall \varphi \in C_n.$$

Theorem 2: Assume (A3), (A4), and

$$\beta_i(t) - I_i(t) > 0, \quad \forall t \in [0, \omega].$$

Then (7) has a ω -periodic solution which is globally exponentially stable.

* (Proof) Show the existence of a periodic solution. From Corollary 2

$$\|x_t(\varphi) - x_t(\bar{\varphi})\| \le e^{-\varepsilon(t-\tau)} \|\varphi - \bar{\varphi}\|, \quad \forall t \ge \tau, \ \forall \varphi, \bar{\varphi} \in C_n.$$

* (Proof) Show the existence of a periodic solution. From Corollary 2

$$||x_t(\varphi) - x_t(\bar{\varphi})|| \le e^{-\varepsilon(t-\tau)}||\varphi - \bar{\varphi}||, \quad \forall t \ge \tau, \ \forall \varphi, \bar{\varphi} \in C_n.$$

Let $k \in \mathbb{N}$ such that $e^{-(k\omega-\tau)} \leq \frac{1}{2}$ and define $P: C_n \to C_n$ by $P(\varphi) = x_{\omega}(\varphi)$.

$$||P^{k}(\varphi)-P^{k}(\bar{\varphi})||=||x_{k\omega}(\varphi)-x_{k\omega}(\bar{\varphi})||\leq \frac{1}{2}||\varphi-\bar{\varphi}||,$$

 P^k is a contraction map on Banach space C_n . Thus, P^k has a unique fixed point $\varphi^* \in C_n$: $P^k(\varphi^*) = \varphi^*$.

* (Proof) Show the existence of a periodic solution. From Corollary 2

$$||x_t(\varphi)-x_t(\bar{\varphi})|| \le e^{-\varepsilon(t-\tau)}||\varphi-\bar{\varphi}||, \quad \forall t \ge \tau, \ \forall \varphi, \bar{\varphi} \in C_n.$$

Let $k \in \mathbb{N}$ such that $e^{-(k\omega-\tau)} \leq \frac{1}{2}$ and define $P: C_n \to C_n$ by $P(\varphi) = x_{\omega}(\varphi)$.

$$||P^{k}(\varphi) - P^{k}(\bar{\varphi})|| = ||x_{k\omega}(\varphi) - x_{k\omega}(\bar{\varphi})|| \le \frac{1}{2}||\varphi - \bar{\varphi}||,$$

 P^k is a contraction map on Banach space C_n . Thus, P^k has a unique fixed point $\varphi^* \in C_n$: $P^k(\varphi^*) = \varphi^*$.

As $P^k(P(\varphi^*)) = P(P^k(\varphi^*)) = P(\varphi^*)$, then

$$P(\varphi^*) = \varphi^* \Leftrightarrow \mathsf{x}_\omega(\varphi^*) = \varphi^*$$

and $x(t, 0, \varphi^*)$ is the periodic solution of (7).

Hopfield neural network model [2]

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{i=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{i=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
 (10)

Hopfield neural network model [2]

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{j=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
 (10)

- ▶ $b_i, a_{ij}, b_{ij}, I_i : [0, +\infty) \to \mathbb{R}, \ \tau_{ij}(t) \ge 0$ are continuous;
- ▶ $f_j : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with constant I_j ;
- $b_i(t) \sum_{j=1}^n l_j \left(|a_{ij}(t)| + |b_{ij}(t)| e^{\int_{t-\tau_{ij}}^t \lambda(s) ds} \right) > \lambda(t), \ \forall i$

and $\int_0^t \lambda(s)ds \ge \varepsilon t$, for some $\varepsilon > 0$ and some function $\lambda(t)$. Then system (10) is globally exponentially stable.

Hopfield neural network model [2]

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{j=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
 (10)

- ▶ $b_i, a_{ij}, b_{ij}, I_i : [0, +\infty) \to \mathbb{R}, \ \tau_{ij}(t) \ge 0$ are continuous;
- ▶ $f_j : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with constant I_j ;
- $b_i(t) \sum_{j=1}^n l_j \left(|a_{ij}(t)| + |b_{ij}(t)| e^{\int_{t-\tau_{ij}}^t \lambda(s) ds} \right) > \lambda(t), \ \forall i$

and $\int_0^t \lambda(s)ds \ge \varepsilon t$, for some $\varepsilon > 0$ and some function $\lambda(t)$. Then system (10) is globally exponentially stable.

▶ In [2], a different hypotheses set is assumed to get the same conclusion.

For the periodic model:

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{i=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{i=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
(11)

For the periodic model:

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{j=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
 (11)

- ▶ $b_i, a_{ij}, b_{ij}, I_i : [0, +\infty) \to \mathbb{R}, \ \tau_{ij}(t) \ge 0$ are ω -periodic continuous;
- ▶ $f_j : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with constant I_j ;
- $b_i(t) \sum_{i=1}^n l_j(|a_{ij}(t)| + |b_{ij}(t)|) > 0, \quad \forall i, \forall t \in [0, \omega].$

Then (11) has a global exponential stable ω -periodic solution.

For the periodic model:

$$x_i'(t) = -b_i(t)x_i(t) + \sum_{j=1}^n a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(x_j(t-\tau_{ij}(t))) + I_i(t)$$
 (11)

- ▶ $b_i, a_{ij}, b_{ij}, I_i : [0, +\infty) \to \mathbb{R}, \ \tau_{ij}(t) \ge 0$ are ω -periodic continuous;
- ▶ $f_i : \mathbb{R} \to \mathbb{R}$ are Lipschitz functions with constant I_i ;
- $b_i(t) \sum_{i=1}^n l_j(|a_{ij}(t)| + |b_{ij}(t)|) > 0, \quad \forall i, \forall t \in [0, \omega].$

Then (11) has a global exponential stable ω -periodic solution.

▶ In [3] assumed the additional hypothesis

$$b_j(t) - \sum_{i=1}^n l_j(|a_{ij}(t)| + |b_{ij}(t)|) > 0, \quad \forall j, \, \forall t \in [0, \omega],$$

Thank you

Work published at Appl. Math. Comput. 219 (2013) 2861-2870.