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Neural Network Models

*Pioneer Models:
» Cohen-Grossberg (1983)

n

(1) = —a,-(x;(r))(b,-(x,-(t)) - Zc,-,-f,-(x,-(r))), i=1,....n (1)

Jj=1

> Hopfield (1984)

(1) = ~bila() + Y cif(g(r).  i=l....n ()
j=1

where
a; amplification functions;  b; controller functions;
f; activation functions; C = [cjj] conection matrix.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

* Nonautonomous system of delay differential equations

xj(t) = —ai(t,xt) [bi(t, xi(£)) + fi(t,xt)], t>0,i=1,....,n (3)
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

* Nonautonomous system of delay differential equations
Xll(t) = _af(t7Xt) [b,’(t,X,‘(t)) + fi(t7xt)] ’ t> 07 = 17 <oy n (3)
* Phase Space: C, := C([—7,0];R") for 7 > 0,

¢l = sup [o(s)]  with x| =|(x1,...,xa)| = max |xi
se[—7,0] 1<i<n

xt € Cp,  xt(s)=x(t+s), s€[-T,0]
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* VvV VvV Vv

General model Nonautonomous delay differential system
Hypotheses
Solutions bounded and defined on [—7, +00)

Nonautonomous system of delay differential equations
Xll(t) = _af(t7Xt) [b,’(t,X,'(t)) + fi(t7xt)] ’ t> 07 = 17 <oy n (3)

Phase Space: C, := C([—,0];R") for 7 > 0,

ol = sup [o(s)]  with |x| =[(x1;. .., xa)[ = max x|
se[—7,0] 1<i<n
xt € Cp,  xt(s)=x(t+s), s€[-T,0]
a; : [0,400) x C, — (0, +00) are continuous functions;
b; : [0,+00) x R — R are continuous functions;
fi 1 [0, +00) x C, — R are continuous functions.
Initial Condition
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

* Definition
The solution x(t,0, @) of (3)-(4) is said globally exponentially
stable if 30 > 0 and M >1

[x(t,0,0) = x(t,0,8)| < Me™**|lp — .

forall t >0, ¢ € C,.

* Definition
The model (3) is said globally exponentially stable if
F9>0and M >1

[X(£,0,01) = x(t,0,2)| < Me™** |1 — 2,

forall t >0, ¢1,p2 € Cp,.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

For (3) we assume the following hypotheses:
Foreachi=1,...,n,
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

For (3) we assume the following hypotheses:
Foreachi=1,...,n,
> (A1) 3x* = (x{,...,x;) € R" a equilibrium point of (3);
> (A2) Jp. >0

0<p, <inflai(t,p):t>0,p € Co};
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

For (3) we assume the following hypotheses:
Foreachi=1,...,n,
> (A1) 3x* = (x{,...,x;) € R" a equilibrium point of (3);
> (A2) Jp. >0

0<p, <inflai(t,p):t>0,p € Co};
> (A3) 35;: [0,+00) — (0,400), Yu,v E R u# v:
(bi(t, u) — bi(t,v))/(u—v) > Gi(t), Vt>0;
[In particular, for bi(t, u) = Bi(t)u.]
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +c0)

For (3) we assume the following hypotheses:
Foreachi=1,...,n,
> (A1) 3x* = (x{,...,x;) € R" a equilibrium point of (3);
> (A2) Jp. >0

0<p, <inflai(t,p):t>0,p € Co};
» (A3) 35;:[0,+00) — (0,400), Yu,v € R u # v:
(bi(tv U)—b,'(t, V))/(U— V) Z/Bi(t)v VtZ 0;

[In particular, for bi(t, u) = Bi(t)u.]
> (A8) 3 ;: [0, +00) — (0, +00)

fi(t, @) — fi(t, )] < li(t)lle —¢ll, Vt>0, Vo, € Cp;
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

For (3) we assume the following hypotheses:
Foreachi=1,...,n,

> (A1) 3x* = (x{,...,x;) € R" a equilibrium point of (3);

> (A2) 3p, > 0:

0<p, <inflai(t,p):t>0,p € Co};
» (A3) 35;:[0,+00) — (0,400), Yu,v € R u # v:
(bi(t, u) — bi(t,v))/(u—v) > Gi(t), Vt>0;
[In particular, for bi(t, u) = Bi(t)u.]
> (A4) 3 /; : [0,400) — (0, +00)
fi(t, o) = fi(t, V) < (D)l — oI, Vi =0, Vo,b € Cp;

» (A5) Je > 0 and A : R — (0,+00) a continuous function:
t

p; (Bi(£) ~ 1(£)e- X% > A(2) and / A(s)ds > ct, Vt > 0.
0
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

» In C,, consider the FDE
X'(t) = f(t,x), t>0 (5)

with f = (f1,..., ) : [0,+00) x C, — R" continuous

[1] T. Faria, J.J. Oliveira, J. Diff. Equ. (2008) 1049-1079.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

» In C,, consider the FDE
X'(t) = f(t,x), t>0 (5)

with f = (f1,..., ) : [0,+00) x C, — R" continuous
* Lemma:[1] If
(H) vVt > 0,Vp € Cp:

Vs € [-7,0), p(s)] < [»(0)] = @i(0)fi(t, ) <O,
for some i € {1,..., n} such that |¢(s)| = |¢i(0)],

then the solution x(t) = x(t,0,¢), ¢ € Cp, of (5) is defined
and bounded on [—T7, +o0) and

x(£,0, )| < [lel]-

[1] T. Faria, J.J. Oliveira, J. Diff. Equ. (2008) 1049-1079.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

*Proof of Lemma (idea)
> x(t) = x(t,0,¢) solution on [—7, &), @ > 0, with p € C,
» Suppose that |x(t1)| > ||¢|| for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max yx(s)|}.

s€[0,t1]
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

*Proof of Lemma (idea)
> x(t) = x(t,0,¢) solution on [—7, &), @ > 0, with p € C,
» Suppose that |x(t1)| > ||¢|| for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max yx(s)|}.

s€[0,t1]

» We have |[x7(s)| = [x(T +s)| < |[x(T)|, for s € [-7,0).
By (H) we conclude that,

xi(T)f(T,xr) <0,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

*Proof of Lemma (idea)
> x(t) = x(t,0,¢) solution on [—7, &), @ > 0, with p € C,
» Suppose that |x(t1)| > ||¢|| for some t; > 0 and define

T = min {t € [0,t1] : |x(t)] = max yx(s)|}.

s€[0,t1]

» We have |[x7(s)| = [x(T +s)| < |[x(T)|, for s € [-7,0).
By (H) we conclude that,

xi(T)f(T,xr) <0,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
> x;(t) < |x(t)] < |x(T)| =x(T), te][0,T),

= x/(T) > 0.
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General model Nonautonomous delay differential system
Hypotheses

Solutions bounded and defined on [—7, +00)

*Proof of Lemma (idea)
> x(t) = x(t,0,¢) solution on [—7, &), @ > 0, with p € C,
» Suppose that |x(t1)| > ||¢|| for some t; > 0 and define

T = min {t € [0, t1] : [x(t)] = max ]x(s)|} .
s€[0,t1]
» We have |[x7(s)| = [x(T +s)| < |[x(T)|, for s € [-7,0).
By (H) we conclude that,
xi(T)i(T,xr) <0,

for some i € {1,...,n} such that |x;(T)| = |x(T)|. If
xi(T) > 0 (analogous if x;(T) < 0), then x/(T) < 0.
> xi(t) < |x(t)] < |x(T)| =x(T), t [0, T),
= x/(T) > 0.
» Contradition. Thus x(t) is defined and bounded on [0, +00).
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Main results

Global exponential stability Rt asiEs

Global exponential stability

Theorem 1: Assume (Al)-(Ab5)
Then the equilibrium of (3) is globally exponentially stable.
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Main results

Global exponential stability Rt asiEs

Global exponential stability

Theorem 1: Assume (Al)-(Ab5)
Then the equilibrium of (3) is globally exponentially stable.

* Proof of Theorem (idea)

» The change of variables z(t) = elo M) dux(t) transforms (3)
into

zi(t) = gi(t,z), t>0 (6)
with
gi(t.0) = A()i(0)—ai(t, v(t))elo X [by(t, (1) (0))+(t, v(t))]

and Y(t)(s) = e~ Jo AW duy(s) s € [—7,0]
> Y(t) € C,
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Main results
Periodic systems

Global exponential stability

» Take t > 0 and ¢ € C, such that
lp(s)| < [2(0)] = [l¢ll = ¢i(0) >0, Vs e [-T,0).
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Main results
Periodic systems

Global exponential stability

» Take t > 0 and ¢ € C, such that
o(s) < [0(0)| = [le]l = ¢i(0) >0, Vs € [-7,0).
» From the hypotheses and assuming x* =0

gilt.9) = MB)wi(0) — ai(t, v(1))elo X ¥ [bi(t, 1(2);(0)) — bi(t,0)
+1i(t,9(t)) — £i(t, 0)]

< A(t)pi(0) — ai(t, 1(t))elo Mu)du.
. [ﬁi(t)e_ Jo A du@i(o) — li(t)e” Jo7T Aw) dU”(pH}
<

¢i(0) [A(t) - p (ﬂ;(t) — i(t)eli-- AW du)] <0
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Main results
Periodic systems

Global exponential stability

» Take t > 0 and ¢ € C, such that
lp(s)] < [p(0)] = [l¢ll = ¢i(0) >0, Vs e [-T,0).

» From the hypotheses and assuming x* =0

gilt.9) = MB)wi(0) — ai(t, v(1))elo X ¥ [bi(t, 1(2);(0)) — bi(t,0)
+hi(t, 9(t)) — fi(t, 0)]

< A(B)@i(0) — ai(t, v(t))elo M) du.
. [ﬁ,(t)e‘ JEN@ o (0) — fi(¢)e o7 AW) du”(pu}
< 9il0) [A®) = p, (8:(0) = h(B)el ) | < 0

» Then (H) holds and, from the Lemma,
x(t,0,0)] = |e™ o2 ez(2,0,4(0))

< etz (10,6 A < ooty
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Main results
Periodic systems

Corollary 1: Assume a;(t,¢) =1 and (A3)-(A5)
Then the system

X:{(t) = —b,'(t,X,'(t)) + ﬁ(t7xt)7 t>0, (7)

Global exponential stability

is globally exponentially stable.
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Main results
Periodic systems

Global exponential stability

Corollary 1: Assume a;(t,¢) =1 and (A3)-(A5)
Then the system

xi(t) = —bi(t, xi(t)) + fi(t, xt), t>0, (7)

!

is globally exponentially stable.

* Proof (idea)
> Let x(t) = x(t,0,%). The change of variables
z(t) = x(t) — x(t) transforms (7) into

7(t) = —bi(t,z(t)) + fi(t, ), t>0 (8)

with
bi(t,u) = bi(t, u+xi(t)) and fi(t, @) = fi(t, p+x:)+bi(t, %i(t))—fi(t, X)
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Main results
Periodic systems

Global exponential stability

Corollary 1: Assume a;(t,¢) =1 and (A3)-(A5)
Then the system

X:{(t) = —b,'(t,X,'(t)) + ﬁ(t7xt)7 t>0, (7)

is globally exponentially stable.
* Proof (idea)
> Let x(t) = x(t,0,%). The change of variables
z(t) = x(t) — x(t) transforms (7) into

Zi(t) = —bi(t, zi(t)) + fi(t,z), t>0 (8)
with
bi(t,u) = bi(t, u+xi(t)) and fi(t, @) = fi(t, p+x:)+bi(t, %i(t))—fi(t, X)
> Zero is an equilibrium of (8) and from the Theorem 1

x(t) = x(t)] = |2(t)| < e[|z = e[l = @Il Vt=0.
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Main results
Periodic systems

Global exponential stability

Corollary 2: Assume (A3) and (A4)
» If /;(t) are bounded and there exists a > 0:

Bi(t) = li(t) > a, Vt>0, (9)

then the system (7) is globally exponentially stable.
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Main results
Periodic systems

Global exponential stability

Corollary 2: Assume (A3) and (A4)
» If /;(t) are bounded and there exists a > 0:

Bi(t) = li(t) > a, Vt>0, (9)

then the system (7) is globally exponentially stable.
* (Proof) For [;(t) < L;, from (9), we have

Bi(t) — li(t) (1 + 2:L,-> - %

Taking &7 = Llog (1 + ﬁ) >0and e = mjn{%?s}k},
! 1

ﬂ,‘(l’) — /,'(t)eET > €.

With A\(t) = ¢, the condition (A5) holds.
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Main results

Global exponential stability Periodic systems

Periodic systems

Assume that the system
xi(t) = —bi(t, x(t)) + fi(t.xe), t=0 (7)
is w-periodic, w > 0, that is:

bi(t,u) = bi(t +w,u), Vt>0, VueR;

fi(t.p) = fi(t +w, ), Vt>0, Yo € C,.
Theorem 2: Assume (A3), (A4), and
ﬁi(t)_li(t) >0, Vt € [07w]‘

Then (7) has a w-periodic solution which is globally exponentially
stable.

Salete Esteves, Elgin Gokmen, José J. Oliveira Exponential stability of neural network models



Global exponential stability AT (RESTE] 55

Periodic systems

* (Proof) Show the existence of a periodic solution.
From Corollary 2

Ixe(p) = xe(@) < e Do —@ll, Ve, Vo, 5 € Co.
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Global exponential stability AT (RESTE] 55

Periodic systems

* (Proof) Show the existence of a periodic solution.
From Corollary 2

Ixe(p) = xe(@) < e Do —@ll, Ve, Vo, 5 € Co.

» Let k € N such that e~ (kv=7) < % and define
P: C,— C,by P(p) =x,(¥)-

1P4() = PX@)] = %) — (@) < 21l — Bl

P¥ is a contraction map on Banach space C,. Thus, P¥ has a
unique fixed point p* € C,: PK(¢*) = ¢*.
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Global exponential stability AT (RESTE] 55

Periodic systems

* (Proof) Show the existence of a periodic solution.
From Corollary 2

Ixe() = xe(@)| < e — ||, Vt=r1, VYo,5€ Cp
» Let k € N such that e~ (kv=7) < % and define

P: C,— C,by P(p) =x,(¥)-

1P4() = PX@)] = %) — (@) < 21l — Bl

P¥ is a contraction map on Banach space C,. Thus, P¥ has a
unique fixed point p* € C,: PK(¢*) = ¢*.
> As PX(P(¢*)) = P(P*(¢*)) = P(¢"), then

P(¢") = ¢" & x,(¢") = ¢

and x(t, 0, ¢*) is the periodic solution of (7).

Salete Esteves, Elcin Gokmen, José J. Oliveira Exponential stability of neural network models



Hopfield model
Application

Hopfield neural network model [2]

xi(t) = +Z‘9U(t fi((t )+Zbu(t fi(x(t = 735(2))) + 1i(¢) (10)

Jj=1 j=1

[2] Q. Zhang, X. Wei, J. Xu, Chaos Solitons & Fractals 39 (2009) 1152-1157.
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Hopfield model
Application

Hopfield neural network model [2]

xi(t) = +Z‘9U(t fi((t )+Zbu(t fi(x(t = 735(2))) + 1i(¢) (10)

Jj=1 j=1

> bj, ajj, bjj, I; : [0,+00) — R, 7;(t) > 0 are continuous;

» f; : R — R are Lipschitz functions with constant /;;
n

> bi(6) = 3 (Jag(o)l + byl 5 %) oo, i

j=1
and fot A(s)ds > et, for some € > 0 and some function A(t).
Then system (10) is globally exponentially stable.

[2] Q. Zhang, X. Wei, J. Xu, Chaos Solitons & Fractals 39 (2009) 1152-1157.

Salete Esteves, Elcin Gokmen, José J. Oliveira Exponential stability of neural network models



Hopfield model
Application

Hopfield neural network model [2]

xi(t) = +Z‘9U(t fi((t )+Zbu(t fi(x(t = 735(2))) + 1i(¢) (10)

Jj=1 j=1

> bj, ajj, bjj, I; : [0,+00) — R, 7;(t) > 0 are continuous;

» f; : R — R are Lipschitz functions with constant /;;
n

d .
> bi(0) = 3 (Jay(o)l + by 5 %) Ao, i
j=1
and fot A(s)ds > et, for some € > 0 and some function A(t).
Then system (10) is globally exponentially stable.
» In [2], a different hypotheses set is assumed to get the same
conclusion.

[2] Q. Zhang, X. Wei, J. Xu, Chaos Solitons & Fractals 39 (2009) 1152-1157.
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Hopfield model
Application

For the periodic model:

X/(t) = =bi(t)xi(t) + Y a(£)fi((2)) + D by(t)f0(t — 75(2))) + hi(2) (11)
j=1

[3] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Hopfield model
Application

For the periodic model:

n

X/(t) = =bi(t)xi(t) + Y a(£)fi((2)) + D by(t)f0(t — 75(2))) + hi(2) (11)
j=1

Jj=1

> bj,aj, bjj, i : [0, +00) — R, 7;(t) > 0 are w-periodic
continuous,
» f; : R — R are Lipschitz functions with constant /;;

Z/ a5(8)] + Iby(8))) > 0, Vi, vt € [0,u].

Then (11) has a global exponential stable w-periodic solution.

[3] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Hopfield model
Application

For the periodic model:

n

X/(t) = =bi(t)xi(t) + Y a(£)fi((2)) + D by(t)f0(t — 75(2))) + hi(2) (11)
j=1

Jj=1

> bj,aj, bjj, i : [0, +00) — R, 7;(t) > 0 are w-periodic
contlnuous,
» f; : R — R are Lipschitz functions with constant /;;

Z/ a5(8)] + Iby(8))) > 0, Vi, vt € [0,u].

Then (11) has a global exponential stable w-periodic solution.
» In [3] assumed the additional hypothesis

n

bi(t) = li(lag(t)] + [by(£)]) > 0, V), Ve € [0,0],
i=1

[3] M. Tan, Y. Tan, Appl. Math. Model. 33 (2009) 373-385.
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Hopfield model
Application

Thank you

Work published at Appl. Math. Comput. 219 (2013) 2861-2870.
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