Global Stability of Scalar Differential Equations with Small Delays

Teresa Faria Universidade de Lisboa (CMAF)

José J. Oliveira Universidade do Minho (CMAT)

Work accepted (under minor revisions) for publication in *J. Math. Anal. Appl.*

Notations and Definitions

•
$$\tau \in \mathbb{R}^+$$
;

•
$$C := C([-\tau, 0]; \mathbb{R})$$

$$\|\varphi\|_{C} = \sup_{\theta \in [-\tau, 0]} \|\varphi(\theta)\|;$$

• For $x \in C([a-\tau,b];\mathbb{R})$, where $b > a \in \mathbb{R}$, and $t \in [a,b]$, we define x_t by

$$x_t(\theta) := x(t+\theta), \ \theta \in [-\tau, 0]$$

 $x_t \in C;$

• For $\gamma \in \mathbb{R}$,

 $C_{\gamma} := \{ \varphi \in C : \varphi(\theta) \ge \gamma, \theta \in [-\tau, 0), \text{ and } \varphi(0) > \gamma \}$

We consider the scalar functional differential equation (FDE) in general form

$$\dot{x}(t) = f(t, x_t), \quad t \in I := [0, +\infty)$$
 (1)

where $f: I \times C \to \mathbb{R}$ is continuous with

$$f(t,0)\equiv 0 \ \forall t\geq 0,$$

to have x = 0 as an equilibrium point.

We consider initial conditions

$$x_0 = \varphi, \quad \varphi \in C.$$

Main Objective

To get sufficient conditions for the global attractivity of the zero solution of (1), i.e.,

$$x(t) \rightarrow 0$$
, as $t \rightarrow +\infty$,

for all solutions x(t) of (1).

Delayed Logistic Equation

$$\dot{x}(t) = ax(t)\left(1 - \frac{1}{k}x(t-\tau)\right), \quad t \ge 0(2)$$

 $x_0 = \varphi, \quad \varphi \in C_0,$

with $a, \tau, k \in \mathbb{R}^+$. Admissible solutions (i.e., positive solutions):

$$x_t \in C_0, \quad \forall t \ge 0$$

- $x(t) \equiv k$ is the positive equilibrium.
- The change of variables

$$y(t) = \frac{x(t)}{k} - 1$$

transforms (2) in the form

$$\dot{y}(t) = (1 + y(t))[-ay(t - \tau)], t \ge 0(3)$$

 $x_0 = \varphi, \ \varphi \in C_{-1},$

Theorem [E. M. Wright, 1955] If $a\tau \leq 3/2$, then every admissible solution x(t) of (2) satisfies

$$x(t) \rightarrow k$$
, as $t \rightarrow +\infty$.

J. A. Yorke [1970]

$$\dot{x}(t) = f(t, x_t)$$

Hypotheses:

(Y1)
$$\forall t_n \to +\infty, \forall \varphi_n \in C,$$

If $\varphi_n \to c \neq 0$, then $f(t_n, \varphi_n) \not\rightarrow 0$;

$$\begin{array}{l} \textbf{(Y2)} \ \exists a > 0, \forall t \geq 0, \forall \varphi \in C: \\ -a\mathcal{M}(\varphi) \leq f(t,\varphi) \leq a\mathcal{M}(-\varphi), \end{array} \end{array}$$

where $\mathcal{M}(\varphi) := \max\{0, \max_{\theta \in [-\tau, 0]} \varphi(\theta)\};$

Theorem

If $a\tau < 3/2$, then every solution x(t) of (1) converges to zero as $t \to +\infty$.

Yorke condition (Generalizations)

T. Yoneyama [1987]

$$\lambda : [0, +\infty) \rightarrow [0, \infty)$$
 continuous,
 $-\lambda(t)\mathcal{M}(\varphi) \leq f(t, \varphi) \leq \lambda(t)\mathcal{M}(-\varphi).$ (4)
 $\sup_{t>T} \int_{t-\tau}^{t} \lambda(s)ds < \frac{3}{2}$

X. Zhang & J. Yan [2004]

$$\lambda_i : [0, +\infty) \rightarrow [0, \infty), \ i = 1, 2, \ \text{continuous},$$

 $-\lambda_1(t)\mathcal{M}(\varphi) \leq f(t, \varphi) \leq \lambda_2(t)\mathcal{M}(-\varphi).$ (5)
 $\alpha_i := \sup_{t \geq T} \int_{t-\tau}^t \lambda_i(s) ds, \ i = 1, 2$
 $\min\{\alpha_1, \alpha_2\} \max\{\alpha_1^2, \alpha_2^2\} < (3/2)^3$

E. Liz, V. Tkachenko & S. Trofimchuk [2003] There are a > 0 and $b \ge 0$:

$$ar(\mathcal{M}(\varphi)) \leq f(t,\varphi) \leq ar(-\mathcal{M}(-\varphi)),$$

where $r(x) = \frac{-x}{1+bx}$, $x > -1/b$.

Notes:

• If b = 0, then we have the original Yorke condition.

• If b > 0 then, to have **bounded solutions**, we need an extra bounded condition on $f(t, \varphi)$ when $\varphi < 0$.

Our setting: hypotheses **(H)**:

(H1) There is a piecewise continuous (P.C.) function $\beta: I \rightarrow I$ such that

$$\sup_{t\geq\tau}\int_{t-\tau}^t\beta(s)ds<+\infty,$$

and $\forall q \in \mathbb{R}, \exists \eta(q) \in \mathbb{R}$:

$$f(t, \varphi) \leq \beta(t)\eta(q), \ \forall t \in I, \varphi \geq q;$$

(H2) If $w : [-\tau, +\infty) \to \mathbb{R}$ is continuous and $\lim_{t \to +\infty} w(t) = w^* \neq 0$, then

$$\int_0^{+\infty} f(s, w_s) ds$$
 diverges;

(H3) There are P.C. functions $\lambda_1, \lambda_2 : I \to I$ and $b \ge 0$ such that

$$\begin{split} \lambda_1(t)r(\mathcal{M}(\varphi)) &\leq f(t,\varphi) \leq \lambda_2(t)r(-\mathcal{M}(-\varphi)), \\ \text{where } r(x) &= \frac{-x}{1+bx}, \ x > -1/b; \end{split}$$

7

(H4) There is $T \ge \tau$ such that, for

$$\alpha_i := \sup_{t \ge T} \int_{t-\tau}^t \lambda_i(s) ds, \ i = 1, 2,$$

we have

$$\Gamma(\alpha_1, \alpha_2) \le 1, \tag{6}$$

where Γ is defined by

$$\Gamma(\alpha_1, \alpha_2) = \begin{cases} (\alpha_1 - 1/2)\frac{\alpha_2^2}{2}, & \alpha_1 > \frac{5}{2} \\ (\alpha_1 - 1/2)(\alpha_2 - 1/2), & \alpha_1, \alpha_2 \le \frac{5}{2} \\ (\alpha_2 - 1/2)\frac{\alpha_1^2}{2}, & \alpha_2 > \frac{5}{2} \end{cases}$$

• If $\lambda_1(t) = \lambda_2(t)$ ($\alpha := \alpha_1 = \alpha_2$), then (6) has the form

$$\sup_{t\geq T}\int_{t-\tau}^t\lambda(s)ds\leq \frac{3}{2}$$

• $\alpha_1 \alpha_2 \leq (3/2)^2$ imply $\Gamma(\alpha_1, \alpha_2) \leq 1$.

The case b = 0 in **(H3)**: r(x) = -x

(H3') There are P.C. functions $\lambda_1, \lambda_2 : I \to I$ and $h : \mathbb{R} \to \mathbb{R}$ a non-increasing function such that

 $|h(x)| < |x|, \ x \neq 0,$

 $\lambda_1(t)h(\mathcal{M}(\varphi)) \leq f(t,\varphi) \leq \lambda_2(t)h(-\mathcal{M}(-\varphi)).$

(H3')⇒(H3) (H3')+(H4)⇒(H1)

Theorem 1

Assume (H2), (H3') and (H4). Then the zero solution of (1) is globally attractive.

Corollary

Assume (H2), (H3) with b = 0 and (H4) with $\Gamma(\alpha_1, \alpha_2) < 1$. Then the zero solution of (1) is globally attractive.

In particular, the same conclusion holds when

$$\alpha_1 \alpha_2 \leq \left(\frac{3}{2}\right)^2$$
 and $(\alpha_1, \alpha_2) \neq (3/2, 3/2).$

Proof Let x(t) a solution of (1)

•(H3') $\Rightarrow x(t)$ bounded on $[-\tau, +\infty)$.

• Case x(t) is non-oscillatory: If x(t) is eventually positive, from **(H3')** $\dot{x}(t) = f(t, x_t) \leq 0$, then x(t) is eventually non-increasing, so $x(t) \rightarrow u \geq 0$. If u > 0, from **(H2)**

$$x(t) = x(t_0) + \int_{t_0}^t f(s, x_s) ds \to +\infty$$
, as $t \to +\infty$

a contradiction. Hence, u = 0.

• Case
$$x(t)$$
 is oscillatory:
 $u := \lim_{t \to +\infty} \sup x(t) \ge 0; \quad -v := \lim_{t \to +\infty} \inf x(t) \le 0$
(I) $u \le h(-v) \max\{\frac{1}{2}, \alpha_2 - \frac{1}{2}\}; \quad u \le h(-v)\frac{\alpha_2^2}{2}$
(II) $-v \ge h(u) \max\{\frac{1}{2}, \alpha_1 - \frac{1}{2}\}; \quad -v \ge h(u)\frac{\alpha_1^2}{2}$

Using (I)-(II), if $u \ge v$ and u > 0,

$$u \leq -h(u)\Gamma(\alpha_1, \alpha_2) \leq -h(u) < u,$$

a contradiction. Hence u = 0 and v = 0. Then $x(t) \rightarrow 0$ as $t \rightarrow +\infty$.

$$\dot{x}(t) = f(t, x_t)$$

Case b > 0 in (H3): $r(x) = -\frac{x}{1+bx}$, x > -1/b

Theorem 2 Assume **(H1)**-**(H4)**, with b > 0and $\lambda_i(t) > 0$ for t large. If $\alpha_1 \leq \alpha_2$ then, for all solutions x(t) of (1),

$$x(t) \rightarrow 0$$
, as $t \rightarrow \infty$.

The proof uses some arguments in the work of [E. Liz, V. Tkachenko & S. Trofimchuk 2003].

Without losing generality, we can let b = 1and $\tau = 1$.

com $\nu_i := \frac{2A'(0)}{A''(0)} = -\frac{6\alpha_i - 3}{6\alpha_i - 1} < 0.$

12

Note: If $\alpha_1 \leq \alpha_2$, then the composition $R_2 \circ D_1$ is well defined on $[0, +\infty)$.

 $\Gamma(\alpha_1, \alpha_2) \le 1 \Rightarrow R_2(D_1(x)) \le x, \quad \forall x \ge 0$ (7)

Let x(t) be a solution of (1)

 $(H1)+(H3) \Rightarrow x(t)$ bounded on $[-\tau, +\infty)$.

- Case x(t) is non-oscillatory: (H2)+(H3) $\Rightarrow x(t) \rightarrow 0$ as $t \rightarrow +\infty$
- Case x(t) is oscillatory:

 $u := \lim_{t \to +\infty} \sup x(t) \ge 0; \ -v := \lim_{t \to +\infty} \inf x(t) \le 0$ Using **(H3)**, if v > 0, then

$$u \leq A_2(-v) < R_2(-v) \leq R_2(D_1(u)),$$

is a contradiction by (7). Hence v = 0 and u = 0. Then

$$x(t) \rightarrow 0 \text{ as } t \rightarrow +\infty.$$

Scalar Population Models

$$\dot{x}(t) = x(t)f(t, x_t), \quad t \ge 0$$
(8)
 $x_0 = \varphi, \quad \varphi \in C_0,$

where $f : [0, +\infty) \times C \to \mathbb{R}$ is continuous and $C_0 := \{ \varphi \in C : \varphi(\theta) \ge 0, \theta \in [-\tau, 0), \text{ and } \varphi(0) > 0 \}.$

If u(t) is the solution of (8), then the change of variables

$$\bar{x}(t) = \frac{x(t)}{u(t)} - 1$$

transform (8) in to

$$\dot{x}(t) = (1 + x(t))F(t, x_t), \quad t \ge 0$$

$$(9)$$

$$x_0 = \varphi, \quad \varphi \in C_{-1},$$

where $F(t,\varphi) = f(t,u_t(1+\varphi)) - f(t,u_t)$.

Note: To study the global stability of the solution u(t) of (8) is equivalent to study the global stability of the zero solution of (9).

Consider the initial value problem (IVP)

$$\dot{x}(t) = (1 + x(t))F(t, x_t),$$

$$x_0 = \varphi, \quad \varphi \in C_{-1}.$$

For $F : [0, +\infty) \times C_{-1} \to \mathbb{R}$ we assume hypotheses **(H1)**-**(H4)** with φ restricted to C_{-1} , i.e. we suppose **(H1)**-**(H4)** hold with $\varphi \in C$ replaced by $\varphi \in C_{-1}$.

Note: If b < 1, then **(H3)** imply **(H1)**.

Theorem 3

For $F : [0, +\infty) \times C_{-1} \to \mathbb{R}$ continuous, assume **(H1)**-**(H4)** with φ restricted to C_{-1} . Case $b \neq \frac{1}{2}$, assume $\lambda_i(t) > 0$, for t large, and

(i)
$$b > \frac{1}{2}$$
 and $\alpha_1 \le \alpha_2$
or
(ii) $b < \frac{1}{2}$ and $\alpha_1 \ge \alpha_2$.

Then the solution x(t) of (9) converge to zero as $t \to +\infty$.

Proof

The change of variables $y(t) = \log(1 + x(t))$ transforms the IVP (9) in the form

$$\dot{y}(t) = f(t, y_t),$$

$$y_0 = \varphi, \quad \varphi \in C,$$

with $f(t, \varphi) := F(t, e^{\varphi} - 1).$

For
$$t \ge 0$$
 and $\varphi \in C$,
 $\lambda_1(t)r(e^{\mathcal{M}(\varphi)}-1) \le f(t,\varphi) \le \lambda_2(t)r(e^{-\mathcal{M}(-\varphi)}-1).$

• If $b = \frac{1}{2}$, then f satisfies (H2), (H4) and (H3') with

$$h(x) := r(e^x - 1) = -2\left(1 - \frac{2}{e^x + 1}\right),$$

then, by theorem 1, we have

$$y(t) \rightarrow 0$$
 as $t \rightarrow \infty$,

i.e., $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

• If $b > \frac{1}{2}$, then f satisfies (H1), (H2), (H4) and (H3) with

$$r_1(x) = \frac{-x}{1 + (b - \frac{1}{2})x}$$

Hence, by theorem 2, if $\alpha_1 \leq \alpha_2$, then

$$y(t) \rightarrow 0$$
 as $t \rightarrow \infty$,

i.e., $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

• If $0 < b < \frac{1}{2}$, the change $z(t) = -\log(1 + x(t))$ transforms the IVP (9) in the form

$$\dot{z}(t) = g(t, z_t),$$

$$z_0 = \varphi, \quad \varphi \in C,$$

where $g(t,\varphi) = -F(t,e^{-\varphi}-1)$ satisfies the hypotheses **(H)**, where **(H3)** is

 $\lambda_2(t)r_2(\mathcal{M}(\varphi)) \le g(t,\varphi) \le \lambda_1(t)r_2(-\mathcal{M}(-\varphi)),$ with $r_2(x) = \frac{-x}{1 + (\frac{1}{2} - b)x}.$

Hence, if $\alpha_2 \leq \alpha_1$, then $z(t) \rightarrow 0$, i.e., $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

17

Example [K.Golpalsamy book, 1992; Y.Liu, 2001; T.Faria, 2004]

$$\dot{N}(t) = \rho(t)N(t) \left[\frac{k - aN(t - \tau)}{k + \lambda(t)N(t - \tau)}\right]^{\alpha} (10)$$
$$N_0 = \varphi, \quad \varphi \in C_0$$

with $\rho, \lambda : [0, +\infty) \rightarrow [0, +\infty)$ are continuous, $a, k, \tau > 0$ and $\alpha \ge 1$ is the ratio of two odd integers.

 $N(t) \equiv \frac{k}{a}$ is the positive equilibrium.

Theorem Assume

$$\int_0^{+\infty} \frac{\rho(s)}{(1+\lambda(s))^{\alpha}} ds = \infty.$$
(11)

For $\underline{\lambda}(t) = \min\{a, \lambda(t)\}$, let

$$\lambda_1(t) = \frac{a^{\alpha}\rho(t)}{2\underline{\lambda}(t)^{\alpha}} \text{ and } \lambda_2(t) = \frac{\rho(t)}{1 + a\underline{\lambda}(t)},$$

and assume that there is $T \ge \tau$ such that $\Gamma(\alpha_1, \alpha_2) \le 1$, where

$$\alpha_i := \sup_{t \ge T} \int_{t-\tau}^t \lambda_i(s) ds, i = 1, 2.$$
 (12)

Then the solution N(t) of (10) satisfies

$$N(t) \rightarrow \frac{k}{a}, \text{ as } t \rightarrow +\infty.$$

Proof By the change $x(t) = \frac{aN(t)}{k} - 1$, the IVP (10) has the form

$$\dot{x}(t) = (1 + x(t))F(t, x_t)$$

$$x_0 = \varphi, \quad \varphi \in C_{-1},$$

with

$$F(t, x_t) = -\rho(t) \left[\frac{\varphi(-\tau)}{1 + \frac{\lambda(t)}{a} (1 + \varphi(-\tau))} \right]^{\alpha} (13)$$

- (11)⇒**(H2)**
- (H3) restricted to C_{-1} holds for F with $\lambda_1(t)$, $\lambda_2(t)$ as above and $r(x) = \frac{-x}{1 + \frac{1}{2}x}$.

In particular, the result holds if $\alpha_1 \alpha_2 \leq (\frac{3}{2})^2$, i.e.,

$$a^{\alpha} \left(\int_{t-\tau}^{t} \frac{\rho(s)}{\underline{\lambda}(s)^{\alpha}} ds \right) \left(\int_{t-\tau}^{t} \frac{\rho(s)}{1+a\underline{\lambda}(s)} ds \right) \leq \frac{9}{2}, \ t \text{ large}$$

Y. Liu [2001]
$$(k = a = 1)$$

• $\lambda(t) \ge 1$ $\lim_{t \to +\infty} \sup \int_{t-\tau}^{t} \rho(s) ds \le 3$

•
$$0 \le \lambda(t) \le 1$$
 $\lim_{t \to +\infty} \sup \int_{t-\tau}^{t} \frac{\rho(s)}{\lambda(s)^{\alpha}} ds \le 3$

•
$$\lambda(t) \ge a$$

Let $\lambda_0 := a^{-1} \inf_{t \ge 0} \lambda(t) \ge 1$.

Theorem

Assume (11). If $\lambda(t) \ge a$, $\forall t \ge 0$, and $\Gamma(\alpha_1, \alpha_2) \le 1$, with

$$\alpha_1 = a^{\alpha - 1} \sup_{t \ge T} \int_{t - \tau}^t \frac{\rho(s)}{(1 + a^{-1}\lambda(s))\lambda(s)^{\alpha - 1}} ds,$$

$$\alpha_2 = \frac{1}{1 + \lambda_0} \sup_{t \ge T} \int_{t - \tau}^t \rho(s) ds,$$

then the solution N(t) of (10) satisfies

$$N(t) \rightarrow \frac{k}{a}$$
, as $t \rightarrow +\infty$.

Proof

(H3) restricted to C_{-1} holds for F in (13) with

$$\lambda_1(t) = \frac{a^{\alpha-1}\rho(t)}{(1+a^{-1}\lambda(t))\lambda(t)^{\alpha-1}}, \quad \lambda_2(t) = \frac{\rho(t)}{1+\lambda_0},$$

and $r(x) = \frac{-x}{1+bx}, \ x \ge -1$, where

$$b := \frac{\lambda_0}{1 + \lambda_0} \ge \frac{1}{2}.$$

Note that $\lambda_1(t) \leq \lambda_2(t)$, hence $\alpha_1 \leq \alpha_2$.

•
$$0 \le \lambda(t) \le a$$

Let $\lambda^0 := a^{-1} \sup_{t \ge 0} \lambda(t) \le 1$.

Theorem

Assume (11). If $\lambda(t) \leq a$, $\forall t \geq 0$, and $\Gamma(\alpha_1, \alpha_2) \leq 1$, with

$$\alpha_1 = a^{\alpha} \frac{\lambda^0}{1+\lambda^0} \sup_{t \ge T} \int_{t-\tau}^t \frac{\rho(s)}{\lambda(s)^{\alpha}} ds,$$
$$\alpha_2 = \sup_{t \ge T} \int_{t-\tau}^t \frac{\rho(s)}{1+a^{-1}\lambda(s)} ds,$$

then the solution N(t) of (10) satisfies

$$N(t) \rightarrow \frac{k}{a}$$
, as $t \rightarrow +\infty$.

Proof

(H3) restricted to C_{-1} holds for F in (13) with

$$\lambda_1(t) = \frac{a^{\alpha}\lambda^0}{1+\lambda^0} \frac{\rho(t)}{\lambda(t)^{\alpha}}, \quad \lambda_2(t) = \frac{\rho(t)}{1+a^{-1}\lambda(t)}.$$

and $r(x) = \frac{-x}{1+bx}$, $x \ge -1$, where

$$b := \frac{\lambda^0}{1+\lambda^0} \le \frac{1}{2},$$

Note that $\lambda_1(t) \geq \lambda_2(t)$, hence $\alpha_1 \geq \alpha_2$.