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Notations and Definitions

• τ ∈ R+;

• C := C([−τ,0];R)

‖ϕ‖C = sup
θ∈[−τ,0]

‖ϕ(θ)‖;

• For x ∈ C([a−τ, b];R), where b > a ∈ R, and
t ∈ [a, b], we define xt by

xt(θ) := x(t + θ), θ ∈ [−τ,0]

xt ∈ C;

• For γ ∈ R,

Cγ := {ϕ ∈ C : ϕ(θ) ≥ γ, θ ∈ [−τ,0), and ϕ(0) > γ}
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We consider the scalar functional differential

equation (FDE) in general form

ẋ(t) = f(t, xt), t ∈ I := [0,+∞) (1)

where f : I × C → R is continuous with

f(t,0) ≡ 0 ∀t ≥ 0,

to have x = 0 as an equilibrium point.

We consider initial conditions

x0 = ϕ, ϕ ∈ C.

Main Objective

To get sufficient conditions for the global at-

tractivity of the zero solution of (1), i.e.,

x(t) → 0, as t → +∞,

for all solutions x(t) of (1).
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Delayed Logistic Equation

ẋ(t) = ax(t)
(
1− 1

k
x(t− τ)

)
, t ≥ 0(2)

x0 = ϕ, ϕ ∈ C0,

with a, τ, k ∈ R+.
Admissible solutions (i.e., positive solutions):

xt ∈ C0, ∀t ≥ 0

• x(t) ≡ k is the positive equilibrium.

• The change of variables

y(t) =
x(t)

k
− 1

transforms (2) in the form

ẏ(t) = (1 + y(t))[−ay(t− τ)], t ≥ 0(3)

x0 = ϕ, ϕ ∈ C−1,

Theorem [E. M. Wright, 1955]
If aτ ≤ 3/2, then every admissible solution
x(t) of (2) satisfies

x(t) → k, as t → +∞.
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J. A. Yorke [1970]

ẋ(t) = f(t, xt)

Hypotheses:

(Y1) ∀tn → +∞, ∀ϕn ∈ C,
If ϕn → c 6= 0, then f(tn, ϕn)9 0;

(Y2) ∃a > 0,∀t ≥ 0,∀ϕ ∈ C:

−aM(ϕ) ≤ f(t, ϕ) ≤ aM(−ϕ),

where M(ϕ) := max{0, max
θ∈[−τ,0]

ϕ(θ)};
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Theorem
If aτ < 3/2, then every solution x(t) of (1)
converges to zero as t → +∞.
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Yorke condition (Generalizations)

T. Yoneyama [1987]

λ : [0,+∞) → [0,∞) continuous,

−λ(t)M(ϕ) ≤ f(t, ϕ) ≤ λ(t)M(−ϕ). (4)

sup
t≥T

∫ t

t−τ
λ(s)ds <

3

2

X. Zhang & J. Yan [2004]

λi : [0,+∞) → [0,∞), i = 1,2, continuous,

−λ1(t)M(ϕ) ≤ f(t, ϕ) ≤ λ2(t)M(−ϕ). (5)

αi := sup
t≥T

∫ t

t−τ
λi(s)ds, i = 1,2

min{α1, α2}max{α2
1, α2

2} < (3/2)3
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E. Liz, V. Tkachenko & S. Trofimchuk [2003]

There are a > 0 and b ≥ 0:

ar(M(ϕ)) ≤ f(t, ϕ) ≤ ar(−M(−ϕ)),

where r(x) = −x
1+bx, x > −1/b.
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Notes:
• If b = 0, then we have the original Yorke
condition.

• If b > 0 then, to have bounded soluti-
ons, we need an extra bounded condition on
f(t, ϕ) when ϕ < 0.
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Our setting: hypotheses (H):
(H1) There is a piecewise continuous (P.C.)
function β : I → I such that

sup
t≥τ

∫ t

t−τ
β(s)ds < +∞,

and ∀q ∈ R,∃η(q) ∈ R:

f(t, ϕ) ≤ β(t)η(q), ∀t ∈ I, ϕ ≥ q;

(H2) If w : [−τ,+∞) → R is continuous and
lim

t→+∞
w(t) = w∗ 6= 0, then

∫ +∞
0

f(s, ws)ds diverges;

(H3) There are P.C. functions λ1, λ2 : I → I
and b ≥ 0 such that

λ1(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)r(−M(−ϕ)),

where r(x) = −x
1+bx, x > −1/b;
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(H4) There is T ≥ τ such that, for

αi := sup
t≥T

∫ t

t−τ
λi(s)ds, i = 1,2,

we have

Γ(α1, α2) ≤ 1, (6)

where Γ is defined by

Γ(α1, α2) =





(α1 − 1/2)
α2
2
2 , α1 > 5

2
(α1 − 1/2)(α2 − 1/2), α1, α2 ≤ 5

2

(α2 − 1/2)
α2
1
2 , α2 > 5

2
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• If λ1(t) = λ2(t) (α := α1 = α2), then (6)
has the form

sup
t≥T

∫ t

t−τ
λ(s)ds ≤ 3

2
.

• α1α2 ≤ (3/2)2 imply Γ(α1, α2) ≤ 1.

8



The case b = 0 in (H3): r(x) = −x

(H3’) There are P.C. functions λ1, λ2 : I → I

and h : R→ R a non-increasing function such
that

|h(x)| < |x|, x 6= 0,

λ1(t)h(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)h(−M(−ϕ)).

(H3’)⇒(H3)
(H3’)+(H4)⇒(H1)

Theorem 1
Assume (H2), (H3’) and (H4). Then the
zero solution of (1) is globally attractive.

Corollary
Assume (H2), (H3) with b = 0 and (H4)
with Γ(α1, α2) < 1. Then the zero solution
of (1) is globally attractive.

In particular, the same conclusion holds when

α1α2 ≤
(
3

2

)2
and (α1, α2) 6= (3/2,3/2).
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Proof Let x(t) a solution of (1)

•(H3’) ⇒ x(t) bounded on [−τ,+∞).

• Case x(t) is non-oscillatory:
If x(t) is eventually positive, from (H3’) ẋ(t) =
f(t, xt) ≤ 0, then x(t) is eventually non-increasing,
so x(t) → u ≥ 0.
If u > 0, from (H2)

x(t) = x(t0)+
∫ t

t0
f(s, xs)ds → +∞, as t → +∞

a contradiction. Hence, u = 0.

• Case x(t) is oscillatory:

u := lim
t→+∞

supx(t) ≥ 0; −v := lim
t→+∞

inf x(t) ≤ 0

(I) u ≤ h(−v)max{12, α2 − 1
2}; u ≤ h(−v)

α2
2
2

(II) −v ≥ h(u)max{12, α1 − 1
2}; −v ≥ h(u)

α2
1
2

Using (I)-(II), if u ≥ v and u > 0,

u ≤ −h(u)Γ(α1, α2) ≤ −h(u) < u,

a contradiction. Hence u = 0 and v = 0.
Then x(t) → 0 as t → +∞.
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ẋ(t) = f(t, xt)

Case b > 0 in (H3): r(x) = − x
1+bx, x > −1/b

Theorem 2 Assume (H1)-(H4), with b > 0

and λi(t) > 0 for t large.

If α1 ≤ α2 then, for all solutions x(t) of (1),

x(t) → 0, as t →∞.

The proof uses some arguments in the work

of [E. Liz, V. Tkachenko & S. Trofimchuk

2003].

Without losing generality, we can let b = 1

and τ = 1.
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i = 1,2

For 0 < α1 ≤ α2, we define Ai, Bi and D1 by

Ai(x) =





x + αir(x) +
1

r(x)

∫ 0

x
r(t)dt, x 6= 0

0, x = 0

;

Bi(x) =





1

r(x)

∫ 0

−αir(x)
r(t)dt, x 6= 0

0, x = 0

;
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D1(x) =

{
A1(x), 0 ≤ x < α1 − 1
B1(x), x ≥ max{0, α1 − 1}

For αi > 1/2, we define Ri by

Ri(x) = A′i(0)
x

1− x
νi

, x > νi,

com νi := 2A′(0)
A′′(0) = −6αi−3

6αi−1 < 0.
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Note: If α1 ≤ α2, then the composition

R2 ◦D1 is well defined on [0,+∞).

Γ(α1, α2) ≤ 1 ⇒ R2(D1(x)) ≤ x, ∀x ≥ 0 (7)

Let x(t) be a solution of (1)

(H1)+(H3) ⇒ x(t) bounded on [−τ,+∞).

• Case x(t) is non-oscillatory:

(H2)+(H3)⇒ x(t) → 0 as t → +∞

• Case x(t) is oscillatory:

u := lim
t→+∞

supx(t) ≥ 0; −v := lim
t→+∞

inf x(t) ≤ 0

Using (H3), if v > 0, then

u ≤ A2(−v) < R2(−v) ≤ R2(D1(u)),

is a contradiction by (7).

Hence v = 0 and u = 0. Then

x(t) → 0 as t → +∞.
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Scalar Population Models

ẋ(t) = x(t)f(t, xt), t ≥ 0

(8)

x0 = ϕ, ϕ ∈ C0,

where f : [0,+∞)×C → R is continuous and

C0 := {ϕ ∈ C : ϕ(θ) ≥ 0, θ ∈ [−τ,0), and ϕ(0) > 0}.

If u(t) is the solution of (8), then the change
of variables

x̄(t) =
x(t)

u(t)
− 1

transform (8) in to

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0

(9)

x0 = ϕ, ϕ ∈ C−1,

where F (t, ϕ) = f(t, ut(1 + ϕ))− f(t, ut).

Note: To study the global stability of the
solution u(t) of (8) is equivalent to study the
global stability of the zero solution of (9).
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Consider the initial value problem (IVP)

ẋ(t) = (1 + x(t))F (t, xt),

x0 = ϕ, ϕ ∈ C−1.

For F : [0,+∞) × C−1 → R we assume hy-

potheses (H1)-(H4) with ϕ restricted to C−1,

i.e. we suppose (H1)-(H4) hold with ϕ ∈ C

replaced by ϕ ∈ C−1.

Note: If b < 1, then (H3) imply (H1).

Theorem 3

For F : [0,+∞) × C−1 → R continuous, as-

sume (H1)-(H4) with ϕ restricted to C−1.

Case b 6= 1
2, assume λi(t) > 0, for t large, and

(i) b >
1

2
and α1 ≤ α2

or

(ii) b <
1

2
and α1 ≥ α2.

Then the solution x(t) of (9) converge to

zero as t → +∞.
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Proof
The change of variables y(t) = log(1 + x(t))
transforms the IVP (9) in the form

ẏ(t) = f(t, yt),

y0 = ϕ, ϕ ∈ C,

with f(t, ϕ) := F (t, eϕ − 1).

For t ≥ 0 and ϕ ∈ C,

λ1(t)r(e
M(ϕ)−1) ≤ f(t, ϕ) ≤ λ2(t)r(e

−M(−ϕ)−1).

• If b = 1
2, then f satisfies (H2), (H4) and

(H3’) with

h(x) := r(ex − 1) = −2
(
1− 2

ex + 1

)
,

then, by theorem 1, we have

y(t) → 0 as t →∞,

i.e., x(t) → 0 as t →∞.
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• If b > 1
2, then f satisfies (H1), (H2), (H4)

and (H3) with

r1(x) =
−x

1 + (b− 1
2)x

.

Hence, by theorem 2, if α1 ≤ α2, then

y(t) → 0 as t →∞,

i.e., x(t) → 0 as t →∞.

• If 0 < b < 1
2, the change z(t) = − log(1 +

x(t)) transforms the IVP (9) in the form

ż(t) = g(t, zt),

z0 = ϕ, ϕ ∈ C,

where g(t, ϕ) = −F (t, e−ϕ − 1) satisfies the

hypotheses (H), where (H3) is

λ2(t)r2(M(ϕ)) ≤ g(t, ϕ) ≤ λ1(t)r2(−M(−ϕ)),

with r2(x) =
−x

1 + (1
2 − b)x

.

Hence, if α2 ≤ α1, then z(t) → 0, i.e.,

x(t) → 0 as t →∞.
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Example [K.Golpalsamy book, 1992; Y.Liu,
2001; T.Faria,2004]

Ṅ(t) = ρ(t)N(t)

[
k − aN(t− τ)

k + λ(t)N(t− τ)

]α

(10)

N0 = ϕ, ϕ ∈ C0

with ρ, λ : [0,+∞) → [0,+∞) are continuous,
a, k, τ > 0 and α ≥ 1 is the ratio of two odd
integers.

N(t) ≡ k

a
is the positive equilibrium.

Theorem Assume
∫ +∞
0

ρ(s)

(1 + λ(s))α
ds = ∞. (11)

For λ(t) = min{a, λ(t)}, let

λ1(t) =
aαρ(t)

2λ(t)α
and λ2(t) =

ρ(t)

1 + aλ(t)
,

and assume that there is T ≥ τ such that
Γ(α1, α2) ≤ 1, where

αi := sup
t≥T

∫ t

t−τ
λi(s)ds, i = 1,2. (12)

Then the solution N(t) of (10) satisfies

N(t) → k

a
, as t → +∞.
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Proof By the change x(t) = aN(t)
k − 1, the

IVP (10) has the form

ẋ(t) = (1 + x(t))F (t, xt)

x0 = ϕ, ϕ ∈ C−1,

with

F (t, xt) = −ρ(t)


 ϕ(−τ)

1 + λ(t)
a (1 + ϕ(−τ))




α

(13)

• (11)⇒(H2)

• (H3) restricted to C−1 holds for F with

λ1(t), λ2(t) as above and r(x) =
−x

1 + 1
2x

.

In particular, the result holds if α1α2 ≤ (3
2)

2,
i.e.,

aα

(∫ t

t−τ

ρ(s)

λ(s)α
ds

) (∫ t

t−τ

ρ(s)

1 + aλ(s)
ds

)
≤ 9

2
, t large

Y. Liu [2001] (k = a = 1)

• λ(t) ≥ 1 lim
t→+∞

sup
∫ t

t−τ
ρ(s)ds ≤ 3

• 0 ≤ λ(t) ≤ 1 lim
t→+∞

sup
∫ t

t−τ

ρ(s)

λ(s)α
ds ≤ 3
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• λ(t) ≥ a

Let λ0 := a−1 inf
t≥0

λ(t) ≥ 1.

Theorem
Assume (11).
If λ(t) ≥ a, ∀t ≥ 0, and Γ(α1, α2) ≤ 1, with

α1 = aα−1 sup
t≥T

∫ t

t−τ

ρ(s)

(1 + a−1λ(s))λ(s)α−1
ds,

α2 =
1

1 + λ0
sup
t≥T

∫ t

t−τ
ρ(s)ds,

then the solution N(t) of (10) satisfies

N(t) → k

a
, as t → +∞.

Proof
(H3) restricted to C−1 holds for F in (13)
with

λ1(t) =
aα−1ρ(t)

(1 + a−1λ(t))λ(t)α−1
, λ2(t) =

ρ(t)

1 + λ0
,

and r(x) = −x
1+bx, x ≥ −1, where

b :=
λ0

1 + λ0
≥ 1

2
.

Note that λ1(t) ≤ λ2(t), hence α1 ≤ α2.
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• 0 ≤ λ(t) ≤ a
Let λ0 := a−1 sup

t≥0
λ(t) ≤ 1.

Theorem
Assume (11).
If λ(t) ≤ a, ∀t ≥ 0, and Γ(α1, α2) ≤ 1, with

α1 = aα λ0

1 + λ0
sup
t≥T

∫ t

t−τ

ρ(s)

λ(s)α
ds,

α2 = sup
t≥T

∫ t

t−τ

ρ(s)

1 + a−1λ(s)
ds,

then the solution N(t) of (10) satisfies

N(t) → k

a
, as t → +∞.

Proof
(H3) restricted to C−1 holds for F in (13)
with

λ1(t) =
aαλ0

1 + λ0

ρ(t)

λ(t)α
, λ2(t) =

ρ(t)

1 + a−1λ(t)
.

and r(x) = −x
1+bx, x ≥ −1, where

b :=
λ0

1 + λ0
≤ 1

2
,

Note that λ1(t) ≥ λ2(t), hence α1 ≥ α2.
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