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Hematopoiesis models

Mackey and Glass [1], proposed the following models to describe
the hematopoiesis process (the process of production, multiplication, and

specialization of blood cells in the bone marrow):
I Hematopoieses with monotone prodution rate

z ′(t) = −γz(t) +
F0η

n

ηn + zn(t − τ)
, n > 0; (1)

I Hematopoiesis with unimodal prodution rate

z ′(t) = −γz(t) +
F0η

nz(t − τ)

ηn + zn(t − τ)
, n > 1; (2)

z(t) density of cells in time t; τ time delay; γ destruction rate;
F0 maximal prodution rate (only for (1)); η a shape parameter.

[1] M.C.Mackey, L. Glass, Science 197 (1977) 287-289.
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I With the change of variable z(t) = ηx(t), eq. (1) becomes

x ′(t) = −γx(t) +
β

1 + xn(t − τ)
, t ≥ 0, (3)

where β = F0/η > 0, γ > 0, n > 0, and τ ≥ 0.

I The unique positive solution K of the equation

γK =
β

1 + Kn

is the positive equilibrium of (3).
I Theorem 1 Liz et al (2005)[2]:

The equilibrium K is a global attractor of (3), in the set of
positive solutions, if one of the following conditions holds:

1. 0 < n ≤ 1;
2. n > 1 and γ ≤ 1

τ ln n2+1
n2−n ;

3. n > 1, γ > 1
τ ln n2+1

n2−n , and e−τγ > c ln c2+c
1+c2 , where c = γnK n+1

β .

[2] E.Liz, M.Pinto, V.Tkachenko, and S.Trofimchuk, Quart. Appl. Math. 63 (2005), 56-70.
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g(x) =
1

1 + xn

0 < n ≤ 1 n > 1

1 1

Here, we only treat the situation where 0 < n ≤ 1.
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I Periodic Hematopoiesis model

x ′(t) = −a(t)x(t) +
b(t)

1 + xn(t − τ(t))
, t ≥ 0, (4)

where,
(H) a, b ∈ C (R; (0,∞)) and τ ∈ C (R; [0,∞)) are ω-periodic,
for ω > 0,

I Theorem 2 Wan & Jiang (2002)[3]: Assuming (H), the
ω-periodic model (4) has a positive ω-periodic solution, x̃(t).

I Open Problem 1 Berezansky et al. (2013)[4]:
Supposing (H) and 0 < n ≤ 1, prove or disprove that all
positive solutions of (4) converge to x̃(t).

[3] A.Wan and D.Jiang, Kyushu J. Math. 56 (2002), 193-202.

[4] L.Berezansky, E.Braverman, and L.Idels, Appl. Math. Comp. 219 (2013), 4892-4907.
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I In 2007, Liu et al. [5], studied the general form of model (4),

x ′(t) = −a(t)x(t) +
m∑
i=1

bi (t)

1 + xn(t − τi (t))
, t ≥ 0, (5)

(H) a, bi ∈ C (R; (0,∞)) and τi ∈ C (R; [0,∞)) are
ω-periodic, for ω > 0, m ∈ N, and i = 1, . . . ,m.
Notation: τ(t) = max

i
τi (t) and τ = max

t
τ(t).

I Theorem 3 Liu et al.[5]: Assume (H) and 0 < n ≤ 1. Then
(a) Model (5) has a positive ω-periodic solution, x̃(t);
(b) The periodic solution x̃(t) satisfies

x̃(t) ≥ x1 exp

(
− sup

t∈[0,ω]

∫ t

t−τ
a(u)du

)
=: X1, for all t ∈ R,

where x1 is the unique positive solution of the equation

āx =
m∑
i=1

bi

1 + xn
, ā = max a(t), bi = min bi (t).

[5] G.Liu, J.Yan, and F.Zhang, J. Math. Anal. Appl. 334 (2007), 157-171.
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āx =
m∑
i=1

bi

1 + xn
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Global attractivity

I Theorem 4 Liu et al. (2007)[5]: Assume (H) and 0 < n ≤ 1.
The positive ω-periodic solution x̃(t) of (5) is globally
attractive (in the set of all positive solutions), if

nX n−1
1

1 + X n
1

eA(ω)

eA(ω) − 1

∫ ω

0

m∑
i=1

bi (s)ds ≤ 1, (6)

where A(ω) =
∫ ω

0 a(u)du.
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I Theorem 5 Faria & Oliveira, (2019)[6]:
Assume (H) and 0 < n ≤ 1. The positive ω-periodic solution
x̃(t) of (5) is globally attractive (in the set of all positive
solutions), if there is T > 0 such that

nX n−1
1

(1 + X n
1 )2

sup
t≥T

∫ t

t−τ(t)

m∑
i=1

bi (s) exp

(
−
∫ t

s
a(u)du

)
ds < 1. (7)

I By easy computations, for all t > 0, we prove that∫ t

t−τ(t)

m∑
i=1

bi (s) exp

(
−
∫ t

s
a(u)du

)
ds <

eA(ω)

eA(ω) − 1

∫ ω

0

m∑
i=1

bi (s)ds.

Thus, Theorem 5 improves the stability criterion presented in
Theorem 4.

I The following example shows that condition (7) is strictly less
restrictive than condition (6).

[6] T. Faria and J.J. Oliveira, Applied Mathematics Letters 94 (2019), 1-7.
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Letting in n = 1, m = 2, and
a(t) = 1 + 1

2 cos(2πt),
b1(t) = 3

8

(
1 + 1

2 cos(2πt)
)

and b2(t) = 3
8

(
1 + 1

2 sin(2πt)
)
,

τ1(t) = τ2(t) = 1
2 (1 + sin(2πt)),

in hematopiesis model (5), we obtain

x ′(t) = −
(

1 +
1

2
cos(2πt)

)
x(t) +

6 + 3
2 (cos(2πt) + sin(2πt))

8(1 + x(t − 1
2 (1 + sin(2πt))))

. (8)

In this case, X1 =
√

2−1
2 e−1, and condition (7) read as

nX n−1
1

(1 + X n
1 )2

sup
t≥T

∫ t

t−τ(t)

m∑
i=1

bi (s) exp

(
−
∫ t

s
a(u)du

)
ds ≈ 0.64757 < 1.

However, conditon (6) does not hold because

nX n−1
1

1 + X n
1

eA(ω)

eA(ω) − 1

∫ ω

0

m∑
i=1

bi (s)ds ≈ 1.10248 > 1.
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Figure: Three solutions of (8) with initial condition ϕ1(θ) = cos θ,
ϕ2(θ) = 0.5eθ, and ϕ3(θ) = 0.1− sen(πθ), for θ ∈ [−1, 0], respectively.
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Proof of the main result (idea)

I The global stability of the zero equilibrium of the scalar
impulsive general delay differential equation

y ′(t) = −a(t)y(t) +
m∑
i=1

fi (t, y
i
t ), 0 ≤ t 6= tk ,

y(t+
k )− y(tk) = Ik(y(tk)), k ∈ N,

where y it =, y|[t−τi (t),t]
, and τ(t) = max

i
τi (t), was studied by

Faria & Oliveira and several stability critera are published in

I [7] T. Faria and J.J. Oliveira, On stability for impulsive delay differential equations and applications

to a periodic Lasota-Wazewska model, Disc. Cont. Dyn. Systems Series B, 21 (2016), 2451-2472.

I [8] T. Faria and J.J. Oliveira, A note on stability of impulsive scalar delay differential equations,

Electron. J. Qual. Theory Differ. Equ., Paper No. 69 (2016), 1-14.
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I Now, we consider the non-impulsive equation

y ′(t) = −a(t)y(t) +
m∑
i=1

fi (t, y
i
t ), t ≥ 0 (9)

I and the hypothesis

(A1)

∫ ∞
0

a(u) du =∞;

(A2) There are λ1,i , λ2,i : [0,∞)→ [0,∞) piecewise continuous

−λ1,i (t)Mi
t(ϕ) ≤ fi

(
t, ϕ|[−τi (t),0]

)
≤ λ2,i (t)Mi

t(−ϕ), t ≥ 0, ϕ ∈ S∗,

Mi
t(ϕ) = max

{
0, supθ∈[−τi (t),0] ϕ(θ)

}
, S∗ an admissible set;

(A3) There is T > 0 such that

α∗1α
∗
2 < 1, (10)

where the coefficients α∗j := α∗j (T ) are given by

α∗j = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i (s)e−
∫ t
s
a(u)duds, j = 1, 2.
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I Theorem 6 Faria & Oliveira (2016)[7]: Assume (A1)-(A3).
If 0 ∈ S∗, then the zero solution of (9) is globally attractive.

I Remark: In fact, the same conclusion can be obtained under
(A1), (A3), and the following weaker version of (A2):

(A2∗) for solutions y(t) of (9) with initial condition in S∗,

(i) if y(t) is non-oscillatory, then, for large t ≥ 0, fi (t, y
i
t ) ≤ 0 if

y i
t ≥ 0 and fi (t, y

i
t ) ≥ 0 if y i

t ≤ 0;

(ii) if y(t) is oscillatory, (A2) is satisfied for large t with ϕ|[−τi (t),0]

replaced by y i
t .

I Notation: A funtion z(t) is oscillatory if it is not eventually zero and it

has arbitrarily large zeros; otherwise, it is called non-oscillatory.
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*Proof of Theorem 5 (idea)

I Let x(t) a positive solution of (5) and x̃(t) the ω-periodic sol.

I By changing, y(t) = x(t)− x̃(t), model (5) is reduced to

y ′(t) = −a(t)y(t) +
m∑
i=1

fi (t, y
i
t ), t ≥ 0 (11)

with

fi (t, y
i
t ) = bi (t)

[
1

1 + (y(t − τi (t)) + x̃(t − τi (t)))n
− 1

1 + x̃(t − τi (t))n

]
.

I a(t) > 0 is ω- periodic, thus (A1) holds;
I Hypotheses (A2∗)(i) holds trivially;
I By Lagrange’s Theorem, we have

fi (t, y
i
t ) = −nξn−1bi (t)

(1 + ξn)2
y(t − τi (t))

with ξ = ξ(t, y , i) between
x(t − τi (t)) = y(t − τi (t)) + x̃(t − τi (t)) and x̃(t − τi (t)).
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I Let x(t) a positive solution of (5) and x̃(t) the ω-periodic sol.
I By changing, y(t) = x(t)− x̃(t), model (5) is reduced to

y ′(t) = −a(t)y(t) +
m∑
i=1

fi (t, y
i
t ), t ≥ 0 (11)

with

fi (t, y
i
t ) = bi (t)

[
1

1 + (y(t − τi (t)) + x̃(t − τi (t)))n
− 1

1 + x̃(t − τi (t))n

]
.

I a(t) > 0 is ω- periodic, thus (A1) holds;
I Hypotheses (A2∗)(i) holds trivially;

I By Lagrange’s Theorem, we have

fi (t, y
i
t ) = −nξn−1bi (t)

(1 + ξn)2
y(t − τi (t))

with ξ = ξ(t, y , i) between
x(t − τi (t)) = y(t − τi (t)) + x̃(t − τi (t)) and x̃(t − τi (t)).
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I By Theorem 3, x̃(t) ≥ X1.
I From Liu et al. (2007)[5] , we also know that:

If y(t) = x(t)− x̃(t) is oscillatory, then x(t) ≥ X1 for large t.
Thus

ξ ≥ X1.

I As σ 7→ nσn−1

(1+σn)2 is a non-increasing on (0,∞), we have

fi (t, yt) =
nξn−1

(1 + ξn)2 bi (t)
(
− y(t − τi (t))

)
≤ nX n−1

1

(1 + X n
1 )2 bi (t)Mi

t(−yt)

and

fi (t, yt) = − nξn−1

(1 + ξn)2 bi (t)y(t − τi (t)) ≥ − nX n−1
1

(1 + X n
1 )2 bi (t)Mi

t(yt).

I Thus (A2∗)(ii) holds with

λ1,i (t) = λ2,i (t) =
nX n−1

1

(1 + X n
1 )2 bi (t).

I Finally, condition (7) is equivalent to (10) with α∗1 = α∗2, and
we conclude that y(t)→ 0 as t →∞. The proof is complete.
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Final Remarks

I The open problem, to prove or disprove that all positive
solutions of periodic model (4) are attracted by the positive
periodic solution, remains unresolved;

I For periodic model (5), with n ≤ 1 and impulses, we obtain a
more restrictive criterion than (7), if we apply directly the
results in the paper [8];

I For periodic model (5) with n > 1, Liu et.al.[5] also obtained
a global attractivity criterion of the positive periodic solution.
In this case, we also obtained a better result, which is a
Corollary of a main criterion obtained for periodic model (5)
with n > 1 and impulses. These results are under review.

[8] T. Faria and J.J. Oliveira, Electron. J. Qual. Theory Differ. Equ., Paper No. 69 (2016), 1-14.
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