
Monadic translation of intuitionistic sequent
calculus

José Esṕırito Santo1, Ralph Matthes2, and Lúıs Pinto1

{jes,luis}@math.uminho.pt matthes@irit.fr

1 Departamento de Matemática, Universidade do Minho, Portugal
2 I.R.I.T. (C.N.R.S. and University of Toulouse III), France

February 20, 2009

Abstract. This paper proposes and analyses a monadic translation of
an intuitionistic sequent calculus. The source of the translation is a typed
λ-calculus previously introduced by the authors, corresponding to the
intuitionistic fragment of the call-by-name variant of λµµ̃ of Curien and
Herbelin, and the target is a variant of Moggi’s monadic meta-language,
where the rewrite relation includes extra permutation rules that may be
seen as variations of the “associativity” of bind (the Kleisli extension
operation of the monad).
The main result is that the monadic translation simulates reduction
strictly, so that strong normalisation (which is enjoyed at the target,
as we show) can be lifted from the target to the source. A variant trans-
lation, obtained by adding an extra monad application in the translation
of types, still enjoys strict simulation, while requiring one fewer extra
permutation rule from the target.
Finally we instantiate, for the cases of the identity monad and the con-
tinuations monad, the meta-language into the simply-typed λ-calculus.
By this means, we give a generic account of translations of sequent calcu-
lus into natural deduction, which encompasses the traditional mapping
studied by Zucker and Pottinger, and CPS translations of intuitionistic
sequent calculus.

1 Introduction

This paper is about a monadic translation of intuitionistic sequent calculus. By
the latter we mean the intuitionistic, call-by-name fragment of Curien-Herbelin’s
system for classical logic [1]. In the spirit of the Curry-Howard correspondence,
such a system is handled as an extension of the simply-typed λ-calculus, identi-
fied by the authors in [5], and named λJmse.

The target of the monadic translation is a variant of Moggi’s monadic meta-
language [12], named λM here. To recall, this is an extension of the simply-typed
λ-calculus where the type system includes a monad M , and the term language
includes constructions for the unit and the Kleisli extension (a. k. a. bind) op-
eration of the monad. The main point is that the set of reduction rules of the
meta-language is extended by two new rules, which can be seen as variations

of the usual “associativity” rule for bind, and which together with this “asso-
ciativity” rule can be seen as forming a variation of one single principle in the
ordinary λ-calculus, that we name assoc.

The monadic translation we introduce generalizes the ordinary monadic trans-
lation of the (call-by-name) λ-calculus [7], and, in particular, is based on the
principle that functions from A to B are interpreted as functions from MA
(computations of type A) to MB (computations of type B). The main result we
obtain is a strict simulation theorem (one reduction step in the sequent calculus
is mapped to one or more reduction steps in the monadic target). A variant of
the monadic translation, based on the interpretation of functions from A to B
as functions from MA to MMB, also enjoys strict simulation, and requires one
less of the new reduction rules from the target system.

One of the uses of the above results is in obtaining strong normalisation
for sequent calculus, i. e., the absence of an infinite sequence of proof transfor-
mations starting with a well-formed proof. Indeed, strong normalisation follows
immediately from strict simulation, since the target system is itself strongly nor-
malising. This fact, in turn, rests on the strong normalisability of the extension
of λ-calculus with the assoc reduction rule [3]. This emphasis on strict simulation
and strong normalisation follows the line of [5, 6], but is in contrast with the uses
of the monadic language in the study of programming languages semantics and
compilation, where other kinds of relationship between source and target calculi,
like equational correspondence, or reflection, are often obtained [7, 16].

On the other hand, we may regard the monadic translations and their prop-
erties, not as a goal in itself, but as a parametric means to analyse a family of
situations, via instantiation of the monad of the meta-language. In fact, we study
two such instantiations, one for the identity monad, the other for the continu-
ations monad, where by “instantiation” we mean composition of the monadic
translation with an interpretation of the monadic language into the λ-calculus.

Through this method we obtain a generic account of translations of sequent
calculus into natural deduction. The identity monad gives an analysis of what
in our framework is the traditional mapping studied by Zucker and Pottinger
[17, 14], together with some of its variants. The continuations monad obtains an
analysis of a CPS translation of λJmse similar to the one at the basis of [5].

The methodology of this generic account should be contrasted with that of
[7]. There, it is the monadic translation that varies, in order to capture a family of
situations (in the case of [7], several CPS translations), while the monad remains
instantiated to the continuations monad. Here, the monadic translation remains
fixed, while, by varying the monad, we uncover a common root to seemingly
unrelated translations of sequent calculus into natural deduction.

The paper is organised as follows. Section 2 presents sequent calculus λJmse.
Section 3 presents our version λM of the monadic meta-language. Section 4 de-
fines and proves the properties of the monadic translation and its optimized vari-
ant, and strong normalisation for λJmse is obtained. Section 5 gives the generic
account of translation into natural deduction. Finally, Section 6 concludes with
some remarks.

2

2 Intuitionistic Sequent Calculus

The calculus λJmse that is used here has been proposed in [5] (whose journal
version is [6]). It corresponds to the intuitionistic fragment of the call-by-name
variant of λµµ̃-calculus of Curien and Herbelin [1]. We quite closely follow the
presentation of the definition of λJmse in [6].

There are three classes of expressions in λJmse:

(Terms) t, u ::= x |λx.t | {c}
(Co-terms) l ::= [] |u :: l | (x)c
(Commands) c ::= tl

Terms can be variables (of which we assume a denumerable set ranged over by
letters x, y, z), lambda-abstractions λx.t or coercions {c} from commands to
terms.

Co-terms provide means of forming lists of arguments, generalised arguments,
or explicit substitutions. A co-term of the form (x)c, binds variable x in c and
provides the generalised application facility. Operationally it can be thought
of as “substitute for x in c”. A co-term of the form [] or u :: l is called an
evaluation context and is denoted by E. Evaluation contexts of the form u :: l
allow for multiary applications and, when passed to a term, indicate that, after
consumption of argument u, computation should carry on with arguments in l.
The co-term [] marks the end of an evaluation context, while the expression (x)x
is just ill-formed and, in particular, not a co-term.

A command tl has a double role: if l is of the form (x)c, tl is an explicit
substitution; otherwise, tl is a general form of application.

In writing expressions, sometimes we add parentheses to help their parsing.
Also, we assume that the scope of binders λx and (x) extends as far as possible.
We follow usual practise in that names of bound variables are considered as
immaterial and that the binding occurrences on display are meant to be well-
chosen so that no unwanted effects arise. It is then straightforward to define what
it means to replace every free occurrence of variable x in a capture-avoiding way
by a term t in a term u, co-term l or command c, yielding term [t/x]u, co-term
[t/x]l and command [t/x]c, respectively.

The calculus λJmse has a form of sequent for each class of expressions:

Γ ` t : A Γ |l : A ` B Γ
c−→ B

Letters A,B,C are used to range over the set of types (=formulas), built
from a base set of type variables (ranged over by X) using the function type
(that we write A ⊃ B). In sequents, contexts Γ are viewed as finite sets of
declarations x : A, where no variable x occurs twice. The context Γ, x : A is
obtained from Γ by adding the declaration x : A, and will only be written if
this yields again a valid context, i. e., if x is not declared in Γ . We can think of
a term (resp. co-term) as an annotation for a selected formula in the rhs (resp.
lhs). Commands annotate sequents generated as a result of logical cuts, where

3

Fig. 1. Typing rules of λJmse

Γ |[] : A ` A LAx
Γ, x : A ` x : A

RAx

Γ ` u : A Γ |l : B ` C
Γ |u :: l : A ⊃ B ` C LIntro

Γ, x : A ` t : B

Γ ` λx.t : A ⊃ B RIntro

Γ, x : A
c−→ B

Γ |(x)c : A ` B LSel
Γ

c−→ A
Γ ` {c} : A

RSel

Γ ` t : A Γ |l : A ` B

Γ
tl−→ B

Cut

there is no selected formula on the rhs or lhs; as such we write them on top of
the sequent arrow.

The typing rules of λJmse are presented in Figure 1, stressing the parallel
between left and right rules.

The standard typing rules for substitution for each syntactic class are admis-
sible: replacing a variable of declared type A by a term of type A does not change
the type. We also have the usual weakening rules: If a sequent with context Γ
is derivable and Γ is replaced by a context Γ ′ that is a superset of Γ , then also
this sequent is derivable.

We consider the following base reduction rules on expressions:1

(β) (λx.t)(u :: l)→ u((x)tl) (µ) (x)xl→ l, if x /∈ l
(π) {tl}E → t (l@E) (ε) {t[]} → t
(σ) t(x)c→ [t/x]c,

where, in general, l@l′ is a co-term that represents an “eager” concatenation of
l and l′, viewed as lists, and is defined as follows2:

[]@l′ = l′ (u :: l)@l′ = u :: (l@l′) ((x)tl)@l′ = (x)t (l@l′)

Concatenation obeys to the following further admissible form of cut rule:

Γ |l : A ` B Γ |l′ : B ` C
Γ |l@l′ : A ` C

1 Naming practise for binding occurrences excludes x as a free variable in u or l in the
left-hand side of rule β. The widening of the binding scope of x in the right-hand
side is noteworthy, but it is only meant to correspond to weakening.

2 Concatenation is “eager” in the sense that, in the last case, the right-hand side is
not (x){tl}l′ but, in the only important case that l′ is an evaluation context E, its
π-reduct. One immediately verifies l@[] = l and (l@l′)@l′′ = l@(l′@l′′) by induction
on l. Associativity would not hold with the lazy version of @.

4

The one-step reduction relation → is inductively defined as the term closure of
the reduction rules.

For detailed comments on the reduction rules, the subject reduction property
(that holds true), an analysis of normal forms and critical pairs (yielding local
confluence) and the identification of λJmse as the intuitionistic fragment of CBN
λµµ̃, see [5, 6].

We stress that the rule β does not execute any substitution. This makes a
simulation of λJmse in another system more difficult, not only because substi-
tution is delayed, but also because the scope of the bound variable is enlarged.

3 Monadic Lambda-calculus

The main result of [5, 6] is a proof of strong normalization of λJmse that does not
refer to the strong normalization results by Lengrand [10] and Polonovski [13]
about λµµ̃, but by a syntactic transformation to simply-typed λ-calculus that
strictly simulates reduction. The technique is a variation of continuation-passing
style, called continuation-and-garbage-passing style [8]. CPS translations alone
do not suffice for a strict simulation of all reductions. In the present article,
we move from CPS translations to monadic translations, whose target we call
monadic lambda-calculus. Strong normalisation of the monadic lambda-calculus
itself does not rest any longer on simply-typed λ-calculus with only β-reduction;
instead the following rule has to be added:

s((λx.t)r)→ (λx.st)r ,

where x is not free in s and s is a λ-abstraction. We call this rule assoc and the
extension of λ-calculus obtained by adding it λ[β, assoc].

Proposition 1. The calculus λ[β, assoc] is strongly normalizing, i. e., there is
no infinite reduction sequence t = t0 → t1 → t2 → . . . with a typable term t. 3

Proof. A proof by Lengrand may be found in [11]. A stronger result was stated
in [3], concerning the addition to the λ-calculus, not only of assoc (even with-
out the abstraction proviso), but also of another permutation rule, due to Reg-
nier [15], and named here perm. The “proof” of the strong result given in [3]
was incomplete. A complete proof may be found in [4]. Strong normalisation of
λ[β, assoc, perm] will be needed below in Section 5.1 for translation F . ut

Although our first aim is to give an alternative syntactic proof of strong nor-
malization of λJmse, we want to be able to interpret λJmse in as many monads
as possible, and not just the identity monad. Hence, we take as target calcu-
lus the extension of simply-typed λ-calculus where the type system includes a
monad—a type transformation called M as the single unary constant for build-
ing types—and the term language includes constructions for the unit and the
Kleisli extension (a.k.a. bind) operation of the monad M , as follows: the term

3 A term t is typable if there is a context Γ and a type A such that Γ ` t : A.

5

Fig. 2. Base reduction rules of λM

(βλ) (λx.t)s → [s/x]t
(βbind) bind(ηs, x.t) → [s/x]t
(πλ,λ) (λy.u)((λx.t)r) → (λx.(λy.u)t)r

(πbind,λ) bind((λx.t)r, y.u) → (λx.bind(t, y.u))r
(πbind,bind) bind(bind(r, x.t), y.u) → bind(r, x.bind(t, y.u))

language is extended by the following clauses: If s is a term then ηs is a term,
and if r and t are terms, then bind(r, x.t) is a term. The variable x is considered
as bound by “x.” in t.

The usual typing rules of simply-typed λ-calculus are extended as follows:

Γ ` s : A
Γ ` ηs : MA

η
Γ ` r : MA Γ, x : A ` t : MB

Γ ` bind(r, x.t) : MB
bind

The monadic language was introduced by Moggi [12] as an equational theory
and was used to interpret the computational lambda-calculus. Its corresponding
reduction theory is considered in [7] and [16] and includes rules for the 3 monadic
laws. Our monadic λ-calculus λM brings into play two more permutation rules.
The base reduction rules of λM are shown in Figure 2. The implicit proviso for
the three latter rules – the permutation rules – is that x is not free in λy.u.
Again, we write → for the term closure of the base reduction rules.

While βbind and πbind,bind correspond to two of the three monad laws, we do
not need the eta rule of the monad bind(r, x.ηx)→ r.

Note that the rule πbind,λ orients the direct equational consequence of βλ,

bind((λx.t)r, y.u) =βλ bind([r/x]t, y.u) =βλ (λx.bind(t, y.u))r ,

in a specific way. Likewise, πλ,λ – which is just a different presentation of rule
assoc – directs an equational consequence of βλ. So, from a purely equational
point of view, our notion of λM is not stronger than the ordinary one that only
reflects the monad laws. Moreover, we even omitted the eta rule.

To the best of our knowledge, rules (πλ,λ) and (πbind,λ) have not been con-
sidered before in combination with the traditional monad rules. However as we
show below, the enriched system λM enjoys good properties, which would hold
even in presence of the monadic eta rule.

The λM-calculus can be interpreted in λ[β, assoc] so that strict simulation
of reduction is obtained. The translation corresponds to defining the identity
monad in λ[β, assoc]. The translation | | : λM → λ[β, assoc] is defined on types
by |X| := X, |A ⊃ B| := |A| ⊃ |B| and |MA| := A, and is defined on terms by
|x| := x, |λx.t| := λx.|t|, |tu| := |t||u|, |ηs| := |s| and |bind(r, x.t)| := (λx.|t|)|r|.
Evidently, this respects the typing rules.

Lemma 1. If Γ ` s : A is derivable in λM, |Γ | ` |s| : |A| is derivable in
λ[β, assoc], where |Γ | is the result of replacing each declaration x : A in Γ by
x : |A|.

6

Under these definitions, βλ and βbind become β (the usual rule of λ-calculus that
is βλ, but quantified over a different set of terms), and all three permutation
rules become the assoc rule. (The ordinary eta rule of the monad would be just
mapped to one step of β.) Thus we have the strongest possible simulation result.4

Lemma 2. If t→ u in λM, |t| → |u| in λ[β, assoc].

From the above result and strong normalization of λ[β, assoc], we immediately
get the following result.

Corollary 1 The calculus λM is strongly normalizing.

Now, given that all critical pairs for the rules of λM are joinable, we also obtain
a confluence result.

Corollary 2 → is confluent for the typable terms of λM.

4 Translations of λJmse into Monadic λ-calculus

Here, we show how to translate λJmse into λM such that one obtains strict
simulation and thus can infer strong normalization of λJmse from Corollary 1.
Hence, this is an alternative syntactic proof of strong normalization of λJmse.
While the translation in the following section works on the types in usual CBN
fashion [7], a more complicated type translation in Section 4.2 even yields strict
simulation within λM without the rule πλ,λ.

4.1 Main monadic translation

A type A of λJmse is translated to A = MA∗ of λM, with the type A∗ defined
by recursion on A (where the definition of A is used as an abbreviation):

X∗ = X and (A ⊃ B)∗ = A ⊃ B

Note that, for the identity monad, this trivializes to A = A∗ = A. Any term t of
λJmse is translated into a term t of λM, any command c of λJmse into a term
c and any pair of a co-term l of λJmse and a variable w of λM, with w not free
in l, into a term lw of λM.5 This is done so that the typing rules in Figure 3 are
derivable, where Γ is derived from Γ by replacing every x : C in Γ by x : C.

The definitions are in Figure 4, where it is understood that f , v and w are
fresh variable names. The definition of []w is given with the extra (λk.k) so as
to form an (administrative) redex which will guarantee strict simulation of ε
and of the initial cases of π, see the proofs of Lemma 4 and Theorem 1. Also
(λv.lv)(fu) is a redex for strict simulation purposes, and we will “monadically”
abstract away from it in the optimized translation in Section 4.2.
4 Strict simulation would just mean that one step in the source calculus is mapped to

at least one step of the target calculus, which would be sufficient to inherit strong
normalization of the source calculus from the target calculus.

5 Whenever we write lw (or Ew), it will be understood that w does not occur free in
the co-term l (or E).

7

Fig. 3. Derived typing rules for monadic translation of λJmse

Γ ` t : A

Γ ` t : A

Γ
c−→ A

Γ ` c : A

Γ |l : A ` B
Γ,w : A ` lw : B

Fig. 4. Monadic translation of λJmse

x = x []w = (λk.k)w

λx.t = η(λx.t) (u :: l)w = bind(w, f.(λv.lv)(fu)) tl = [t/w]lw
{c} = c ((x)c)w = (λx.c)w

Lemma 3. The translation satisfies [t/x]u = [t/x]u, ([t/x]l)w = [t/x](lw) and
[t/x]c = [t/x]c. The proviso for the second equation is that x is not w. ut

Lemma 4. For w /∈ E6 and any v, one has [lw/v]Ev →+ (l@E)w.

Proof. For E = [], we calculate

[lw/v]([]v) = [lw/v]((λk.k)v) = (λk.k)lw →βλ lw = (l@[])w .

For E = u :: l′, do induction on l.
Case []: [(λk.k)w/v]Ev →βλ [w/v]Ev = Ew (v once in Ev + renaming)
Case u′ :: l:

[(u′ :: l)w/v]Ev = bind(bind(w, g.(λv′.lv′)(gu′)), f.(λv.l′v)(fu))
→πbind,bind

bind(w, g.bind((λv′.lv′)(gu′), f.(λv.l′v)(fu)))
→πbind,λ

bind(w, g.(λv′.bind(lv′ , f.(λv.l′v)(fu)))(gu′))
= bind(w, g.(λv′.[lv′/w]Ew)(gu′))
→+ bind(w, g.(λv′.(l@E)v′)(gu′)) by IH for l
= (u′ :: (l@E))w = ((u′ :: l)@E)w

Case (y)c with c = t1l1:

[((y)c)w/v]Ev = bind((λy.c)w, f.(λv.l′v)(fu))
→πbind,λ

(λy.bind(c, f.(λv.l′v)(fu)))w
= (λy.[c/v]Ev)w
= (λy.[[t1/v′](l1)v′/v]Ev)w
= (λy.[t1/v′][(l1)v′/v]Ev)w
→+ (λy.[t1/v′](l1@E)v′)w by IH for l1
= ((y)t1(l1@E))w = (((y)c)@E)w

ut
6 By writing (l@E)w, we already implicitly assume that w /∈ E, but this condition is

not visible in the left-hand side of the statement, hence we indicate it.

8

Theorem 1 (Simulation) If t→ t′ in λJmse, then t→+ t′ in λM. If l→ l′ in
λJmse, then lw →+ l′w in λM. If c→ c′ in λJmse, then c→+ c′ in λM.

Proof. We only have to consider a rewrite step at the root since the cases corre-
sponding to the closure rules follow by routine induction. This is so because w
has one free occurrence in lw (it has only one occurrence), and so the definition
of tl is uncritical (t cannot be lost as a subterm through substitution into lw).

Case β: (λx.t)(u :: l)→ u(x)tl.

(λx.t)(u :: l) = bind(η(λx.t), f.(λv.lv)(fu))
→βbind

(λv.lv)((λx.t)u)
→πλ,λ (λx.(λv.lv)t)u
→βλ (λx.[t/v]lv)u = (λx.tl)u = u(x)tl

Case σ: t(x)c→ [t/x]c:

t(x)c = (λx.c)t→βλ [t/x]c = [t/x]c (Lemma 3)

Case ε: {t[]} → t: {t[]} = (λk.k)t→βλ t
Case µ: (x)xl→ l, if x /∈ l.

((x)xl)w = (λx.xl)w = (λx.[x/w]lw)w →βλ [w/x][x/w]lw = lw

Case π: {tl}E → t (l@E). Apply substitution [t/w] to Lemma 4:

{tl}E = [tl/v]Ev = [[t/w]lw/v]Ev = [t/w][lw/v]Ev →+ [t/w](l@E)w = t(l@E) ,

using the usual lemma about substitution interchange in the third step. ut
Corollary 3 The calculus λJmse is strongly normalizing.

Proof. Use the previous theorem, the preservation of typability expressed in
Figure 3 and Corollary 1.

We remark that πλ,λ would not have been necessary if rule β of λJmse were
already σ-reduced on the right-hand side, thus with [u/x]tl. The calculation
would be as follows:

(λx.t)(u :: l) = bind(η(λx.t), f.(λv.lv)(fu))
→βbind

(λv.lv)((λx.t)u)
→βλ (λv.lv)([u/x]t)

= (λv.lv)[u/x]t (Lemma 3)
→βλ [[u/x]t/v]lv = [u/x]tl

Our monadic translation when restricted to λ-calculus essentially captures
the usual CBN monadic translation [7], call it ()◦. This translation for variables
and λ-abstraction behaves as our translation, and for applications does (tu)◦ :=
bind(t◦, f.fu◦). Our translation of a λ-calculus application tu, encoded in λJmse

as t(u :: []), reaches the expected term after two βλ-steps:

t(u :: []) = bind(t, f.(λv.[]v)(fu))→2
βλ

bind(t, f.fu)

We also notice that the property “t→β u in the λ-calculus ⇒ t◦ →βbind,βλ u
◦ in

the λM-calculus”, that holds of mapping ()◦ (an easy, perhaps new result), is
also shared by our translation.

9

Fig. 5. Optimized monadic translation of λJmse

x = x []w = (λk.k)w

λx.t = η(λx.ηt) (u :: l)w = bind(w, f.bind(fu, v.lv)) tl = [t/w]lw
{c} = c ((x)c)w = (λx.c)w

4.2 Optimized translation

Now, a translation is given that allows simulation of λJmse even in λ−M that
is obtained from λM by omitting the rule πλ,λ. The symbols of the previous
subsection will be reused, but their definition will be changed.

A type A of λJmse is translated to A = MA∗ of λM, with the type A∗ defined
by recursion on A (where the definition of A is used as an abbreviation):

X∗ = X and (A ⊃ B)∗ = A ⊃MB

Note that, for the identity monad, this again trivializes to A = A∗ = A. But the
crucial change is that an extra M is inserted on top of B in the translation of
A ⊃ B. For the special case of MA = ¬¬A, this is logically equivalent to the
translation used in [5, 6].

Any term t of λJmse is translated into a term t of λM, any command c of
λJmse into a term c and any pair of a co-term l of λJmse and a variable w of
λM, with w not free in l, into a term lw of λM. This is done so that the typing
rules in Figure 3 are again derivable, where, obviously, all symbols have to be
interpreted according to the current definitions.

The definitions are in Figure 5, where the usual freshness assumptions are un-
derstood. Changes with respect to Figure 4 concern λ-abstraction with an extra
η and (u :: l)w where bind replaces the β redex. In fact, bind(fu, v.lv) is just the
monadic version of (λv.lv)(fu) that was used formerly. For the identity monad,
the translation thus agrees with that of Section 4.1. However, in the general
case, bind(fu, v.lv) would not be well-typed with the definitions of Section 4.1.
For Γ |u :: l : A ⊃ B ` C, one would have w : A ⊃ B and hence f : (A ⊃ B)∗.
Therefore, fu would have type B and finally v : B∗, which is not enough. We
remark that one can base an alternative translation with A∗ as in Section 4.1
on the idea of enforcing the admissible rule Γ |l : A ` B ⇒ Γ ,w : A∗ ` lw : B.
Simulation results for this alternative translation needed extensions of the η rule
bind(t, x.ηx)→ t that did not seem to be well justified.

Lemma 3 also holds for the definitions of the present section.

Theorem 2 (Simulation) If t→ t′ in λJmse, then t→+ t′ in λ−M. If l→ l′ in
λJmse, then lw →+ l′w in λ−M. If c→ c′ in λJmse, then c→+ c′ in λ−M.

Proof. As in the proof of Theorem 1, it suffices to consider the base cases of
reduction at the root. The cases σ, ε and µ can be copied verbatim from the
proof of Theorem 1. For β, one calculates that

(λx.t)(u :: l)→βbind
bind((λx.ηt)u, v.lv)→πbind,λ

(λx.bind(ηt, v.lv))u→βbind
u(x)tl

10

Case π: {tl}E → t (l@E). The treatment of E = [] is immediate due to the
extra redex in the definition of []w.

Sub-case E = u :: l′. We have to show {tl}E →+ t(l@E), which is done by
induction on l, simultaneously for all t. ut

5 Generic Account of Translation into Natural Deduction

An instantiation of the monadic translation with a particular monad gives an in-
terpretation of the intuitionistic sequent calculus λJmse into natural deduction.
In this section we show that two such instantiations relate to known interpre-
tations, namely variants of both the Zucker-Pottinger translation and a CPS
translation. These interpretations receive, thus, a generic account through the
monadic translation.

5.1 Direct Translations

In this subsection we study certain “direct” translations of λJmse into the λ-
calculus. One of these, named N here, implements the traditional interpretation
of sequent calculus into natural deduction studied by Zucker [17] and Pottinger
[14]. The directness comes from the fact no translation of types is involved, and
also because these translations give a straightforward expression in terms of the
λ-calculus of the computational interpretations of λJmse-expressions. The direct
translations, as we will see, turn out to be related to the monadic translation,
when the latter is instantiated with the identity monad.

A direct translation. Let F be the mapping from λJmse to λ, based on
the idea of mapping, say, t(u1 :: u2 :: []) and t(u1 :: u2 :: (x)c) to

(λx.x)(rs1s2) and (λx.s)(rs1s2) ,

where r, si, and s are the translations of t, ui, and c, respectively. Formally, F
is given by

F (x) = x F (r, []) = (λx.x)r
F (λx.t) = λx.F (t) F (r, u :: l) = F (rF (u), l) F (tl) = F (F (t), l)
F ({c}) = F (c) F (r, (x)c) = (λx.F (c))r

We will need the target of F to be equipped not only with the assoc reduction
rule, but also with

(λx.t)rs→ (λx.ts)r ,

for x not free in s (a proviso that, as for assoc, already follows from the variable
convention). This is a well-known permutation rule [15, 9], which we name here
perm. Let λ[β, assoc, perm] be the λ-calculus equipped with both assoc and perm.

As mentioned in the proof of Proposition 1, normalisation of λ[β, assoc, perm]
holds as a consequence of a result stated in [3] and fully proved in [4].

Proposition 2. If t→ u in λJmse then F (t)→+ F (u) in λ[β, assoc, perm].

11

Proof. A by-hand proof would be possible, but we give an indirect proof, joining
scattered results from the literature. The point is that F is the composition of
the following mappings

λJmse ()◦−→ λJms ⊂ λGtz ()∗−→ λs
()]−→ λ[βπ]

where ()◦ : λJmse → λJms comes from [6], ()∗ : λGtz → λs comes from [2], and
()] : λs → λ[βπ] comes from [3]. λJms is the system preceding λJmse in the
“spectrum” of intuitionistic systems studied in [5, 6]. The difference relatively
to λJmse is that there is neither a separate class of commands, nor co-terms [];
instead, selection has the general form (x)t. λGtz is identical to λJms, except
that it has a more general π reduction rule, in that the call-by-name restriction
is not imposed, and the concatenation operator is lazy; so each π step in λJms

corresponds to one or more π steps in λGtz. λs is λ plus a substitution con-
struction, equipped with rules for generating (β), executing (σ), and delaying
(π) substitution. λ[βπ] is identical to λ[β, assoc, perm], except that in λ[βπ] the
abstraction proviso in the assoc rule is not imposed. 7 Mapping ()◦ erases the
coercion {−} and encodes [] as (x)x. Mapping ()∗ has the same spirit as F , ex-
cept that tl is mapped to a substitution, instead of a β-redex. Finally mapping
()] “raises” substitutions to β-redexes. The present proposition is corollary of
three simulation results: Proposition 3.6 of [6] concerning ()◦, Proposition 1 of
[2] concerning ()∗, and Proposition 7 of [3] concerning ()]. All three state that
each reduction step of the source generates one or more reduction steps of the
target, except in one case: ()] collapses β steps of λs. So, one has to supplement
Proposition 1 of [2] with the remark - useless for the purposes of [2], but needed
now - that ()∗ always generates at least one reduction step different from β in
the target, when translating a reduction step of its source. Finally we observe
that the simulation property of ()] still holds when one takes the assoc rule of
λ[βπ] with the abstraction proviso, and therefore the target of ()] can be taken
as λ[β, assoc, perm]. ut

Identity-monadic translations. Let G be the composition of the monadic
translation with the mapping | | : λM → λ[β, assoc] from the end of Section 3. G
maps, say, t(u1 :: u2 :: []) and t(u1 :: u2 :: (x)c) respectively to

(λf.(λz.(λf ′.(λz′.(λx.x)z)(f ′s2))z′)(fs1))r
(λf.(λz.(λf ′.(λz′.(λx.s)z)(f ′s2))z′)(fs1))r

if we let again r, si, and s be the translations of t, ui, and c, respectively. A
recursive definition of G is:

G(x) = x []w = (λk.k)w
G(λx.t) = λx.G(t) (u :: l)w = (λf.(λv.lv)(fG(u)))w G(tl) = [G(t)/w]lw
G({c}) = G(c) ((x)c)w = (λx.G(c))w

7 The idea is that perm and the relaxed assoc (called π1 and π2 in [3] respectively) form
a coherent set of rules for “delaying” a “substitution” (λx.−)r surrounding a term
t, whenever this t occurs in the function or argument positions of an application.

12

Proposition 3. If t→ u in λJmse then G(t)→+ G(u) in λ[β, assoc].

Proof. Immediate consequence of Theorem 2, and the 1-1 mapping of reduction
steps given by | |.

Comparison of translations. The previous proposition guarantees that,
by changing from the encoding of commands of F to the encoding of commands
of G, we dispense with perm in the target. For instance, consider

c1 = {t(u1 :: (x)c)}(u′1 :: (y)c′) and c2 = t(u1 :: (x)v(u′1 :: (y)c′))

with c = v[]. Then s = F (c) = (λz.z)F (v) and c1 →π c2 in λJmse. In the target
we have (if s1 = F (u1), s′ = F (c′), and s′1 = F (u′1))

F (c1) =
(
λy.s′

)(
(λx.s)(rs1)s′1

)
and F (c2) =

(
λx.(λy.s′)(F (v)s′1)

)(
rs1
)

After reducing s to F (v) and performing one perm step, one obtains from F (c1)
the term (λy.s′)((λx.F (v)s′1)(rs1)), which in turn reaches F (c2) after one assoc
step. On the other hand,

G(c1) =
(
λf ′.(λz′.(λy.s′)z′)(f ′s′1)

)(
(λf.(λz.(λx.s)z)(fs1))r

)
G(c2) =

(
λf.
(
(λz.(λx.(λf ′.(λz′.(λy.s′)z′)(f ′s′1))G(v))z

)(
fs1
))
r

with s = G(c) = (λz.z)G(v), s1 = G(u1), s′ = G(c′), and s′1 = G(u′1). Now
G(c1) reaches G(c2) after 3 assoc steps, provided s is first reduced to G(v).

The proximity between F and G becomes clearer if we give the definition of
F in the following style:

F (x) = x []w = (λk.k)w
F (λx.t) = λx.F (t) (u :: l)w = [wF (u)/v]lv F (tl) = [F (t)/w]lw
F ({c}) = F (c) ((x)c)w = (λx.F (c))w

So, the only difference between F and G is in the clause for (u :: l)w, where the
two β-redexes appearing in the clause for G are contracted in the clause for F .

F translates the left introduction u :: l as the traditional map between se-
quent calculus and natural deduction does - through a combination of application
and substitution; but, because of the definitions of []w and ((x)c)w, F ’s trans-
lation of a cut generates a β-redex whose contractum (a certain substitution)
would be the translation of that cut by the traditional mapping. So, if we let
N denote the traditional mapping, N is defined as F , except that now we put
[]w = w and ((x)c)w = [w/x]N(c). Notice that N also corresponds to taking the
definition of G and uniformly contracting all β-redexes in the clauses defining
lw.

Proposition 4. If t→ u in λJmse, then Nt→∗β Nu in the λ-calculus.8

8 In fact, all but β-steps are identified by N , meaning that only the reduction rule
corresponding to the key step of cut-elimination has a non-trivial translation. This

13

Let us sum up in the following diagram, where double-headed arrows denote
0 or more steps of reduction, except for the two central, vertical arrows, which
denote 1 or more steps (a fact signaled by a little black triangle).

t G(t)
β

-- F (t)
β
-- N(t)

u
?

G(u)

β assoc

??

?

β
-- F (u)

β assoc perm

??

?

β
-- N(u)

β

??

The mapG, obtained by instantiating the monadic map, has a sharper simulation
property than the previously known maps.

5.2 CPS Translation

In this subsection we introduce a CPS translation of λJmse, and compare it with
the monadic translation instantiated with the continuations monad.

A CPS translation. Let A∗ be given by X∗ = X and (A ⊃ B)∗ = Â ⊃ B̂,
where Â = ¬¬A∗. The CPS translation of t ∈ λJmse - denoted t̂ - is defined as
λk.(t : k), where the so-called colon-operation is given as follows:

(x : K) = xK ([] : K) = λw.wK

(λx.t : K) = K(λx.t̂) (u :: l : K) = λw.w(λf.(l : K)(fû))
({c} : K) = (c : K) ((x)c : K) = λx.(c : K)

(t[] : K) = (t : K)
(t(u :: l) : K) = (t : λf.(l : K)(fû))

(t(x)c : K) = ((x)c : K)t̂

This CPS translation is considered in [6]. In [5, 6] a different CPS translation is
given, based on the definition (A ⊃ B)∗ = ¬B̂ ⊃ ¬Â, and a weak simulation
result for it is proved, stating that each reduction step in the source λJmse is
mapped to 0 or more β-reduction steps in the λ-calculus. A variant of the proof
sketched in [5, 6] gives an even weaker result for the present CPS translation.

Proposition 5. If t→ u in λJmse, then t̂→∗ û in λ[β, assoc].

Indeed one needs assoc in the target, precisely for the simulation of β:

((λx.t)(u :: []) : K) = (λf.([] : K)(fû))(λx.t̂)

agrees with the properties of the map ()[: LJ → λ studied in [3], a map imple-
menting the traditional translation of another sequent calculus, named LJ there.
Each β-step in the source of N is guaranteed to generate exactly one step in the
target only when it happens at root position. The same applies to ()[, but is not
acknowledged in Proposition 10 of [3].

14

→β ([] : K)((λx.t̂)û)
→assoc (λx.([] : K)t̂)û
→2
β (λx.(t : K))û = (u(x)(t[]) : K)

For this special case of β, the LHS also reduces to the RHS using β and perm.
However, it is no longer possible to replace assoc by perm if instead of the empty
list we have another list format.

Despite its weaker simulation properties, the CPS translation satisfying (A ⊃
B)∗ = Â ⊃ B̂ that we consider here is better suited for the purpose of comparing
with the monadic translation.

Continuation-monadic translation. We define the continuations monad
in the λ-calculus. Let MA := ¬¬A, so that A = Â. Put

ηt := λk.kt and bind(r, x.s) := λk.r(λx.sk)

We may see these definitions of M , η, and bind as giving an interpretation of λM

into λ. Under this interpretation, the reduction rules of λM hold as βη-equalities
in the λ-calculus.

The instantiation of the monadic translation (that is, the composition of the
monadic translation with the present interpretation of λM into λ) gives:

C(x) = x []w = (λk.k)w
C(λx.t) = λk.k(λx.C(t)) (u :: l)w = λk.w

(
λf.(λv.lv)(fC(u))k

)
C({c}) = C(c) ((x)c)w = (λx.C(c))w

C(tl) = [C(t)/w]lw

One immediately obtains that C maps each reduction step in λJms to a βη-
equality in the λ-calculus.

Comparison with CPS. C(t) is close to the CPS translation t̂. To see this,
we introduce the “colon-free” translation t̃, an intermediate point between C(t)
and t̂. t̃ is defined as λk.(t : −)k, where (t : −) is given by:

(x : −) = x []w = w

(λx.t : −) = λk.k(λx.t̃) (u :: l)w = λk.w(λf.(λv.lvk)(fũ)) (tl : −) = [t̃/w]lw

({c} : −) = (c : −) ((x)c)w = λk.(λx.(c : −)k)w

Then one proves: i) (t : −)K reduces to (t : K) - whence t̃ reduces to t̂; ii)
(c : −)K reduces to (c : K); iii) λw.lwK reduces to (l : K). The proof is a simul-
taneous induction on t, c, and l. Here reduction means 0 or more administrative
β-steps. An administrative step is of one of two forms:

1. reduction of redexes (λk.t)K - pushing continuations inside;
2. λw.(λx.t)w →β λx.t, with w not in t - notice the implicit α-conversion.
If t → u in λJmse, then t̃ =β ũ. This follows from the remarks just made,

together with Proposition 5 and the fact assoc ⊆=β .

15

After the transfiguration of the CPS translations, it is perspicuous that: i)
C(t) reduces to (t : −) (which in turn η-expands to t̃; we let eta = η−1 and refer
to η-expansion as eta-reduction); ii) C(c) reduces to (c : −); iii) lw reduces to
lw. The proof is again a simultaneous induction on t, c, and l. Here reduction
means 0 or more steps of one of the following forms:

1. β, for reducing the redex []w;
2. eta, needed to bridge (t : −) and t̃;
3. eta followed by perm, for reducing the generic (λx.C(c))w to the continu-

ations-monad-specific λk.(λx.C(c)k)w.
4. perm for bridging the change in the placement of variable k, when moving

from the clause for (u :: l)w to the clause for (u :: l)w.
Let us sum up with this diagram.

t C(t)
β eta perm

-- t̃
admin

-- t̂

u
?

C(u)

βη

wwwwwwwww
β eta perm

-- ũ

β

wwwwwwwwww
admin

-- û

β assoc

??

These results show how close is the CPS translation t̂ of being a mere instantia-
tion of our monadic translation; and how the CPS translation helps explaining,
in terms of reduction, the equational relationship existing between C(t) and
C(u), when t and u are related by a reduction step in the source calculus.

6 Final remarks

This paper raises two issues that deserve further consideration. The first issue
is whether the technique of “garbage-passing”, as used in the translation of λ-
calculus with control operators in [8] and later for translation of intuitionistic
sequent calculus [5, 6], can be captured through some monad. Less ambitiously,
one would hope for a precise comparison that allows to see why there is no
need for extra rules such as assoc in the target of the garbage-passing transla-
tion. The second issue is the systematization of “associativity” principles in the
monadic meta-language; indeed, it is conspicuous that one principle is missing,
namely πλ,bind, which reads (λy.u)bind(r, x.t)→ bind(r, x.(λy.u)t). The uses and
properties of this rule are not yet entirely clear.

Acknowledgements: We are thankful to the referees for their constructive feed-
back. The first and third authors are supported by FCT through the Centro
de Matemática da Universidade do Minho. The second author thanks for an
invitation by that institution to Braga in May 2008. All authors were supported
by the European Union FP6-2002-IST-C Coordination Action 510996 “Types
for Proofs and Programs” and the first and third authors are also supported by
RESCUE FCT project PTDC/EIA/65862/2006.

16

References

1. P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of 5th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP ’00), Montréal, pages
233–243. IEEE, 2000.

2. J. Esṕırito Santo. Completing Herbelin’s programme. In S. Ronchi Della Rocca,
editor, Proceedings of TLCA’07, volume 4583 of LNCS, pages 118–132. Springer-
Verlag, 2007.

3. J. Esṕırito Santo. Delayed substitutions. In Franz Baader, editor, Proceedings of
RTA’07, LNCS, pages 169–183. Springer-Verlag, 2007.

4. J. Esṕırito Santo. Addenda to “Delayed Substitutions”, 2008 (Manuscript available
from the author’s web page).

5. José Esṕırito Santo, Ralph Matthes, and Lúıs Pinto. Continuation-passing style
and strong normalisation for intuitionistic sequent calculi. In Simona Ronchi Della
Rocca, editor, Typed Lambda Calculi and Applications (TLCA) 2007, Proceedings,
volume 4583 of Lecture Notes in Computer Science, pages 133–147. Springer Verlag,
2007.

6. José Esṕırito Santo, Ralph Matthes, and Lúıs Pinto. Continuation-passing style
and strong normalisation for intuitionistic sequent calculi. Logical Methods in
Computer Science, 2009. To appear.

7. John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles.
In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 458–471. ACM, 1994.

8. Satoshi Ikeda and Koji Nakazawa. Strong normalization proofs by CPS-
translations. Information Processing Letters, 99:163–170, 2006.

9. A.J. Kfoury and J.B. Wells. New notions of reduction and non-semantic proofs
of beta-strong normalisation in typed lambda-calculi. In Proceedings of LICS’95,
pages 311–321, 1995.

10. S. Lengrand. Call-by-value, call-by-name, and strong normalization for the clas-
sical sequent calculus. In B. Gramlich and S. Lucas, editors, Post-proc. of the
3rd Workshop on Reduction Strategies in Rewriting and Programming (WRS’03),
volume 86 of Electronic Notes in Theoretical Computer Science. Elsevier, 2003.

11. S. Lengrand. Temination of lambda-calculus with the extra call-by-value rule
known as assoc. arXiv:0806.4859v2, 2007.

12. Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
1991.

13. E. Polonovski. Strong normalization of λµµ̃ with explicit substitutions. In Igor
Walukiewicz, editor, Proc. of 7th Int. Conference on Foundations of Software Sci-
ences and Computation Structures (FoSSaCS 2004), volume 2987 of Lecture Notes
in Computer Science, pages 423–437. Springer-Verlag, 2004.

14. G. Pottinger. Normalization as a homomorphic image of cut-elimination. Annals
of Mathematical Logic, 12(3):323–357, 1977.

15. Laurent Regnier. Une équivalence sur les lambda-termes. Theoretical Computer
Science, 126(2):281–292, 1994.

16. Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans. Program.
Lang. Syst., 19(6):916–941, 1997.

17. J. Zucker. The correspondence between cut-elimination and normalization. Annals
of Mathematical Logic, 7(1):1–112, 1974.

17

