
Structural proof theory as rewriting

J. Esṕırito Santo1, M.J. Frade2, and L. Pinto1?

1 Departamento de Matemática, Universidade do Minho, Braga, Portugal
2 Departamento de Informática, Universidade do Minho, Braga, Portugal

{jes,luis}@math.uminho.pt mjf@di.uminho.pt

Abstract. The multiary version of the λ-calculus with generalized ap-
plications integrates smoothly both a fragment of sequent calculus and
the system of natural deduction of von Plato. It is equipped with re-
duction rules (corresponding to cut-elimination/normalisation rules) and
permutation rules, typical of sequent calculus and of natural deduction
with generalised elimination rules. We argue that this system is a suit-
able tool for doing structural proof theory as rewriting. As an illustra-
tion, we investigate combinations of reduction and permutation rules and
whether these combinations induce rewriting systems which are confluent
and terminating. In some cases, the combination allows the simulation
of non-terminating reduction sequences known from explicit substitu-
tion calculi. In other cases, we succeed in capturing interesting classes
of derivations as the normal forms w.r.t. well-behaved combinations of
rules. We identify six of these “combined” normal forms, among which
are two classes, due to Herbelin and Mints, in bijection with normal, or-
dinary natural deductions. A computational explanation for the variety
of “combined” normal forms is the existence of three ways of expressing
multiple application in the calculus.

1 Introduction

The study of proof systems by means of associated term calculi increases the
efficiency of the study and offers a computational perspective over logical phe-
nomena. This applies to the study of a proof system in isolation, and to the study
of the relationship between proof systems, typical in structural proof theory [10].

The multiary version of the λ-calculus with generalized applications (named
λJm-calculus [5, 6]) integrates smoothly both a fragment of sequent calculus and
the system of natural deduction of von Plato, for intuitionistic implication. Its
unary fragment corresponds to the ΛJ-calculus of [8], whereas its cut-free frag-
ment captures the multiary cut-free sequent terms of [12]. The system λJm is
equipped with reduction rules (corresponding to cut-elimination/normalisation
rules) and permutation rules, typical of sequent calculus and of natural deduc-
tion with generalised elimination rules. This calculus offers the possibility of

? All authors are supported by FCT through the Centro de Matemática da Univer-
sidade do Minho (first and last authors) and through the Centro de Ciências e
Tecnologias da Computação da Universidade do Minho (second author); all authors
are also supported by the european thematic networks APPSEM II and TYPES.

an integrated study of the relationship between sequent calculus and natural
deduction and is a suitable tool for doing structural proof theory as rewriting.

As an illustration, we investigate combinations of reduction and permutation
rules, in order to study the interaction between cut-elimination / normalisation
and permutative conversions. The relationship between sequent calculus and
natural deduction has very much to do with permutative conversions. Typically,
the fragments of sequent calculus closer to natural deduction are those whose
derivations are permutation-free [7, 9, 1], or, even better, those whose derivations
are the normal forms w.r.t. permutation rules of bigger fragments [2, 12]. On
the other hand, systems of natural deduction closer to sequent calculus contain
general elimination rules and, therefore, “hidden convertibilities” [13]. However,
in the literature, the interaction between normalisation / cut-elimination and
permutative conversions is usually avoided. In [7] the cut-free derivations are
also permutation-free but the system does not include permutation rules. In
[2, 12] permutation rules are studied in a cut-free system. In [13] the “hidden
convertibilities” are seen as belonging to the normalisation process.

We investigate whether the combinations of reduction and permutation rules
of λJm induce rewriting systems which are confluent and terminating. In some
cases, the combination allows the simulation of non-terminating reduction se-
quences known from explicit substitution calculi. In other cases, we succeed
in capturing interesting classes of derivations as the normal forms w.r.t. well-
behaved combinations of rules. We identify six “combined” normal forms, among
which are two classes, due to Herbelin and Mints, in bijection with normal nat-
ural deductions. In order to achieve this, we proceed the study, initiated in [6],
of the “overlaps” between the constructors of the calculus and the permutation
rules they generate. In particular, the “overlap” between the features of multi-
arity and generality is explained as a manifestation of the existence of various
ways of expressing multiple application in the system.

The paper is organised as follows. Section 2 recalls system λJm. Section 3
considers combined normal forms resulting from (slight modifications of) rules
introduced in [5]. These suffice to capture Herbelin normal forms. Section 4
offers a deeper study of λJm in order to capture Mints normal forms. Section 5
concludes, giving some computational interpretation of these results.

2 The system λJm

Expressions and typing rules:We assume a denumerable set of variables and
x, y, w, z to range over it. In the generalised multiary λ-calculus λJm there are
two kinds of expressions, terms and lists, described in the following grammar:

(terms of λJm) t, u, v ::= x | λx.t | t(u, l, (x)v)
(lists of λJm) l ::= t :: l | []

A term of the form t(u, l, (x)v) is called a generalised multiary application (gm-
application for short) and t is called the head of such term. In terms λx.v and
t(u, l, (x)v), occurrences of x in v are bound.

Informally, a generalised multiary application t(u, l, (x)v) can be thought
of as the application of a function t to a list of arguments, whose head is u
and tail is l, explicitly substituted for x in term v. Multiarity is the capability of
applying a function t to more than one argument and generality is the capability
of specifying the term v where the result of applying t to its arguments is going
to be used.

Formulas (= types) A, B, C, ... are built up from propositional variables
using just ⊃ (for implication) and contexts Γ are finite sets of variable : formula
pairs, associating at most one formula to each variable. Sequents of λJm are of
one of two forms: Γ ` t :A and Γ ;B` l :C. The typing rules of λJm are as follows:

x :A,Γ `x :A
Axiom

x :A,Γ ` t :B

Γ `λx.t :A ⊃ B
Right

Γ ` t :A ⊃ B Γ `u :A Γ ;B` l :C x :C,Γ `v :D

Γ ` t(u, l, (x)v) :D
gm− Elim

Γ `u :A Γ ;B` l :C

Γ ;A ⊃ B`u :: l :C
Lft

Γ ;C ` [] :C
Ax

with the proviso that x 6∈ Γ in Right and in gm-Elim. An instance of rule gm-
Elim is called a generalised multiary elimination (or gm-elimination, for short).

λJm corresponds to an extension, with cuts of a certain form, of Schwichten-
berg’s cut-free, multiary, sequent calculus of [12]. This view splits gm-applications
t(u, l, (x)v) into those where the head term t is a variable, called multiary-Left in-
troductions, and those where t is not a variable, called cuts. Thus cut-elimination
in λJm is about the elimination of cuts in this sense. The rules to perform cut-
elimination are called reduction rules.

Reduction rules: The reduction rules for λJm are as follows:

(β1) (λx.t)(u, [], (y)v)→ s(s(u, x, t), y, v)
(β2) (λx.t)(u, v :: l, (y)v′)→ s(u, x, t)(v, l, (y)v′)
(π) t(u, l, (x)v)(u′, l′, (y)v′)→ t(u, l, (x)v(u′, l′, (y)v′))
(µ) t(u, l, (x)x(u′, l′, (y)v))→ t(u,a(l, u′ :: l′), (y)v), x 6∈ u′, l′, v

The auxiliary operators of substitution s(t, x, v), called generalised multiary sub-
stitution (gm-substitution for short) and of appending a(l, u :: l′) are as follows:

s(t, x, x) = t a([], u :: l) = u :: l
s(t, x, y) = y, y 6= x a(u′ :: l′, u :: l) = u ::a(l′, u :: l)

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l, (y)v′)) = s(t, x, u)(s(t, x, v), s′(t, x, l), (y)s(t, x, v′))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

At the typing level these two operations are associated to the admissibility in
λJm of certain cut rules [5]. Let β = β1∪β2. The notation→β,π,µ stands for the

compatible closure of β ∪ π ∪ µ and the notations →+
β,π,µ and →∗

β,π,µ stand for
the transitive and the reflexive-transitive closure of →β,π,µ respectively. In the
sequel we use similar conventions and notations for reduction relations. Normal
forms w.r.t. →β,π (βπ-nfs for short) are the terms whose occurrences of gm-
applications as sub-terms are of the form x(u, l, (y)v), i.e. the head is a variable;
they correspond exactly to Schwichtenberg’s multiary cut-free sequent terms.
βπµ-nfs in turn correspond to Schwichtenberg’s “multiary normal forms”.

[6] shows that →β,π,µ enjoys properties of confluence, strong normalisation
of typable terms and subject reduction.

Permutative conversion rules: Permutative conversions correspond to
certain oriented permutations in the order of inferences in derivations. They
aim at reducing gm-eliminations to a particular form that corresponds to the
elimination rule of natural deduction.

In λJm we have two forms of permutative conversion (permutation for short):
p-permutation and q-permutation. p-permutation aims at converting every gm-
application to an application of the form t(u, l, (x)x), that is a form that makes
no real use of the generality feature. The p-permutation rules are:

(p1) t(u, l, (x)y)→ y, x 6= y
(p2) t(u, l, (x)λy.v)→ λy.t(u, l, (x)v)
(p3) t1(u1, l1, (x)t2(u2, l2, (y)v))→

t1(u1, l1, (x)t2)(t1(u1, l1, (x)u2),p
′
3(t1, u1, l1, x, l2), (y)v) if x 6∈ v,

where p′3(t, u, l, x, []) = []
p′3(t, u, l, x, u

′ :: l′) = t(u, l, (x)u′) ::p′3(t, u, l, x, l
′) .

p = p1 ∪ p2 ∪ p3. q-permutation aims at converting every gm-application to an
application of the form t(u, [], (x)v)), that is a form that makes no use of the
multiarity feature. The unique q-permutation rule is

(q) t(u, v :: l, (x)v′)→ t(u, [], (y)y)(v, l, (x)v′) .

Permutations preserve typing. →p, →q and →pq are confluent and terminat-
ing. The p-nf (resp. q-nf, pq-nf) of a λJm-term t is denoted p(t) (resp. q(t),
φ(t)). These properties of permutations are proved in [5].

Subsystems of λJm: We present several subsystems of λJm obtained by
constraining the construction t(u, l, (x)v) either by forcing l = [] or v = x or
both. The systems thus obtained correspond to previously known systems. They
are identified in the following commutative diagram, alongside with mappings
to interpret amongst them, defined in [5].

λJm

λm
¾

p

λJ

q
-

λ

φ

?¾ pq -

The terms of λJ are obtained by constraining l in t(u, l, (x)v) to be []. A
gm-application of the form t(u, [], (x)v) is called a generalised application (or g-
application, for short) and is abbreviated to t(u, (x)v). The reduction rules (resp.
permutative conversion rules) for λJ are β1 and π (resp. p1, p2 and p3). The β1, π-
nfs are the terms whose g-application sub-terms have the form x(u, (x)v), i.e. the
head term is a variable. Let ΛJ be the Curry-Howard counterpart to von Plato’s
system of natural deduction with generalised elimination [13]. This system was
studied by Joachimski and Matthes in [8]. The system λJ is isomorphic to ΛJ ,
if one disregards permutative conversion rules.

The terms of λm are obtained by constraining v in t(u, l, (x)v) to be x. A
gm-application of the form t(u, l, (x)x) is called a multiary application (or m-
application, for short) and is written as t(u, l).

In order to define the reduction rules of λm, we introduce the following
auxiliary reduction rule in λJm, corresponding to a combination of π and µ:

(h) t(u, l, (x)x)(u′, l′, (y)v)→ t(u,a(l, u′ :: l′), (y)v) (1)

The reduction rules for λm are β1, β2 and h. The unique permutative con-
version rule for λm is q. The β, h-nfs are the terms where all m-applications
occurring as subterms have the form x(u, l), i.e. the head is a variable. If we dis-
regard the permutative conversion rule, the system thus obtained is isomorphic
to the λPh-calculus defined in [3, 4].

A gm-application of the form t(u, [], (x)x) is called a (simple) application and
is written as t(u). A λ-term is a term t such that every application occurring in
t is simple. The set of λ-terms is closed for rule β1, and λ-terms are exactly the
pq-nfs. We obtain thus an isomorphic copy of the λ-calculus inside λJm.

3 Combining reduction and permutation rules I

We study the interaction between normalisation / cut-elimination and permu-
tative conversions, by combining reduction and permutation rules of λJm, and
by analysing the resulting normal forms, which we call combined normal forms.

Figure 1 shows how the system captures important classes that show up in

structural proof theory. Am represents the set of βπ-nfs of λJm, which are

precisely the multiary-cut-free forms of [12]. A represents the set of “usual” (or
unary) cut-free forms, which is the same as von Plato’s “fully-normal” forms,
and correspond to the βπ-normal λJ-terms. The permutation-free multiary-cut-
free forms of [12] are precisely the βh-normal λm-terms, which in turn capture
Herbelin’s cut-free λ-terms. We call these Herbelin-nfs. Mint’s “normal” cut-free
derivation (or Mints-nfs, for short) are formalized, in the style of [2], as a subset
of the βπ-normal λJ-terms, as follows.

Definition 1. A term v ∈ λJm is x-normal if v = x or v = x(u, l, (y)v′), with
x /∈ u, l, v′ and v′ y-normal. A λJm-term is normal if, for every gm-application
t(u, l, (x)v) occurring in it, v is x-normal. A λJ-term is a Mints-normal form if
it is normal and a βπ-normal form.

The dotted arrows in the figure indicate the “place” of the permutation systems
studied in [2, 12]. It is well-known that the sets of Herbelin-nfs, Mints-nfs, and

β-normal λ-terms (represented by B) are in bijective correspondence.

Fig. 1. Combining reduction and permutation in λJm

λJm

λm
¾¾

p

Am

βπ

??
λJ

q

--

λ
¾¾

pq

--
A

βπ

??

Herbelin-nfs

βh

??
q--

¾¾
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

B

β

??
¾¾ ? Mints-nfs

??

.............

Combined nfs already available: Herbelin-nfs and β-normal λ-terms have
immediate characterisations in terms of combinations of reduction and permu-
tation rules of λJm.

Proposition 1. 1. t is a Herbelin-nf iff t is a βph-nf.
2. t is a β-normal λ-term iff t is a βpq-nf.

Some variants of these characterisations are possible. For instance, we may adjoin
the µ rule to each of the above combinations, without changing the set of normal
forms, since a µ-redex is also a p-redex.

Unfortunately, →βpq and →βph are non-terminating. Indeed, →βp is already
non-terminating. In order to prove non-termination of →βp, we need to recall
the λx-calculus [11], a λ-calculus with explicit substitution. Its terms are given
by

M,N ::= x |λx.M |MN | 〈N/x〉M ,

and this set of terms is equipped with six reduction rules:

(B) (λx.M)N → 〈N/x〉M (x2) 〈N/x〉(λy.M)→ λy.〈N/x〉M
(x0) 〈N/x〉x→ N (x3) 〈N/x〉(MM ′)→ (〈N/x〉M)〈N/x〉M ′

(x1) 〈N/x〉y → y (x4) 〈N/x〉〈N
′/y〉M → 〈〈N/x〉N ′/y〉M, x /∈M

Theorem 1. There is a typed t ∈ λJ such that t is not βp-SN.

Proof: Let I = λx.x and A = λmn.I(n, (z)m(z)). Define ()? : λx → λJ as
follows:

x? = x (MN)? = A(M?)(N?)
(λx.M)? = λx.M? (〈N/x〉M)? = I(N?, (x)M?)

This mapping has the following property: IfR ∈ {B, x0, x1, x2, x3, x4} andM →R

N in λx, then M? →+
βp N?. Let M be a typed λ-term such that M is not

Bx0x1x2x3x4-SN (one such term exists - see for instance [11]). Then M ? is a
typed λJ-term which is not βp-SN. ¥

Another permutation rule: In order to overcome non-termination, we
replace permutation rule p by a new permutation rule called s:

(s) t(u, l, (x)v)→ s(t(u, l), x, v), v 6= x

Naturally, if one replaces p by s in Proposition 1, one gets another character-
isation of Herbelin-nfs and β-normal λ-terms. This time, the characterisations
are in terms of combinations of rules that are both confluent and terminating
on typed terms.

Proposition 2 (Confluence). Any of the following kinds of reduction is con-
fluent: s, βs, βsq and βsh.

Proof: By confluence of β in λm or λ and βh in λm, together with the following
properties of p and φ: (1) p maps a β (resp h) step in λJm to zero or more β
(resp. h) steps in λm, and collapses s steps. (2) For all t ∈ λJm, t→∗

s p(t). (3)
φ maps a β step in λJm to zero or more β steps in λ, and collapses s and q
steps. (4) For all t ∈ λJm, t→∗

sq φ(t). ¥

The mapping ()• : λJm→ λm is given by

x• = x []• = []
(λx.t)• = λx.t• (u :: l)• = u• :: l•

(t(u, l, (x)v))• =

(λx.v•)(t•(u•, l•)) if v 6= x

t•(u•, l•) if v = x

Proposition 3. 1. If t→β u in λJm, then t• →+
β u• in λm.

2. If t→s u in λJm, then t• →+
β u• in λm.

3. For all t ∈ λJm, if t• is β-SN, then t is βs-SN.

Proof: 1. and 2. are straightforward inductions and use s(t, x, v)• = s(t•, x, v•).
3. is immediate from 1. and 2. ¥

Corollary 1 (SN). If t ∈ λJm is typable, then t is βs-SN.

Proof: If t ∈ λJm is typable, then so is t•. Hence t• is β-SN and, by the previous
proposition, t is βs-SN. ¥

Let R ∈ {q, h}. The next Proposition, together with termination of →R,
reduce termination of →βsR to termination of →βs.

Proposition 4 (Postponement). Let R ∈ {q, h} and S ∈ {β, s}. If t1 →R

t2 →S t3, then there is t4 such that t1 →S t4 →
∗
R t3.

Corollary 2 (SN). If t ∈ λJm is typable, then t is βsq-SN and βsh-SN.

A consequence of Proposition 4 is that βsq-reduction or βsh-reduction can
always be split into two stages: first, a βs stage; next, a q or h stage . An
illustration of this fact is in the following diagram.

t

t1

βs
??

Herbelin-nfs 3 t2

¾
β
sh

¾¾ h

β
sq

-q --
t3 ∈ B

(2)

A βs-nf (i.e. a λm-term in β-nf) is a term whose applications are of the form

x(u1, l1)...(un, ln) (3)

for some n ≥ 1. In addition, a βsh-nf requires that n = 1, whereas a βsq requires
each li to be []. For instance, the βs-nf x(u1, [v11, v12])(u2, [v21]) has a h-nf of
the form x(u′1, [v

′
11, v

′
12, u

′
2, v

′
21]) and a q-nf of the form x(u′′1)(v

′′
11)(v

′′
12)(u

′′
2)(v

′′
21).

A βsq or βsh reduction splits into a βs-stage, followed by a q- or h-stage. The
later stage simply organizes in a certain way the arguments of applications of
the form (3).

4 Combining reduction and permutation rules II

Now we study Mints-nfs and obtain a characterisation for them in terms of a
well-behaved combination of reduction and permutation rules. It turns out that
this result requires a deeper understanding of the constructors of λJm and their
“overlaps”, together with the rules that manifest such “overlaps”. This leads to a
systematic study of combined normal forms and, in particular, to a clarification
of the relationship between Mints-nfs, Herbelin-nfs and β-nfs of the λ-calculus.

The overlap between multiarity and generality: In [6] one can find a
study of the “overlap” between the multiarity and generality features of λJm.
Consider the following particular case of µ−1, which we call ν: t(u, u′ :: l, (y)v)→
t(u, (x)x(u′, l, (y)v)) (x fresh). Repeated application of this rule eliminates uses

of multiarity (i.e. occurrences of cons) at the expense of uses of generality. Con-
versely, rule µ shows that we may use cons as a shorthand for specific uses of
generality.

The following mapping calculates the µ-normal form of each λJm-term:

µ(x) = x
µ(λx.t) = λx.µ(t)

µ(t(u, l, (x)v)) =

µ(t)(µ(u),a(µ′(l), u′ :: l′), (y)v′),
if µ(v) = x(u′, l′, (y)v′) and x 6∈ u′, l′, v′

µ(t)(µ(u), µ′(l), (x)µ(v)), otherwise

µ′([]) = []
µ′(u :: l) = µ(u) ::µ′(l)

In op. cit. it is proved that this mapping is a bijection between the set of λJ-
terms and the set of µ-normal forms (which is another manifestation of overlap).
The inverse of µ is called ν and is given by:

ν(x) = x
ν(λx.t) = λx.ν(t)

ν(t(u, l, (x)v)) = ν(t)(ν(u), (z)ν ′(z, l, x, ν(v))), z fresh
ν′(z, [], x, v) = s(z, x, v)

ν′(z, u :: l, x, v) = z(ν(u), (w)ν ′(w, l, x, v)), w fresh

Actually, still according to [6], this bijection can be turned into an isomor-
phism. First consider the variant π′ of rule π, given by

t(u, l, (x)v)(u′, l′, (y)v′)→ t(u, l, (x)v@x(u
′, l′, (y)v′)) , (4)

where v@x(u
′, l′, (y)v′) = x(u, l, (z)v@z(u

′, l′, (y)v′)), if v = x(u, l, (z)v) and x 6∈
u, l, v; and v@x(u

′, l′, (y)v′) = v(u′, l′, (y)v′), otherwise.
Notice that t is a π-nf iff is a π′-nf. From now on we consider λJ equipped

with π′ instead of π. Second, for R ∈ {β, π}, equip the set of µ-normal forms with
relation →Rµ , defined as →R followed by reduction to µ-normal form. Then, µ,
ν establish an isomorphism between →βµ (resp. →πµ), in the set of µ-nfs, and
→β (resp. →π′), in λJ.

A refined analysis of the overlap between multiarity and generality:
We now aim at refining this isomorphism. It may be helpful to have Figure 2 in
mind.

Consider the set of normal λJm-terms (recall Definition 1). This set is closed
for →β and →π′ , hence naturally equipped with these rules. We obtain the
system λnm. Also the set of normal λJ-terms is naturally equipped with→β and
→π′ . The latter system is denoted λn. It is, simultaneously, the unary (=cons-
free) fragment of λnm and the normal fragment of λJ. On the other hand:

Lemma 1. 1. For all t ∈ λm: t→βµ t
′ iff t′ ∈ λm and t→β t

′ in λm.
2. For all t ∈ λm: t→πµ t

′ iff t′ ∈ λm and t→h t
′ in λm.

Fig. 2. Another view of the internal structure of λJm

λJm

µ-nfs ¾
µ, ν

-
¾

µ γ

λJ

ν

-

λnm

?

λm

γ

?
¾

µ, ν
-

¾

µ

λn

γ

?

ν

-

λ
¾

rq -

Notice that in λm there is no distiction between →πµ and →π′
µ
.

Now, the restriction of µ to λn-terms and the restriction of ν to λm-terms
are mutually inverse. From the previous lemma follows that these restrictions of
µ and ν establish an isomorphism between →β , →h in λm and →β , →π′ in λn,
respectively.

Theorem 2 (Isomorphism). Let R be β (resp. h) and let S be β (resp. π′).

1. t→R t′ in λm iff ν(t)→S ν(t
′) in λn.

2. t→S t
′ in λn iff µ(t)→R µ(t′) in λm.

In particular, µ, ν establish a bijection between the set of normal λJ-terms that
are βπ-nfs and the set of λm-terms that are βh-nfs. That is:

Corollary 3. The appropriate restriction of mapping µ is a bijection between
the set of Mints-nfs and the set of Herbelin-nfs, whose inverse is the appropriate
restriction of mapping ν.

A more systematic analysis of overlaps in λJm: Consider the following
diagram:

t(u,a(l, u′ :: l′), (y)v) ¾
µ

ν
- t(u, l, (x)x(u′, l′, (y)v))

proviso:
x /∈ u′, l′, v

t(u, l)
︸ ︷︷ ︸

t(u,l,(x)x)

(u′, l′, (y)v)
¾

rq

-
(5)

Any of the terms in this diagram consists of a function t, a first argument u, at
least another argument u′ and a “continuation” (y)v. The diagram shows three
alternative ways of accommodating the extra argument u′: either by using the list
facility (top left corner), or by using a restricted form of the generality feature,
sometimes called normal generality (top right corner), or by iterated application.
So the diagram illustrates three ways of expressing multiple application in λJm.

We adopt the extensions to rules q and ν suggested in the diagram, e.g.:

(q) t(u,a(l, u′ :: l′), (y)v)→ t(u, l, (x)x(u′, l′, (y)v)) . (6)

The versions of these rules considered so far correspond to the case l = []. Also
a new rule r is defined in λJm:

(r) t(u, l, (x)v@x(u
′, l′, (y)v′))→ t(u, l, (x)v)(u′, l′, (y)v′) , (7)

where v is x-normal, v′ is y-normal and x /∈ u′, l′, v′. The particular case v = x
gives the version of the rule in diagram (5).

The example t(u, (x)x(u′, (y)y(u′′, (z)v)))→r t(u, (x)(x(u
′)(u′′, (z)v))) shows

that neither λnm nor λn is closed for →r. The problem is that the contracted
r-redex (the underlined term) is x-normal, but the reduct is not. Similar obser-
vations apply to rule q. In order to overcome this fact, we define, for R ∈ {r, q},
a new relation ;R⊆→R that “respects” the normal fragment: in ;R, reduction
is allowed in the sub-expressions of an application t(u, l, (x)v) (that is in t, u, l,
v) only if v is x-normal; moreover, if v is the sub-expression where the reduction
happens, the redex contracted is not v itself.

Not all occurrences of cons are eliminated by ;q. This is why rule q has to
be supplemented with

t(u, l, (x)t′@x(u
′,a(l′, u′′ :: l′′), (y)v))→ t(u, l, (x)t′@x(u

′, l′, (z)z))(u′′, l′′, (y)v) ,
(8)

where t′ is x-normal and x does not occur outside t′. We consider this rule in
reverse to belong to rule h.

λnm and λn are closed for ;r and λnm and λm are closed for ;q. In λm,
;q=→q. In λn ;r has also a simple, alternative characterisation: t ;r t

′ in λn
iff µ(t) →q µ(t

′). So µ and ν establish an isomorphism between →q in λm and
;r in λn.

Since →q in λm is terminating and confluent, so is ;r in λn. For each
t ∈ λn, let r(t) denote the normal form of t w.r.t. ;r. Mappings µ, ν establish a
bijection between q-normal λm-terms (i.e λ-terms) and λn-terms normal w.r.t
;r. Since ν leaves λ-terms invariant, the λn-terms normal w.r.t ;r are exactly
the λ-terms. Hence, we have the commutation of the lower triangle in Figure 2.

Proposition 5. r ◦ ν = q and q ◦ µ = r.

Proof: If t ∈ λm, then ν(q(t)) = r(ν(t)), by the isomorphism between the
→q reduction of t and the ;r reduction of ν(t). But ν(q(t)) = q(t). Hence
q(t) = r(ν(t)). The other statement follows from ν ◦ µ = id. ¥

Corollary 4. 1. If t→β t
′ in λn then r(t)→β r(t

′) in λ.
2. If t→π′ t′ in λn then r(t) = r(t′).

Proof: From Theorem 2, the previous proposition and the facts: (i) if t →βi t
′

in λm then q(t)→β1
q(t′) in λ; (ii) if t→h t

′ in λm then q(t) = q(t′). ¥

Six combined nfs: We can now converge towards our ultimate goal, which
is the diagram in Figure 3. From now on, R-reduction refers to ;R and not to
→R, when R ∈ {q, r, h, π′}. For instance, t is a βr-nf if t is irreducible for both
→β and ;r.

Fig. 3. Six combined normal forms

t

t0

βγ

?

t1
¾¾

r

t4

q --

t3
¾¾

rq --

Am ⊇ Herbelin-nfs 3 t2

h = q−1

??
¾ µ, ν -

w
w
w
w

t5

π′ = r−1

??
∈ Mints-nfs ⊆ A

t3 ∈ B

w
w
w
w
w
¾¾

rq
--

The results obtained so far give us another view of the internal structure of
λJm and contribute to the diagram in Figure 3. Corollary 4 guarantees the com-
mutation of the triangles with vertices t1, t2, t3 and t3, t4, t5, whereas Proposition
5 gives the commutation of triangle t2, t3, t5 (by the way, the latter commuta-
tion extends Corollary 3). The last ingredient required by the diagram is the
following rule:

(γ) t(u, l, (x)v)→ s(t(u, l), x, v), v is not x-normal.

Notice that a λJm-term is γ-normal iff is a λnm-term. Also observe that γ ⊂ s.
On the other hand, s ⊂ γ ∪ r, and t is s-normal iff t is γr-normal. So we do not
need s anymore.

In order to guarantee Proposition 6 below, we will have to restrict several of
the rules considered so far. But, since the aim is to combine those rules with γ,
the restrictions will be harmless (the normal forms do not change). First, rule
β is from now on restricted to the case where a redex (λx.t)(u, l, (y)v) satisfies:
t is normal and v is y-normal. Notice that, in the context of λnm (hence of
λ-calculus), this restriction is empty. Moreover, a λJm-term is βγ-normal in the
old sense iff is βγ-normal in the new sense. Second, we impose v y-normal in
rule h (see (1) and (8) in reverse) and in rule q (see (6) and (8)); and impose v
x-normal and v′ y-normal in rule π′ (see (4)). In this way, h = q−1 and π′ = r−1.

Theorem 3. 1. t is a Herbelin-nf iff t is a βγq−1r-nf.
2. t is a Mints-nf iff t is a βγqr−1-nf.
3. t is a β-normal λ-term iff t is a βγqr-nf.

Proposition 6 (Postponement). In λJm:

1. Let R ∈ {r, q, h, π′}. If t1 ;R t2 →β t3 then there is t4 s.t. t1 →β t4 ;
∗
R t3.

2. Let R ∈ {r, q, h, π′}. If t1 ;R t2 →γ t3 then there is t4 s.t. t1 →γ t4 ;
∗
R t3.

3. Let R ∈ {r, π′}. If t1 ;R t2 ;q t3 then there is t4 s.t. t1 ;q t4 ;R t3.
4. Let R ∈ {q, h}. If t1 ;R t2 ;r t3 then there is t4 s.t. t1 ;r t4 ;R t3.

Corollary 5 (SN). Every typable λJm-term is βγq−1r-SN, βγqr−1-SN and
βγqr-SN.

Proof: It is easy to prove that ;R is terminating, when R ∈ {q, r, h, π′}. These
four termination results, together with Proposition 6 reduce strong normalisa-
tion for βγq−1r, βγqr−1 and βγqr to strong normalisation for βγ. Now, every
typable λJm-term is βγ-SN, by Corollary 1. ¥

Proposition 7 (Confluence). Any of the following kinds of reduction is con-
fluent: βγq−1r, βγqr and βγqr−1.

Proof: For βγq−1r and βγqr, the proof is very similar to the proof of Proposition
2. Observe that γ ⊂ s, p and φ collapse r-steps, and every λJm-term t can be
γrq-reduced to φ(t).

As to confluence of βγqr−1, we could use the properties of mapping ν ◦p, but
we prefer to offer a proof of a different style. Suppose u0 βγqr

−1-reduces to u1

and u2. By Proposition 6, there are v1, v2 such that u0 βγq-reduces to vi and vi
r−1-reduces to ui, (i = 1, 2). u0, v1 and v2 have the same βγqr-nf, say t. Again by
Proposition 6, there are v′1 and v′2 such that vi βγq-reduces to v

′
i and v

′
i r-reduces

to t. Now, by the same proposition, r-reduction postpones over βγq-reduction.
As such, there is u′i such that ui βγq-reduces to u′i and v′i r

−1-reduces to u′i.
Let ti be a r−1-nf of u′i. By Corollary 4, r(ti) = r(v′i), hence r(ti) = t. Since t1
and t2 are Mints-nfs, r(t1) = r(t2) entails t1 = t2. But ui βγqr

−1-reduces to ti. ¥

Proposition 6 gives, in particular, for Herbelin-nfs and Mints-nfs, results
analogous to those illustrated in diagram (2), saying that reduction to normal
form splits into two stages:

t t

t1

βγr
??

t4

βγq
??

Herbelin-nfs 3 t2
¾

β
γ
rq

−
1

¾¾ q
−
1

β
γ
rq

-q --
t3 ∈ B 3 t3

¾
β
γ
qr

¾¾ r

β
γ
qr
−

1
-r −

1
--

t5 ∈ Mints-nfs
(9)

A λn-term in β-nf (like t4) is a term whose applications are of the form

x(u1, (y1)v1)...(un, (yn)vn) (10)

for some n ≥ 1, and each vi yi-normal. The additional requirement of π′-
normality imposes n = 1, whereas the additional requirement of normality w.r.t.
;r imposes each vi to be yi. For instance, if t4 is

x(u1, (y1)y11(v11, (y12)y12(v12, (z)z)))(u2, (y2)y2(v2, (w)w)) ,

then t5 is of the form

x(u′1, (y1)y11(v
′
11, (y12)y12(v12′ , (z)z(u′2, (y2)y2(v

′
2, (w)w)))))

and t3 is of the form x(u′′1)(v
′′
11)(v

′′
12)(u

′′
2)(v

′′
21). So t3, t4 and t5 differ only in the

organization of the multiple arguments of applications (10).
The consequences of Proposition 6 are illustrated in a fuller way in the dia-

gram of Figure 3. In this diagram, t is an arbitrary λJm-term, t0 is a λnm-term,
t1, t2 and t3 are λm-terms and t3, t4 and t5 are λn-terms. Hence t3 is a λ-term.
All of them (except t) are in β-nf. Each term ti (0 ≤ i ≤ 5) is a representative of
one among six classes of combined normal forms: βγ, βγr, βγq, βγq−1r, βγqr−1

and βγqr. For instance, t4 is a βγq-nf. The most inclusive of these classes is the
class of βγ-nfs. A βγ-nf (like t0) is a β-normal λnm-term, that is, a term whose
applications are of the form

x(u1, l1, (y1)v1)...(un, ln, (yn)vn)

for some n ≥ 1, and each vi yi-normal. The remaining five combined normal
forms are characterized by restrictions placed on n, li or vi, as explained above
when diagrams (2) and (9) were analyzed.

5 Conclusions

This study shows the level of systematization one achieves by doing proof-
theoretical studies by means of term calculi. At the computational level, the

insight one gains is this: all the interesting classes we identify relate to different
ways of organizing the arguments of multiple application. Some ways of doing
this organization are homogeneous, in the sense of making use of a single feature
(multiarity, “normal” generality, or iterated application) in order to construct a
multiple application. The classes determined by homogeneous organization are
exactly the classes previously known, that is, the classes due to Herbelin and
Mints, as well as the class of normal, ordinary natural deductions. Moreover, the
computation to normal form can be organised in two stages, so that the second
stage consists of choosing the way of representing multiple application. This sug-
gests a new classification of rules, according to the stage they are involved in,
which does not fit the division into reduction and permutation rules.

Acknowledgments:We thank the detailed comments provided by the anony-
mous referees. Diagrams in this paper were produced with Paul Taylor’s macros.

References

1. R. Dyckhoff and L. Pinto. Cut-elimination and a permutation-free sequent calculus
for intuitionistic logic. Studia Logica, 60:107–118, 1998.

2. R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent calculi.
Theoretical Computer Science, 212:141–155, 1999.

3. J. Esṕırito Santo. Conservative extensions of the λ-calculus for the computational
interpretation of sequent calculus. PhD thesis, University of Edinburgh, 2002.
Available at http://www.lfcs.informatics.ed.ac.uk/reports/.

4. J. Esṕırito Santo. An isomorphism between a fragment of sequent calculus and an
extension of natural deduction. In M. Baaz and A. Voronkov, editors, Proceedings
of LPAR’02, volume 2514 of Lecture Notes in Artificial Intelligence, pages 354–366.
Springer-Verlag, 2002.

5. J. Esṕırito Santo and Lúıs Pinto. Permutative conversions in intuitionistic multiary
sequent calculus with cuts. In M. Hoffman, editor, Proc. of TLCA’03, volume 2701
of Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, 2003.

6. J. Esṕırito Santo and Lúıs Pinto. Confluence and strong normalisation of the gen-
eralised multiary λ-calculus. In Ferruccio Damiani Stefano Berardi, Mario Coppo,
editor, Revised selected papers from the International Workshop TYPES 2003, vol-
ume 3085 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

7. H. Herbelin. A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure. In L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, volume
933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

8. F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical

Logic, 42:59–87, 2003.
9. G. Mints. Normal forms for sequent derivations. In P. Odifreddi, editor,

Kreiseliana, pages 469–492. A. K. Peters, Wellesley, Massachusetts, 1996.
10. S. Negri and J. von Plato. Structural Proof Theory. Cambridge, 2001.
11. K. Rose. Explicit substitutions: Tutorial & survey. Technical Report LS-96-3,

BRICS, 1996.
12. H. Schwichtenberg. Termination of permutative conversions in intuitionistic

gentzen calculi. Theoretical Computer Science, 212, 1999.
13. J. von Plato. Natural deduction with general elimination rules. Annals of Mathe-

matical Logic, 40(7):541–567, 2001.

