
Some practical considerations about the use of the

Curry-Howard Isomorphism on a industrial size case

study

Simão Melo de Sousa

DI-UBI, Covilhã, Portugal

desousa@di.ubi.pt

We report on the use of Curry-Howard based proof assistants in the context of formal
veri�cation of large scale systems.

The present case study is the formal veri�cation of correctness properties of the JavaCard
virtual machine (the Java platform for smart cards). In this context we focus our attention
on typing properties checked by the ByteCode Veri�er (BCV). Bytecode veri�cation is one of
the key security functions of the JavaCard architecture. Its correctness is often cast relatively
to a virtual machine, called defensive, that performs checks at run-time, and an o�ensive

one that does not, and can be summarized as stating that the two machines coincide on
programs that pass bytecode veri�cation.

In this context, proof systems that implement the Curry-Howard isomorphism enjoy, in
our opinion, some important properties like direct handling of proof objects or extraction
mechanisms. This is exactly the kind of feature that leads us to choose the Coq proof
assistant. However their use in formal veri�cation of large systems raise some practical, but
important, considerations. We can summarize them by (1) Are such proof assistants scaling
up? (2) Are the bene�ts of the Curry-Howard isomorphism su�cient?

Our conclusions, shared by many other teams involved in large scale formal veri�cation,
are that such proof systems lack of tool support for large proof. For instance, when proving
a particular property of the analyzed system, the proof e�ort often needs to focus on only
a particular aspect of the system. Unfortunately, without modi�cations of the model, the
proof has to take into account the system as a whole. A possible solution is to infer from the
original speci�cation a simpler model, in the sense of the abstract interpretation. Despite
the fact that such transformations form the base of large scale formal veri�cation, no proof
system provides tool support for them.

Facts like this one lead us to de�ne a toolset called JaKarTa. Its objective is to provide an
interactive environment for transforming virtual machines and for verifying the correctness
of these transformations in proof assistants.

1


