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We identify a restricted class of terms of the lambda calculus, here called
weak linear, that includes the linear lambda-terms keeping their good properties
of strong normalization, non-duplicating reductions and typability in polynomial
time. The advantage of this class over the linear lambda-calculus is the possibility
of transforming general terms into weak linear terms with the same normal form.
We present such transformation and prove its correctness by showing that it
preserves normal forms.

A Aterm M is weak linear if in any reduction sequence of M, when there
is a contraction of a f-redex (Az.P)@, then x occurs free in P at most once,
i.e., when a function Az.P is applied, its formal parameter x must occur at most
once in the function body. For example the term Az.xzx is weak linear because
it is a non-linear A-abstraction which is never applied. The term (Az.xzz)I is not
weak linear because it has a redex where the function is not linear. For weak
linear terms, only functions that can be applied to an argument in the reduction
process are required to be linear. Notice that our definition does not refer only to
B-redexes (Az.P)(Q that are subterms of the original term M, but to abstractions
Az.P that are going to be the function part of a G-redex in the reduction of M.
For example the term M = ((Az.x)(Ax.zx))k is not weak linear although it does
not have any subterm of the form (Az.P)Q with x occurring more than once in
P. The problem is that there is a redex of this form (in this case, (Az.zz)k), in
a reduction sequence from M.

To deal with transformation of redexes which will appear during the reduction
process (the virtual redexes) our transformation uses legal paths, [2,3], because
this notion provides a formal characterization of the intuitive notion of wvirtual
redex. This contribution is also significant for the methodology it develops. What
we set up is a new use of legal paths for complex term transformation.

For a more complete discussion, see [1].
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