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Abstract. The intuitionistic fragment of the call-by-name version of Curien and Her-
belin’s λµµ̃-calculus is isolated and proved strongly normalising by means of an embed-
ding into the simply-typed λ-calculus. Our embedding is a continuation-and-garbage-
passing style translation, the inspiring idea coming from Ikeda and Nakazawa’s transla-
tion of Parigot’s λµ-calculus. The embedding strictly simulates reductions while usual
continuation-passing-style transformations erase permutative reduction steps. For our in-
tuitionistic sequent calculus, we even only need “units of garbage” to be passed. We apply
the same method to other calculi, namely successive extensions of the simply-typed λ-
calculus leading to our intuitionistic system, and already for the simplest extension we
consider (λ-calculus with generalised application), this yields the first proof of strong nor-
malisation through a reduction-preserving embedding. The results obtained extend to
second and higher-order calculi.
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1. Introduction

CPS (continuation-passing style) translations are a tool with several theoretical uses.
One of them is an interpretation between languages with different type systems or logical
infra-structure, possibly with corresponding differences at the level of program constructors
and computational behavior. Examples are when the source language (but not the target
language): (i) allows permutative conversions, possibly related to connectives like disjunc-
tion [6]; (ii) is a language for classical logic, usually with control operators [13, 16, 20]; (iii)
is a language for type theory [1, 2] (extending (ii) to variants of pure type systems that
have dependent types and polymorphism).

This article is about CPS translations for intuitionistic sequent calculi. The source and
the target languages will differ neither in the reduction strategy (they will be both call-by-
name) nor at the types/logic (they will be both based on intuitionistic implicational logic);
instead, they will differ in the structural format of the type system: the source is in the
sequent calculus format (with cut and left introduction) whereas the target is in the natural
deduction format (with elimination/application). From a strictly logical point of view, this
seems a new proof-theoretical use for double-negation translations.

Additionally, we insist that our translations strictly simulate reduction. This is a strong
requirement, not present, for instance in the concept of reflection of [34]. It seems to have
been intended by [1], however does not show up in the journal version [2]. But it is,
nevertheless, an eminently useful requirement if one wants to infer strong normalisation
of the source calculus from strong normalisation of the simply-typed λ-calculus, as we
do. In order to achieve strict simulation, we define continuation-and-garbage passing style
(CGPS) translations, following an idea due to Ikeda and Nakazawa [20]. Garbage will
provide room for observing reduction where continuation-passing alone would inevitably
produce an identification, leading to failure of strict simulation in several published proofs
for variants of operationalized classical logic, noted by [29] (the problem being β-reductions
under vacuous µ-abstractions). As opposed to [20], in our intuitionistic setting garbage can
be reduced to “units”, and garbage reduction is simply erasing a garbage unit.

The main system we translate is the intuitionistic fragment of the call-by-name restric-
tion of the λµµ̃-calculus [5], here named λJmse. The elaboration of this system is interesting
on its own. We provide a CPS and a CGPS translation for λJmse. We also consider other
intuitionistic calculi, whose treatment can be easily derived from the results for λJmse.
Among these is included, for instance, the λ-calculus with generalised application. For all
these systems a proof of strong normalisation through a reduction-preserving embedding
into the simply-typed λ-calculus is provided for the first time.

The article is an extended version of the conference contribution of the same authors
[12]. It is organized as follows: Section 2 presents λJmse. Section 3 compares λJmse with
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other systems, and obtains as a by-product confluence of λJmse. Sections 4 deals with the
C(G)PS translation of λJmse and its subsystems. Section 5 extends the results to systems
F , Fω and intuitionistic higher-order logic. Section 6 compares this work with related work
and concludes.

2. An intuitionistic sequent calculus

In this section, we define and identify basic properties of the calculus λJmse. A detailed
explanation of the connection between λJmse and λµµ̃ is left to the next section.

There are three classes of expressions in λJmse:

(Terms) t, u, v ::= x |λx.t | {c}
(Co-terms) l ::= [] |u :: l | (x)c
(Commands) c ::= tl

Terms can be variables (of which we assume a denumerable set ranged over by letters x,
y, w, z), lambda-abstractions λx.t or coercions {c} from commands to terms1. A value is
a term which is either a variable or a lambda-abstraction. We use letter V to range over
values.

Co-terms provide means of forming lists of arguments, generalised arguments [21], or
explicit substitutions. A co-term of the form (x)c binds variable x in c and provides the
generalised application facility. Operationally it can be thought of as “substitute for x in
c”. A co-term of the form [] or u :: l is called an evaluation context and is denoted by E. An
evaluation context of the form u :: l allows for multiary applications, and when passed to a
term it indicates that after consumption of argument u computation should carry on with
arguments in l. [] marks the end of an evaluation context and compensates the impossibility
of writing (x)x.

A command tl has a double role: if l is of the form (x)c, tl is an explicit substitution;
otherwise, tl is a general form of application.

In writing expressions, sometimes we add parentheses to help their parsing. Also, we
assume that the scope of binders λx and (x) extends as far as possible. Usually we write
only one λ for multiple abstraction.

In what follows, we reserve letter T (“term in a large sense”) for arbitrary expressions.
We write x /∈ T if x does not occur free in T . Substitution [t/x]T of a term t for all free
occurrences of a variable x in T is defined as expected, where it is understood that bound
variables are chosen so that no variable capture occurs.

[t/x]x = t [t/x][] = []
[t/x]y = y if x 6= y [t/x](u :: l) = [t/x]u :: [t/x]l
[t/x](λy.u) = λy.[t/x]u [t/x]((y)c) = (y)[t/x]c
[t/x]{c} = {[t/x]c} [t/x](ul) = [t/x]u[t/x]l

Evidently, syntactic classes are respected by substitution, i. e., [t/x]u is a term, [t/x]l is a
co-term and [t/x]c is a command.

The calculus λJmse has a form of sequent for each class of expressions:

Γ ⊢ t : A Γ|l : A ⊢ B Γ
c
−→ B

1A version of λJ
mse with implicit coercions would be possible but to the detriment of the clarity, in

particular, of the reduction rule ǫ below.
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Figure 1: Typing rules of λJmse

Γ|[] : A ⊢ A
LAx

Γ, x : A ⊢ x : A
RAx

Γ ⊢ u : A Γ|l : B ⊢ C

Γ|u :: l : A ⊃ B ⊢ C
LIntro

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊃ B
RIntro

Γ, x : A
c
−→ B

Γ|(x)c : A ⊢ B
LSel

Γ
c
−→ A

Γ ⊢ {c} : A
RSel

Γ ⊢ t : A Γ|l : A ⊢ B

Γ
tl
−→ B

Cut

Letters A,B,C are used to range over the set of types (=formulas), built from a base
set of type variables (ranged over by X) using the function type (that we write A ⊃ B).
In sequents, contexts Γ are viewed as finite sets of declarations x : A, where no variable
x occurs twice. The context Γ, x : A is obtained from Γ by adding the declaration x : A,
and will only be written if this yields again a valid context, i. e., if x is not declared in Γ.
Similarly, Γ,∆ is the union of Γ and ∆, and assumes that the sets of variables declared in Γ
and ∆ are disjoint. We can think of a term (resp. co-term) as an annotation for a selected
formula in the rhs (resp. lhs). Commands annotate sequents generated as a result of logical
cuts, where there is no selected formula on the rhs or lhs; as such we write them on top of
the sequent arrow.

The typing rules of λJmse are presented in Figure 1, stressing the parallel between left
and right rules.

The following other forms of cut are admissible as typing rules for substitution for each
class of expressions:

Γ ⊢ t : A Γ, x : A ⊢ u : B

Γ ⊢ [t/x]u : B

Γ ⊢ t : A Γ, x : A|l : B ⊢ C

Γ|[t/x]l : B ⊢ C

Γ ⊢ t : A Γ, x : A
c
−→ B

Γ
[t/x]c
−→ B

We also have the usual weakening rules: If a sequent with context Γ is derivable and Γ is
replaced by a context Γ′ that is a superset of Γ, then also this sequent is derivable.

We consider the following base reduction rules on expressions:

(β) (λx.t)(u :: l) → u((x)tl) (µ) (x)xl → l, if x /∈ l
(π) {tl}E → t (l@E) (ǫ) {t[]} → t
(σ) t(x)c → [t/x]c,
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where, in general, l@l′ is a co-term that represents an “eager” concatenation of l and l′,
viewed as lists, and is defined as follows2:

[]@l′ = l′ (u :: l)@l′ = u :: (l@l′) ((x)tl)@l′ = (x)t (l@l′)

The one-step reduction relation→ is inductively defined as the term closure of the reduction
rules, by adding the following closure rules to the above initial cases of →:

t→ t′ =⇒ λx.t→ λx.t′, tl→ t′l, t :: l→ t′ :: l,
l → l′ =⇒ u :: l → u :: l′, tl→ tl′,
c→ c′ =⇒ (x)c→ (x)c′, {c} → {c′}.

The reduction rules β, π and σ are relations on commands. The reduction rule µ (resp.
ǫ) is a relation on co-terms (resp. terms). Rules β and σ generate and execute an explicit
substitution, respectively. Rule π appends fragmented co-terms, bringing the term t of the
π-redex {tl}E closer to root position. Also, notice here the restricted form of the outer
co-term E. This restriction characterizes call-by-name reduction [5]. A µ-reduction step
that is not at the root has necessarily one of two forms: (i) t(x)xl → tl, which is the
execution of a linear substitution; (ii) u :: (x)xl → u :: l, which is the simplification of
a generalised argument. Rule µ undoes the sequence of inference steps consisting in un-
selecting a formula and giving it the name x, followed by immediate selection of the same
formula. The proviso x /∈ l guarantees that no contraction was involved. Finally, rule ǫ
erases an empty list under { }. Notice that empty lists are important under (x). Another
view of ǫ is as a way of undoing a sequence of two coercions: the “coercion” of a term t to
a command t[], immediately followed by coercion to a term {t[]}. By the way, {c}[] → c is
a π-reduction step. Most of these rules have genealogy: see Section 3.2.

The βπσ-normal forms are obtained by constraining commands to one of the two forms
V [] or x(u :: l), where V, u, l are βπσ-normal values, terms and co-terms respectively. The
βπσǫ-normal forms are obtained by requiring additionally that, in coercions {c}, c is of the
form x(u :: l) (where u, l are βπσǫ-normal terms and co-terms respectively). βπσǫ-normal
forms correspond to the multiary normal forms of [35]. If we further impose µ-normality
as in [35], then co-terms of the form (x)x(u :: l) obey to the additional restriction that x
occurs either in u or l.

Subject reduction holds for →, i. e., the following rules are admissible:

Γ ⊢ t : A t→ t′

Γ ⊢ t′ : A

Γ|l : A ⊢ B l→ l′

Γ|l′ : A ⊢ B

Γ
c
−→ B c→ c′

Γ
c′
−→ B

This fact is established with the help of the admissible rules for typing substitution and
with the help of yet another admissible form of cut for typing the append operator:

Γ|l : A ⊢ B Γ|l′ : B ⊢ C

Γ|l@l′ : A ⊢ C

We offer now a brief analysis of critical pairs in λJmse 3.

2Concatenation is “eager” in the sense that, in the last case, the right-hand side is not (x){tl}l′ but, in
the only important case that l′ is an evaluation context E, its π-reduct. One immediately verifies l@[] = l

and (l@l′)@l′′ = l@(l′@l′′) by induction on l. Associativity would not hold with the lazy version of @.
Nevertheless, one would get that the respective left-hand side reduces in at most one π-step to the right-
hand side.

3For higher-order rewrite systems, see the formal definition in [27].
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There is a self-overlap of π ({{tl}E′}E), there are overlaps between π and any of
β ({(λx.t)(u :: l)}E), σ ({t(x)c}E) and ǫ (the latter in two different ways from {t[]}E
and {{tl}[]}). Finally, µ overlaps with σ in two different ways from t(x)xl for x /∈ l and
(x)(x(y)c) for x /∈ c. The last four critical pairs are trivial in the sense that both reducts
are identical. Also the other critical pairs are joinable in the sense that both terms have
a common →∗-reduct. We only show this for the first case: {tl}E′ → t(l@E′) by π, hence
also

{{tl}E′}E → {t(l@E′)}E =: L.

On the other hand, a direct application of π yields

{{tl}E′}E → {tl}(E′@E) =: R.

Thus the critical pair consists of the terms L and R. L → t((l@E′)@E) and R →
t(l@(E′@E)), hence L and R are joinable by associativity of @.

We remark that the first three critical pairs (like the one just shown) are of a particularly
simple nature: The forking term is of the form {c}E with c any of the command redexes,
i. e., a left-hand side of β, π or σ. The L term is obtained by reducing c to the respective
right-hand side c′ of that rule, and the R term comes from applying π at the root. Since
c′ is again a command, L = {c′}E can be reduced by π to a term L′. The decisive feature
of @ is that R → L′ by an instance of the rule c→ c′ where the co-term part l of c = tl is
replaced by l@E.

Since the critical pairs are joinable, the relation → is locally confluent [27]. Thus, from
Corollary 4.5 below and Newman’s Lemma, → is confluent on typable terms. Confluence
on all terms is proved in the next section.

3. Comparison with other systems

In this section we show that λJmse can be generated “from above” - being the intuition-
istic fragment of the call-by-name restriction of Curien and Herbelin’s λµµ̃-calculus; and
“from below” - being the end-point of a spectrum of successively more general intuitionistic
systems, starting from the ordinary λ-calculus. This latter result, by showing that the sys-
tems in the spectrum are subsystems of λJmse, will allow us to adapt easily the result about
λJmse to (new) results about its subsystems. In addition, we will obtain, as a by-product,
a proof of confluence for λJmse even for the untypable terms.

3.1. λJmse as the intuitionistic fragment of CBN λµµ̃. After a recapitulation of a
call-by-name version of λµµ̃-calculus, we restrict it to the intuitionistic case and rediscover
λJmse.

3.1.1. The call-by-name λµµ̃-calculus. Here, we recall the Curien and Herbelin’s λµµ̃-calcu-
lus [5]. More precisely, we only consider implication (i. e., we do not include the subtraction
connective) and we present the call-by-name restriction of the system.

Expressions are either terms, co-terms or commands and are defined by the following
grammar:

t, u, v ::= x |λx.t |µa.c e ::= a |u :: e | µ̃x.c c ::= 〈t|e〉

Variables (resp. co-variables) are ranged over by x, y, z (resp. a, b, c). An evaluation context
E is a co-term of the form a or u :: e.
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Figure 2: Typing rules of CBN λµµ̃

Γ|a : A ⊢ a : A,∆
LAx

Γ, x : A ⊢ x : A|∆
RAx

Γ ⊢ u : A|∆ Γ|e : B ⊢ ∆

Γ|u :: e : A ⊃ B ⊢ ∆
LIntro

Γ, x : A ⊢ t : B|∆

Γ ⊢ λx.t : A ⊃ B|∆
RIntro

c : (Γ, x : A ⊢ ∆)

Γ|µ̃x.c : A ⊢ ∆
LSel

c : (Γ ⊢ a : A,∆)

Γ ⊢ µa.c : A|∆
RSel

Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆

〈t|e〉 : (Γ ⊢ ∆)
Cut

There is one kind of sequent per each syntactic class

Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆ c : (Γ ⊢ ∆)

Typing rules are given in Figure 2.
There are 6 substitution operations altogether:

[t/x]c [t/x]u [t/x]e [e/a]c [e/a]u [e/a]e′

We consider 5 reduction rules:

(β) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉 (µ) µ̃x.〈x|e〉 → e, if x /∈ e
(π) 〈µa.c|E〉 → [E/a]c (µ̃) µa.〈t|a〉 → t, if a /∈ t
(σ) 〈t|µ̃x.c〉 → [t/x]c

These are the reductions considered by Polonovski in [33], with three provisos. First, the
β-rule for the subtraction connective is not included. Second, in the π-rule, the co-term
involved is an evaluation context E; this is exactly what characterizes the call-by-name
restriction of λµµ̃ [5]. Third, the naming of the rules is non-standard. Curien and Herbelin
(and Polonovski as well) name rules π and σ as µ, µ̃, respectively. The name µ has moved
to the rule called se in [33]. By symmetry, the rule called sv by Polonovski is now called µ̃.
The reason for this change is explained below by the spectrum of systems in Section 3.2:
the rule we now call π (resp. µ) is the most general form of the rule with the same name in
the system λJ (resp. λJm), and therefore its name goes back to [21] (resp. [10], actually
back to [35]).

3.1.2. The intuitionistic fragment of CBN λµµ̃. The following description is in the style of
Section 2.13 of Herbelin’s habilitation thesis [18].

Let ∗ be a fixed co-variable. The intuitionistic terms, co-terms and commands are
generated by the grammar

(Terms) t, u, v ::= x |λx.t |µ∗.c
(Co-terms) e ::= ∗ |u :: e | µ̃x.c
(Commands) c ::= 〈t|e〉
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Figure 3: A spectrum of intuitionistic calculi

λJmse e
←− λJms s

←− λJm m
←− λJ

J
←− λ

Sequent Calculus Natural Deduction

Terms have no free occurrences of co-variables. Each co-term or command has exactly
one free occurrence of ∗. Sequents are restricted to have exactly one formula in the RHS.
Therefore, they have the particular forms Γ ⊢ t : A, Γ|e : A ⊢ ∗ : B and c : (Γ ⊢ ∗ : B). We
omit writing the intuitionistic typing rules. Reduction rules read as for λµµ̃, except for π
and µ̃:

(π) 〈µ∗.c|E〉 → [E/∗]c (µ̃) µ∗.〈t|∗〉 → t

Since ∗ /∈ t, [E/∗]t = t. Let us spell out [E/∗]c and [E/∗]e.

[E/∗]〈t|e〉 = 〈t|[E/∗]e〉 [E/∗](u :: e) = u :: [E/∗]e
[E/∗]∗ = E [E/∗](µ̃x.c) = µ̃x.[E/∗]c

If we define rule π as 〈µ∗.〈t|e〉|E〉 → 〈t|[E/∗]e〉 and [E/∗](µ̃x.〈t|e〉) = µ̃x.〈t|[E/∗]e〉 we can
avoid using [E/∗]c altogether.

The λJmse-calculus is obtained from the intuitionistic fragment as a mere notational
variant. The co-variable ∗ disappears from the syntax. The co-term ∗ is written []. {c} is
the coercion of a command to a term, corresponding to µ∗.c. This coercion is what remains
of the µ binder in the intuitionistic fragment. Since there is no µ, there is little sense for
the notation µ̃. So we write (x)c instead of µ̃x.c. Reduction rule µ̃ now reads {t[]} → t and
is renamed as ǫ. Sequents Γ|e : A ⊢ ∗ : B and c : (Γ ⊢ ∗ : B) are written Γ|e : A ⊢ B and

Γ
c
−→ B. Co-terms are ranged over by l (instead of e) and thought of as generalised lists.

Finally, [E/∗]l is written l@E.

3.2. A spectrum of intuitionistic calculi. The calculus λJmse can also be explained
as the end product of successive extensions of the simply-typed λ-calculus through several
intuitionistic calculi, as illustrated in Fig. 3, which includes both natural deduction systems
and sequent calculi other than λJmse.

Each extension step adds both a new feature and a reduction rule to the preceding
calculus. The following table summarizes these extensions.

calculus reduction rules feature added
λ β
λJ β, π generalised application
λJm β, π, µ multiarity
λJms β, π, µ, σ explicit substitution
λJmse β, π, µ, σ, ǫ empty lists of arguments

The scheme for naming systems and reduction rules intends to be systematic (and in par-
ticular explains the name λJmse).

The path between the two end-points of this spectrum visits and organizes systems
known from the literature. λJ is a variant of the calculus ΛJ of [21]. λJm is a variant of
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Figure 4: Typing rules of λJ

Γ, x : A ⊢ x : A
Ax

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊃ B
Intro

Γ ⊢ t : A ⊃ B Γ ⊢ u : A Γ, x : B ⊢ v : C

Γ ⊢ t(u, x.v) : C
GApp

the system in [10]. λJmse is studied in [9] under the name λGtz. This path is by no means
unique. Other intermediate systems could have been visited (like the multiary λ-calculus
λm, named λPh in [10]), had the route been a different one, i. e., had the different new
features been added in a different order. The reader is referred to the literature for the
specific motivations underlying the introduction of the intermediate systems λJ, λJm, and
λJms. Here, their interest lies in being the successive systems obtained by the addition, in
a specific order, of the features exhibited by λJmse.

Each system L ∈ {λJ, λJm, λJms} embeds in the system immediately after it in this
spectrum, in the sense of allowing a mapping that strictly simulates reduction. Hence,
strong normalisation is inherited from λJmse all the way down to λJ. Also, each L ∈
{λJ, λJm, λJms} has, by composition, an embedding gL in λJmse. Let us see all this with
some detail.

3.2.1. λJ-calculus. The terms of λJ are generated by the grammar:

t, u, v ::= x |λx.t | t(u, x.v)

Construction t(u, x.v) is called generalised application. Following [21], (u, x.v) is called a
generalised argument; they will be denoted by the letters R and S. Typing rules for x and
λx.t are as usual, and the new rule is that of generalised application, given in Figure 4.

Reduction rules are as in [21], except that π is defined in the “eager” way:

(β) (λx.t)(u, y.v) → [[u/x]t/y]v (π) tRS → t(R@S)

where the generalised argument R@S is defined by recursion on R:

(u, x.V )@S = (u, x.V S) (u, x.tR′)@S = (u, x.t(R′@S)),

for V a value, i. e., a variable or a λ-abstraction. The operation @ is associative, which
allows to join the critical pair of π with itself as before for λJmse. The other critical pair
stems from the interaction of β and π and is joinable as well.

Strong normalisation of typable terms immediately follows from that of ΛJ in [22], but
in the present article, we even get an embedding into λ.

Although we won’t use it, we recall the embedding J : λ→ λJ just for completeness:

J(x) = x
J(λx.t) = λx.J(t)
J(tu) = J(t)(J(u), x.x)
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Figure 5: Typing rules of λJm

Γ, x : A ⊢ x : A
Ax

Γ ⊢ t : A ⊃ B Γ ⊢ u : A Γ|l : B ⊢ C

Γ ⊢ t(u, l) : C
GMApp

Γ ⊢ u : A Γ|l : B ⊢ C

Γ|u :: l : A ⊃ B ⊢ C
LIntro

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊃ B
RIntro

Γ, x : A ⊢ v : B

Γ|(x)v : A ⊢ B
Sel

3.2.2. λJm-calculus. We offer now a new, lighter, presentation of the system in [10]. The
expressions of λJm are given by the grammar:

(Terms) t, u, v ::= x |λx.t | t(u, l) (Co-terms) l ::= u :: l | (x)v

The application t(u, l) is both generalised and multiary. Multiarity is the ability of forming
a chain of arguments, as in t(u1, u2 :: u3 :: (x)v). By the way, this term is written t(u1, u2 ::
u3 :: [], (x)v) in the syntax of [10]. There are two kinds of sequents: Γ ⊢ t : A and Γ|l : A ⊢ B.
Typing rules are given in Figure 5.

We re-define reduction rules of [10] in this new syntax. Rule µ can now be defined as
a relation on co-terms. Rule π is changed to the “eager” version, using letters R and S for
generalised arguments, i. e., elements of the form (u, l).

(β1) (λx.t)(u, (y)v) → [[u/x]t/y]v
(β2) (λx.t)(u, v :: l) → ([u/x]t)(v, l)
(π) tRS → t(R@S)
(µ) (x)x(u, l) → u :: l, if x /∈ u, l

β = β1 ∪ β2. The generalised argument R@S is defined with the auxiliary notion of the
co-term l@S that is defined by recursion on l by

(u :: l)@S = u :: (l@S)
((x)V )@S = (x)V S, for V a value

((x)t(u, l))@S = (x)t(u, l@S)

Then, define R@S by (u, l)@S = (u, l@S). Since the auxiliary operation @ can be proven
associative, this also holds for the operation @ on generalised arguments. Apart from the
usual self-overlapping of π that is joinable by associativity of @, there are critical pairs
between βi and π that are joinable. The last critical pair is between β1 and µ and needs a
β2-step to be joined.

The embedding m : λJ→ λJm is given by

m(x) = x
m(λx.t) = λx.m(t)

m(t(u, x.v)) = m(t)(m(u), (x)m(v))
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Figure 6: Typing rules of λJms: GMApp of λJm is generalized to Cut

Γ, x : A ⊢ x : A
Ax

Γ ⊢ t : A Γ|l : A ⊢ B

Γ ⊢ tl : B
Cut

Γ ⊢ u : A Γ|l : B ⊢ C

Γ|u :: l : A ⊃ B ⊢ C
LIntro

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊃ B
RIntro

Γ, x : A ⊢ v : B

Γ|(x)v : A ⊢ B
Sel

3.2.3. λJms-calculus. The expressions of λJms are given by:

(Terms) t, u, v ::= x |λx.t | tl (Co-terms) l ::= u :: l | (x)v

The construction tl has a double role: either it is a generalised and multiary application
t(u :: l) or it is an explicit substitution t(x)v. See Figure 6 for the typing rules.

The reduction rules are as follows:

(β) (λx.t)(u :: l) → u((x)tl) (σ) t(x)v → [t/x]v
(π) (tl)(u :: l′) → t (l@(u :: l′)) (µ) (x)xl → l, if x /∈ l

where the co-term l@l′ is defined by

(u :: l)@l′ = u :: (l@l′)
((x)V )@l′ = (x)V l′, for V a value
((x)tl)@l′ = (x)t (l@l′)

Again, @ is associative and guarantees the joinability of the critical pair of π with itself. The
critical pairs between β and π and between σ and µ are joinable as for λJmse. The overlap
between σ and π is bigger than in λJmse since the divergence arises for t((x)v)(u :: l) with
v an arbitrary term whereas in λJmse, there is only a command at that place. Joinability
is nevertheless easily established.

Comparing these reduction rules with those of λJm, there is only one β-rule, whose
effect is to generate a substitution. There is a separate rule σ for substitution execution.
The embedding s : λJm → λJms is defined by

s(x) = x s(u :: l) = s(u) :: s(l)
s(λx.t) = λx.s(t) s((x)v) = (x)s(v)

s(t(u, l)) = s(t)(s(u) :: s(l))

Finally, let us compare λJms and λJmse. In the former, any term can be in the scope
of a selection (x), whereas in the latter the scope of a selection is a command. But in the
latter we have a new form of co-term []. Since in λJmse we can coerce any term t to a
command t[], we can translate λJms into λJmse, by defining e((x)t) = (x)e(t)[]. In fact,
one has to refine this idea in order to get strict simulation of reduction. The embedding
e : λJms → λJmse is defined as

e(x) = x e(u :: l) = e(u) :: e(l)
e(λx.t) = λx.e(t) e((x)V ) = (x)e(V )[]
e(tl) = {e(t)e(l)} e((x)tl) = (x)e(t)e(l)
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Proposition 3.1. Each of the embeddings m, s and e preserves typability and types and
strictly simulates reduction.

Proof. Preservation of typability and types is immediate by induction on typing derivations.
For strict simulation, we prove by induction

(i): t→ t′ =⇒ m(t)→+ m(t′), for any t, t′ ∈ λJ
(ii): t→ t′ =⇒ s(t)→+ s(t′), for any t, t′ ∈ λJm

(iii): t→ t′ =⇒ e(t)→+ e(t′) and e((x)t)→+ e((x)t′), for any t, t′ ∈ λJms

which for f ∈ {s, e} requires simultaneous proof of: l → l′ =⇒ f(l) →+ f(l′). We show
only some details of the proof of (iii). (The other statements have simpler proofs.) In the
cases where t→R t′ (resp. l → l′), with R ∈ {β, π, µ}, in λJms, we have e(t) →R e(t′) and
e((x)t) →R e((x)t′) (resp. e(l) →R e(l′)) in λJmse. The proof relative to π-steps requires
commutation of the embedding with the append operator, that is requires the identity:
e(l@l′) = e(l)@e(l′), for any l, l′ ∈ λJms. For σ-steps the situation is different: one σ-step
in λJms gives rise to one σ-step in λJmse but also, possibly, to π and ǫ steps. We consider
below the base case of σ-reduction. The following two observations are needed:

(1) (y)e(t)[]→∗
π e((y)t), for any t ∈ λJms and any variable y;

(2) [e(t)/x]e(u) →∗
π e([t/x]u), for any t, u ∈ λJms and any variable x.

In the first observation, one can say more specifically that no π-step is required if t is a
value and otherwise, if t is a command, exactly one π-step of the form {c}[] → c is needed
(with c a command). The second observation uses the first and is proved simultaneously
with its analogue for co-terms.

Let us then consider the case where we have the reduction t(x)v → [t/x]v in λJms .
We concentrate on the sub-case v = V . (The other sub-case, where v = t0l0, is similar.)

e(t(x)V ) = {e(t)(x)e(V )[]}
→σ {[e(t)/x](e(V )[])}
= {[e(t)/x]e(V ) []}
→ǫ [e(t)/x]e(V )
→∗

π e([t/x]V ) (Observation (2) above)

Now we need to prove: e((y)t(x)v) →+ e((y)[t/x]v). We consider the possible forms of V .
Sub-sub-case V = x.

e((y)t(x)x) = (y)e(t)(x)x[]
→σ (y)e(t)[]
→∗

π e((y)t) (Observation (1) above)
= e((y)[t/x]x)

Sub-sub-case V = z, with z a variable distinct of x:

e((y)t(x)z) = (y)e(t)(x)z[]
→σ (y)z[]
= e((y)[t/x]z)

Sub-sub-case V = λz.u:

e((y)t(x)λz.u) = (y)e(t)(x)e(λz.u)[]
→σ (y)[e(t)/x]e(λz.u)[]
→∗

π (y)e([t/x](λz.u))[] (Observation (2) above)
= e((y)[t/x](λz.u)) ([t/x](λz.u) is a value)
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3.3. Confluence. For many purposes, it should suffice to have local confluence, which we
do have for all the systems of this article, since in all of them, the critical pairs are joinable.
Hence, thanks to Newman’s lemma, all systems are confluent on typable terms since they
are strongly normalizing, as shown in the later sections. We also believe that the usual
methods that show the diamond property for properly defined notions of parallel reduction
would yield confluence of all our systems. The aim of this section is to give indirect proofs
for the systems of the spectrum, by inheriting confluence that is already known.

Firstly, we argue about confluence of λJ and λJm. Secondly, we define and study a
mapping from λJms to λJm. Thirdly, we apply the “interpretation method” to obtain
confluence also of λJms. Finally, we do the same for λJms and λJmse in order to infer
confluence of λJmse.

Confluence of λJ can be obtained from confluence of the original system λJ in [21]
where π is lazy. Below we call π̂ the original lazy version of π, which reduces t(u, x.v)S
only to t(u, x.vS) (for v a value V , there is no difference between π and π̂). Confluence for
→βπ is obtained from confluence of →βbπ in the same way as in [11] confluence of →βπ′ is
obtained from →βbπ, where π′ is yet another variant of π.

Theorem 3.2. →βπ in λJ is confluent.

Proof. Assume t→∗
βπ t1 and t→∗

βπ t2. Then, also t→∗
βbπ t1 and t→∗

βbπ t2, and by confluence

of →βbπ there exists t3 such that t1 →
∗
βbπ t3 and t2 →

∗
βbπ t3. The facts

(1) t′ →∗
π π(t′), for all t′ in λJ,

(2) t′ →∗
βbπ t

′′ implies π(t′)→∗
βπ π(t′′), for all t′, t′′ in λJ,

where notation π(t′) represents the π normal form of term t′ (definable by recursion on t′,
using a very eager form of generalised application [21]), allow to conclude that t1, t2 both
βπ-reduce to π(t3).

What has been said above for λJ can be recast for λJm, and confluence of →βπµ

obtained from confluence of →βbπµ [11]. In λJm, the lazy π rule reads tRS → t(R@̂S),

where (u, l)@̂S = (u, l@̂S), and (u :: l)@̂S = u :: (l@̂S) and ((x)t)@̂S = (x)tS.

Theorem 3.3. →βπµ in λJm is confluent.

Proof. The proof above holds if β is replaced by βµ. In particular, we have

(1) t′ →∗
π π(t′), for all t′ in λJm,

(2) t′ →∗
βbπµ t

′′ implies π(t′)→∗
βπµ π(t′′), for all t′, t′′ in λJm.

Now consider confluence of λJms. In this case, we cannot rely on a previous result of
confluence for some variant of the system. Instead, we will lift the confluence result of [11]

to λJms. First, we define a mapping ( )† : λJms → λJm in Figure 7.

Proposition 3.4.

(1) For all t ∈ λJms, t→∗
σ s(t

†).
(2) If t→ u in λJms, then t† →∗

βbπµ u
† in λJm.
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Figure 7: Translation of λJms into λJm

x† = x

(λx.t)† = λx.t†

(t(x)v)† = [t†/x]v†

(t(u :: l))† = t†(u†, l†)

((x)v)† = (x)v†

(u :: l)† = u† :: l†

Proof. 1. The claim is proved together with the similar claim for l ∈ λJms by simultaneous
induction on t and l.

2. The claim is proved together with the similar claim for l→ l′ in λJms. The proof is
by simultaneous induction on t→ u and l→ l′. The proof uses the following facts:

(i) (λx.t†)(u†, l†)→β [u†/x](tl)†.

(ii) (tl1)
†(u†, l2

†)→∗
bπ (t(l1@(u :: l2)))

† and l1
†@̂(u†, l2

†)→∗
bπ (l1@u :: l2)

†.

(iii) [t†/x]v† = ([t/x]v)†.

(iv) (x)(xl)† →=
µ l†, if x /∈ l.4

(i) and (iv) are proved by case analysis of l. (ii) is proved by induction on l1. (iii) is

proved together with [t†/x]l† = ([t/x]l)† by simultaneous induction on v and l.5

Theorem 3.5. →βπσµ in λJms is confluent.

Proof. Suppose t →∗
βπσµ ti, i = 1, 2, in λJms. By part 2 of Proposition 3.4, t† →∗

βbπµ ti
† in

λJm. By confluence [11], there is u ∈ λJm such that ti
† →∗

βbπµ u. By property 2 in the proof

of Theorem 3.3, we get ti
† →∗

βπµ π(u). By the properties of mapping s : λJm → λJms, we

get s(ti
†)→∗

βπσµ s(π(u)). We close the diagram in λJms because ti →
∗
σ s(ti

†).

Finally we consider confluence of λJmse. We will lift confluence of λJms. First, we
define a mapping ( )◦ : λJmse → λJms in Figure 8 whose intuitive idea is that, in some
sense, λJmse is a subsystem of λJms – precisely the subsystem where selection is restricted
to the cases (x)x and (x)tl.

Proposition 3.6.

(1) For all t ∈ λJmse, e(t◦)→∗
µ t.

(2) If t→ u in λJmse, then t◦ →+ u◦ in λJms.

Proof. Claim 1 is proved together with the similar claim e(l◦)→∗
µ l, by simultaneous induc-

tion on t and l.
Claim 2 for µ and ǫ is a direct verification. Since there are no commands in λJms,

one would have to study always two versions of β, π and σ: once inside braces {}, once
bound by (y). However, since all three rules have the form t1l1 → t2l2, it suffices to

4→=

R denotes the reflexive closure of →R.
5In λJ

m one has to use bπ and not π for statement (2) to hold. Consider the λJ
ms-terms v0 = t0(u0 ::

(x)(t1(z)z))(u :: k) and v1 = t0(u0 :: (x)t1(z)z(u :: k)). Then v0 →π v1 but v0
† →π v1

† fails.
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Figure 8: Embedding of λJmse into λJms

x◦ = x

(λx.t)◦ = λx.t◦

{tl}◦ = t◦l◦

[]◦ = (x)x

((x)tl)◦ = (x)t◦l◦

(u :: l)◦ = u◦ :: l◦

Figure 9: Description of µ-normalisation function in λJmse

µx = x

µ(λx.t) = λx.µt

µ{tl} = {µt µl}

µ[] = []

µ((x)tl) = µl (if t = x and x /∈ l)

µ((x)tl) = (x)µtµl (otherwise)

µ(u :: l) = µu :: µl

verify t1
◦l1

◦ →+ t2
◦l2

◦ for them. For σ, we also need the facts ([t/x]u)◦ = [t◦/x]u◦ and
([t/x]l)◦ = [t◦/x]l◦, and for the non-nil case of π, the fact l◦@(u1 :: l1)

◦ →µ (l@u1 :: l1)
◦ is

proved by induction on l.

The first statement of the previous proposition is an obstacle to an immediate applica-
tion of the “interpretation method”, because the µ-reduction goes in the wrong direction.
We overcome this by observing that, as a consequence of e(t◦)→∗

µ t, we have t→∗
µ µ(e(t◦)).

(Here µ is the function that assigns the µ-normal form of an expression. Clearly, reduc-
tion rule µ alone is terminating and locally confluent, hence confluent.) So, in the proof
of confluence (Theorem 3.8 below) there will be an extra step relying on the properties of
mapping µ, which is explicitly given in Figure 9.

Proposition 3.7. In λJmse, if t→ u, then µt→∗ µu.

Proof. The claim is proved together with the similar claim for l → l′ by simultaneous in-
duction on t→ u and l→ l′. The proof makes use of the following facts: (i) (x)µ(t)µ(l)→=

µ

µ((x)tl); (ii) commutation of mapping µ with substitution; (iii) commutation of mapping µ
with append. Fact (i) is immediate from definition. Facts (ii) and (iii) are proved by easy
inductions.

Theorem 3.8. →βπσµǫ in λJmse is confluent.
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Proof. Suppose t →∗
βπσµǫ ti, i = 1, 2, in λJmse. By part 2 of Proposition 3.6, t◦ →∗

βπσµ ti
◦

in λJms. By confluence (Theorem 3.5), there is u ∈ λJms such that ti
◦ →∗

βπσµ u. By the

properties of mapping e : λJms → λJmse, we get e(ti
◦)→∗

βπσµǫ e(u). Proposition 3.7 yields

µ(e(ti
◦))→∗

βπσµǫ µ(e(u)). We close the diagram in λJmse because ti →
∗
µ µ(e(ti

◦)).

Notice that we might have inferred confluence of λJmse of that of the call-by-name
λµµ̃-calculus, presented in Section 3.1.1: if this calculus is confluent, then its intuitionistic
fragment is confluent as well since it has just the same rules on a subset of terms, co-terms
and commands that is closed under reduction. Finally, its isomorphic copy λJmse would
be confluent as well. However, we are not aware of a proof of confluence of our version of
call-by-name λµµ̃-calculus: the calculus considered in [25] does not have the rules µ and µ̃,
has a more restrictive notion of evaluation contexts and imposes σ-reduction immediately
following applications of β. As mentioned above, we would expect that the standard direct
proof methods would be applicable to establish confluence of all of the systems considered
in this section.

4. CGPS translations

In this section we define a CPS translation for λJmse into the simply-typed λ-calculus
and show how it fails to provide a strict simulation of reduction. Next we refine the CPS
translation to a CGPS translation of λJmse and show that strict simulation of reduction is
obtained. Strong normalisation for λJmse follows. Finally, we adapt the CGPS translation
to the subsystems of λJmse.

4.1. CPS translation for λJmse. We assume the reader is familiar with simply-typed
lambda-calculus (we write A ⊃ B for the function type A → B and →β for the one-step
reduction relation). Fix a ground type (some type variable) ⊥. Then, ¬A := A ⊃ ⊥,
as usual in intuitionistic logic. While our calculus is strictly intuitionistic in nature, a
double-negation translation nevertheless proves useful for the purposes of establishing strong
normalisation, as has been shown by de Groote [6] for disjunction with its commuting
conversions. A type A will be translated to A = ¬¬A∗, with the type A∗ defined by
recursion on A (where the definition of A is used as an abbreviation):

X∗ = X
(A ⊃ B)∗ = ¬B ⊃ ¬A

We thus obtain
X = ¬¬X

A ⊃ B = ¬¬(¬B ⊃ ¬A)

The symmetrically-looking definition of (A ⊃ B)∗ is logically equivalent to A ⊃ ¬¬B.
The additional double negation of B is needed even for weak simulation to hold. See
Subsection 4.4 for a discussion of this issue.

The translation of all syntactic elements T will be presented in Plotkin’s [32] colon
notation (T : K) for some term K taken from simply-typed λ-calculus. A term t of λJmse

will then be translated into the simply-typed λ-term

t = λk.(t : k)
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Figure 10: CPS translation of λJmse

(x : K) = xK ([] : K) = λw.wK
(λx.t : K) = K(λwx.wt) (u :: l : K) = λw.w(λm.m (l : K)u)
({c} : K) = (c : K) ((x)c : K) = λx.(c : K)

(t[] : K) = (t : K)
(t(u :: l) : K) = (t : λm.m (l : K)u)

(t(x)c : K) = ((x)c : K)t

Figure 11: Admissible typing rules for CPS translation of λJmse

Γ ⊢ t : A Γ,Γ′ ⊢ K : ¬A∗

Γ,Γ′ ⊢ (t : K) : ⊥

Γ
c
−→ A Γ,Γ′ ⊢ K : ¬A∗

Γ,Γ′ ⊢ (c : K) : ⊥

Γ|l : A ⊢ B Γ,Γ′ ⊢ K : ¬B∗

Γ,Γ′ ⊢ (l : K) : ¬A

with a “fresh” variable k (one that is not free in t). The definition of (T : K) in Figure 10
uses the definition of t as an abbreviation (the variables m,w are supposed to be “fresh”,
in the obvious sense). The translation admits the typing rules of Figure 11.6 Only the first
premise in these three rules refers to λJmse, the other ones to simply-typed λ-calculus. Γ
is derived from Γ by replacing every x : C in Γ by x : C. As a direct consequence (to be
established during the proof of the above typings), type soundness of the CPS translation
follows:

Γ ⊢λJ
mse t : A =⇒ Γ ⊢λ t : A

This CPS translation is also sound for reduction, in the sense that each reduction step
in λJmse translates to zero or more β-steps in λ-calculus. Because of the collapsing of some
reductions, this result does not guarantee yet strong normalisation of λJmse.

Proposition 4.1. If t→ u in λJmse, then t→∗
β u in the λ-calculus.

Proof. Simultaneously we prove

T → T ′ =⇒ (T : K)→∗
β (T ′ : K)

for T, T ′ terms, co-terms or commands. More specifically, at the base cases, the CPS
translation does the following: it identifies ǫ and π-steps, sends one µ-step into zero or more
β-steps in λ-calculus and sends one β or σ-step into one or more β-steps in λ-calculus. Some
comments on lemmata used in this proof can be found in the next section.

6Regrettably, the contexts Γ′ observed in these rules, as well as those observable below in the rules of
Fig. 13, were missing in [12].



18 J. ESPÍRITO SANTO, R. MATTHES, AND L. PINTO

4.2. CGPS translation for λJmse. This is the central mathematical finding of the present
article. It is very much inspired from a “continuation and garbage passing style” translation
for Parigot’s λµ-calculus, proposed by Ikeda and Nakazawa [20]. While they use garbage
to overcome the problems of earlier CPS translations that did not carry β-steps to at
least one β-step if they were under a vacuous µ-binding, as reported in [29], we ensure strict
simulation of ǫ, π and µ. Therefore, we can avoid the separate proof of strong normalisation
of permutation steps alone that is used in addition to the CPS in [6] (there in order to treat
disjunction and not for sequent calculi as we do).

Our CGPS translation passes “garbage”, in addition to continuations. We mean by
“garbage” λ-terms, denoted G, that are carried around for their operational properties, not
for denotational purposes. They inhabit a type ⊤, of which we only require that there is
a term s : ⊤ ⊃ ⊤ such that sG →+

β G. This can of course be realized by any type, with

s := λx.x, but it is useful, in view of a comparison with [20], to have in mind another
realization, namely ⊤ :=⊥⊃⊥ and s := λx.[x;λz.z]. Here we are using the abbreviation
[t;u] := (λx.t)u for some x /∈ t. Then, [t;u] →β t, and Γ ⊢ t : A and Γ ⊢ u : B together
imply Γ ⊢ [t;u] : A (as a derived typing rule of simply-typed λ-calculus). This is a form of
“deliberate garbage” that is used in [20]. Instead of sG, we will write s(G). We will also
speak about “units of garbage”. This is so because, in our translation, garbage will always
have one of the forms g (a variable), s(g), s(s(g)), etc. We say that s(G) has one more “unit
of garbage” than G, or that, in s(G), G is “incremented”. In the particular realization
⊤ :=⊥⊃⊥, s(G) =β [G;λz.z]; we may regard λz.z (which lives in ⊤) as the “unit” that is
added to G. In [20], garbage is built by “adding” a continuation K to G, as in [G;K].

The only change w. r. t. the type translation in CPS is that, now,

A = ⊤ ⊃ ¬¬A∗

is used throughout, hence, again, X∗ = X and (A ⊃ B)∗ = ¬B ⊃ ¬A.
We define the simply-typed λ-term (T : G,K) for every syntactic construct T of λJmse

and simply-typed λ-terms G and K. Then, the translation of term t is defined to be

t = λgk.(t : g, k)

with “new” variables g, k, that is again used as an abbreviation inside the recursive definition
of (T : G,K) in Figure 12 (the variables m,w are again “fresh”).7

If one removes the garbage argument, one precisely obtains the CPS translation. The
translation admits the typing rules of Figure 13.

For Γ see the previous section. Therefore (and to be proven simultaneously), the CGPS
translation satisfies type soundness, i. e., Γ ⊢ t : A implies Γ ⊢ t : A.

Lemma 4.2. In λJmse the following holds:

(1) [t/x](T : G,K)→∗
β ([t/x]T : [t/x]G, [t/x]K) for T any u, l or c, and, in particular,

[t/x]u→∗
β [t/x]u.

7There is a slight, but important, difference between the definition of the CGPS translation presented
here and that presented in [12]. In [12], several clauses in the definition of (l : G, K) or (c : G, K) contained
garbage increment s(G), whereas in the present definition those increments are, so to speak, concentrated
in the clause for ({c} : G, K). The importance of this re-definition is that it makes the purpose of those
increments more perspicuous - see the discussion around the simulation theorem below. For the sake of
a precise connection between the two definitions, let us write the translation of [12] as [T : G, K] and

t. Then, by an easy induction, one obtains (t : G, K) = [t : G, K], (l : s(G), K) = [l : G, K], and

(c : s(G), K) = [c : G, K]. Hence t = t.
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Figure 12: CGPS translation of λJmse

(x : G,K) = x s(G)K
(λx.t : G,K) = [K(λwx.wt);G]
({c} : G,K) = (c : s(G),K)

([] : G,K) = λw.w GK
(u :: l : G,K) = λw.w G(λm.m (l : G,K)u)
((x)c : G,K) = λx.(c : G,K)

(t[] : G,K) = (t : G,K)
(t(u :: l) : G,K) = (t : G,λm.m (l : G,K)u)

(t(x)c : G,K) = ((x)c : G,K)t

Figure 13: Admissible typing rules for CGPS translation of λJmse

Γ ⊢ t : A Γ,Γ′ ⊢ G : ⊤ Γ,Γ′ ⊢ K : ¬A∗

Γ,Γ′ ⊢ (t : G,K) : ⊥

Γ|l : A ⊢ B Γ,Γ′ ⊢ G : ⊤ Γ,Γ′ ⊢ K : ¬B∗

Γ,Γ′ ⊢ (l : G,K) : ¬A

Γ
c
−→ A Γ,Γ′ ⊢ G : ⊤ Γ,Γ′ ⊢ K : ¬A∗

Γ,Γ′ ⊢ (c : G,K) : ⊥

(2) [t/x](T : G,K) = (T : [t/x]G, [t/x]K) for T any u, l or c such that x /∈ T .
(3) G and K are subterms of (T : G,K) for T any u, l or c.
(4) (t : s(G),K)→+

β (t : G,K).

(5) (l : G,K)t→∗
β (tl : G,K)

(6) λx.(xl : G,K)→+
β (l : G,K) if x /∈ l, G,K.

(7) (a) (tl : s(G), λm.m(l′ : G,K)u)→+
β (t (l@(u :: l′)) : G,K)

(b) (l : s(G), λm.m(l′ : G,K)u)→+
β (l@(u :: l′) : G,K)

Proof. 1./2./3. Each one by simultaneous induction on terms, co-terms and commands.
Notice that the second statement has to be proven simultaneously, but that it follows
immediately from the particular case T = u of the first statement.

4.

(t : s(G),K) = [s(G)/g](t : g,K) (by 2.)
→+

β [G/g](t : g,K) (∗)

= (t : G,K) (by 2.)

where (∗) is justified by the fact that g occurs in (t : g,K), as guaranteed by 3.
5. Straightforward case analysis on l.
6. Case analysis on l.
Case l = [].
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λx.(x[] : G,K) = λx.(x : G,K)
= λx.x s(G)K
→+

β λx.xGK

= ([] : G,K) (as x /∈ G,K)

Case l = u :: l′.

λx.(x(u :: l′) : G,K) = λx.(x : G,λm.m(l′ : G,K)u)
= λx.x s(G)(λm.m(l′ : G,K)u)
→+

β λx.xG(λm.m(l′ : G,K)u)

= (u :: l′ : G,K) (as x /∈ u, l′, G,K)

Case l = (y)c.

λx.(x(y)c : G,K) = λx.(λy.(c : G,K))x
→β λx.[x/y](c : G,K)
= λy.[y/x][x/y](c : G,K)
= λy.[[y/x]x/y](c : G,K) (as x /∈ c,G,K, and by 2.)
= λy.[y/y](c : G,K)
→∗

β λy.([y/y]c : G,K) (by 1.)

= ((y)c : G,K)

7. (a) and (b) are proved simultaneously by induction on l.
Case l = [].

(t[] : s(G), λm.m(l′ : G,K)u) = (t : s(G), λm.m(l′ : G,K)u)
→+

β (t : G,λm.m(l′ : G,K)u) (by 4.)

= (t ([]@(u :: l′)) : G,K)

([] : s(G), λm.m(l′ : G,K)u) = λw.w s(G)(λm.m(l′ : G,K)u)
→+

β λw.wG(λm.m(l′ : G,K)u)

= ([]@(u :: l′) : G,K)

Case l = u0 :: l0.

(t(u0 :: l0) : s(G), λm.m(l′ : G,K)u)
= (t : s(G), λn.n(l0 : s(G), λm.m(l′ : G,K)u)u0)
→+

β (t : s(G), λn.n(l0@(u :: l′) : G,K)u0) (by IH (b))

→+
β (t : G,λn.n(l0@(u :: l′) : G,K)u0) (by 4.)

= (t ((u0 :: l0)@(u :: l′)) : G,K)

(u0 :: l0 : s(G), λm.m(l′ : G,K)u)
= λw.w s(G)(λn.n(l0 : s(G), λm.m(l′ : G,K)u)u0)
→+

β λw.w s(G)(λn.n(l0@(u :: l′) : G,K)u0) (by IH (b))

→+
β λw.wG(λn.n(l0@(u :: l′) : G,K)u0)

= ((u0 :: l0)@(u :: l′) : G,K)

Case l = (x)v0l0. Part (b) follows from the induction hypothesis (a) for l0, and part
(a) is an immediate consequence of (b).
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Theorem 4.3 (Simulation). If t→ u in λJmse, then t→+
β u in the λ-calculus.

Proof. Simultaneously we prove: T → T ′ =⇒ (T : G,K) →+
β (T ′ : G,K) for T, T ′ terms,

co-terms or commands. We illustrate the cases of the base rules.
Case β: (λx.t)(u :: l)→ u(x)tl.

((λx.t)(u :: l) : G,K) = (λx.t : G,λm.m(l : G,K)u)
= [(λm.m(l : G,K)u)(λwx.wt);G]
→3

β (λx.(l : G,K)t)u

→∗
β (λx.(tl : G,K))u (Lemma 4.2.5)

= (u(x)tl : G,K)

Case π: {tl}E → t (l@E). Sub-case E = [].

({tl}[] : G,K) = ({tl} : G,K)
= (tl : s(G),K)
→+

β (tl : G,K) (Lemma 4.2.4)

= (t (l@[]) : G,K).

Sub-case E = u :: l′.

({tl}(u :: l′) : G,K) = ({tl} : G,λm.m(l′ : G,K)u)
= (tl : s(G), λm.m(l′ : G,K)u)
→+

β (t (l@(u :: l′)) : G,K) (Lemma 4.2.7)

Case σ: t(x)c→ [t/x]c.

(t(x)c : G,K) = (λx.(c : G,K))t
→β [t/x](c : G,K)
→∗

β ([t/x]c : G,K) (Lemma 4.2.1)

Case µ: (x)xl → l, if x /∈ l.

((x)xl : G,K) = λx.(xl : G,K)→+
β (l : G,K) (Lemma 4.2.6)

Case ǫ: {t[]} → t.

({t[]} : G,K) = (t[] : s(G),K)
= (t : s(G),K)
→+

β (t : G,K) (Lemma 4.2.4)

The cases corresponding to the closure rule t→ t′ =⇒ tl→ t′l (resp. l→ l′ =⇒ tl→ tl′)
can be proved by case analysis on l (resp. l → l′). The cases corresponding to the other
closure rules follow by routine induction.

Remark 4.4. Unlike the failed strict simulation by CPS reported in [29] that only occurred
with the closure rules, the need for garbage in our translation is already clearly visible in the
subcase E = [] for π and the case ǫ. But the garbage is also effective for the closure rules,
where the most delicate rule is the translation of t(u :: l) that mentions l and u only in the
continuation argument K to t’s translation. Lemma 4.2.3 is responsible for propagation of
strict simulation. The structure of our garbage – essentially just “units of garbage” – can
thus be easier than in the CGPS in [20] for λµ-calculus since there, K cannot be guaranteed
to be a subterm of (T : G,K), again because of the problem with void µ-abstractions. The
solution of [20] for the most delicate case of application is to copy the K argument into the
garbage. We do not need this in our intuitionistic calculi. However, since we need garbage
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for some base cases, we also had to make sure that reductions in garbage arguments are not
lost during propagation through the closure rules.

Let us compare the CPS and CGPS translations in order to understand how garbage-
passing ensures strict simulation. The analogue to Lemma 4.2 for the CPS translation is
obtained by erasing garbage throughout, and replacing →+

β by equality in items 4 and 7,

and by →∗
β in item 6. So, the properties of the CGPS translation are as “good” as those of

the CPS translation, and at least a weak simulation could be expected.
An inspection of the proofs of Lemma 4.2 and Theorem 4.3 shows that the CGPS

translation generates reduction sequences which, so to speak, differ from those generated
by CPS translation by the insertion of sequences of the form s(G)→+

β G. The point is that
the CGPS translation does such insertion at all points where the CPS does an undesired
identification (although it also does at other points where such insertion is unnecessary).

The ultimate cause for the existence of such dynamic garbage decrement steps is the
static garbage increment contained in the clauses defining (x : G,K) and ({c} : G,K).
Moreover, it can be argued that the clause for (x : G,K) is responsible for strict simulation
of µ-steps, whereas the clause for ({c} : G,K) is the cause for strict simulation of π- or
ǫ-steps.

The key for strict simulation of µ-steps is Lemma 4.2.6. An inspection of the proof
shows that garbage plays no role in the case l = (y)c (which already generated reduction
steps through the CPS translation), and that, had (x : G,K) been defined as xGK, the
same identifications obtained before with the CPS translation would have arisen again in
the cases l = [] and l = u :: l′. The definition of (x : G,K) causes many garbage decrement
steps, which are useless most of the time (typically adding to the administrative steps,
already generated in the case of the CPS translations, that mediate between [t/x]u and

[t/x]u), but not so in the particular situations described in the cases l = [] and l = u :: l′ of
Lemma 4.2.6.

The role of clause ({c} : G,K) is plain for ǫ and the case E = [] of π. As to the case
E = u :: l′, it suffices to observe that (tl : G,λm.m(l′ : G,K)u) = (t (l@(u :: l′)) : G,K) (as
an inspection of the proof of Lemma 4.2.7 easily shows). So, again, had ({c} : G,K) been
defined as (c : G,K), the same identifications of π- or ǫ-steps obtained before with the CPS
translation would have arisen. The definition of ({c} : G,K) means that garbage-passing
does, among other things, some form of counting braces. The braces decrement observed
in π- or ǫ-steps in the source is reflected by garbage decrement steps in the target.

Corollary 4.5. The typable terms of λJmse are strongly normalising.

Recalling our discussion in Section 2, we already could have inferred strong normali-
sation of λJmse from that of λµµ̃, which has been shown directly by Polonovski [33] using
reducibility candidates and before by Lengrand’s [23] embedding into a calculus by Urban
that also has been proven strongly normalizing by the candidate method. Our proof is just
by a syntactic transformation to simply-typed λ-calculus.

Since each of m, s and e preserves typability and strictly simulates reduction (Propo-
sition 3.1), it follows from Corollary 4.5 that:

Corollary 4.6. The typable terms of λJms, λJm and λJ are strongly normalising.
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4.3. CGPS translations for subsystems. We define CGPS translations for λJms, λJm

and λJ. The translation of types is unchanged. In each translation, we just show the clauses
that are new.

(1) For λJms:

(tl : G,K) = (tl; s(G),K)

((x)V : G,K) = λx.(V : G,K) (V a value)
((x)tl : G,K) = λx.(tl;G,K)

(t(x)v;G,K) = ((x)v : G,K)t
(t(u :: l);G,K) = (t : G,λm.m (l : G,K)u)

(2) For λJm: there is no auxiliary operator (tl;G,K).

(t(u, l) : G,K) = (t : s(G), λm.m (l : s(G),K)u)
((x)t(u, l) : G,K) = λx.(t : G,λm.m (l : G,K)u)

(3) Finally, for λJ:

(t(u, x.V ) : G,K) = (t : s(G), λm.m (λx.(V : s(G),K))u) (V a value)
(t(u, x.v) : G,K) = (t : s(G), λm.m (λx.(v : G,K))u) (v an application)

In the case of λJms, the distinction between (tl : G,K) and (tl;G,K) is consistent with the
distinction, in λJmse, between ({c} : G,K) and (c : G,K).8

These translations are coherent with the CGPS translation for λJmse:

Proposition 4.7. Let L ∈ {λJms, λJm, λJ}. Let fL be the embedding of L in the immediate
extension of L in the spectrum of Fig. 3, and let gL be the embedding of L in λJmse. Then,
for all t ∈ L, t = fL(t). Hence, for all t ∈ L, t = gL(t).

Proof. For λJms, let P (t) := ∀G,K((t : G,K) = (e(t) : G,K)), for every t ∈ λJms. Then,
one proves

(i) P (t); and
(ii) (l : G,K) = (e(l) : G,K) and ∀t ∈ λJms(P (t) =⇒ (e(t)e(l) : G,K) = (tl;G,K))

by simultaneous induction on t and l.
For λJm, on proves (t : G,K) = (s(t) : G,K) and (l : G,K) = (s(l) : G,K) by

simultaneous induction on t and l.
For λJ, one proves (t : G,K) = (m(t) : G,K) by induction on t.

Therefore, since each of m, s and e, as well as the CGPS translation of λJmse, preserves
typability, so does each CGPS translation of the subsystems.

Theorem 4.8 (Simulation). Let L ∈ {λJms, λJm, λJ}. If t→ u in L, then t→+
β u in the

λ-calculus.

Proof. By Propositions 3.1 and 4.7 and Theorem 4.3.

8We take the opportunity to correct a mistake in the CGPS translations for the subsystems of λJ
mse

given in [12]. The mistake was that some clauses in the definition of those translations lacked a needed
case analysis. We repair the mistake now, using in this footnote the notations (T : G, K) and t with their
meanings in [12]. For λJ

ms: ((x)v : G, K) = λx.(v : G′, K), where G′ is either s(G), if v is a value; or G,
otherwise. For λJ

m, it should be understood that the clause for ((x)v : G, K) just given is inherited. For
λJ: (t(u, x.v) : G, K) = (t : s(G), λm.m (λx.(v : G′, K)) u), where G′ is s(G), if v is a value; or G, otherwise.
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Since the various CGPS translations preserve typability, Corollary 4.6 follows also from
the previous theorem (and strong normalisation of the simply-typed λ-calculus).

The CGPS translations defined above for the subsystems of λJmse, being consistent with
the CGPS translation of λJmse, have the advantage of inheriting the simulation theorem,
and the disadvantage of not being optimized for the particular system on which they are
defined. In fact, such translations can be optimized by omitting garbage increments s(G)
in one or more of their clauses. We give one example of this phenomenon.

Theorem 4.9 (Simulation). Let t and (t : G,K) be given for t ∈ λJ by:

t = λgk.(t : g, k)
(x : G,K) = xGK

(λx.t : G,K) = [K(λwx.wt);G]
(t(u, x.v) : G,K) = (t : s(G), λm.m (λx.(v : G,K))u)

If t→ u in λJ, then t→+
β u in the λ-calculus.

Proof. Similar to, but simpler than that of Theorem 4.3.

4.4. C(G)PS translations with less double negations. Our definition of (A ⊃ B)∗

produces a type logically equivalent to A ⊃ ¬¬B, which has an extra double negation
of B when compared with traditional CPS’s. One may wonder what happens if one sets
(A ⊃ B)∗ = A ⊃ B. There is no problem in defining a CPS translation based on that,
but we would even lose weak simulation in the form of Proposition 4.1. Let us take the
simplified type translation, whose new clauses are:

(λx.t : K) = K(λx.t)
(u :: l : K) = λw.w(λm.(l : K)(mu))

(t(u :: l) : K) = (t : λm.(l : K)(mu))

This translation obeys to the typing rules of Figure 11, but already β steps at the root do
not obey to Proposition 4.1:

((λx.t)(u :: []) : K) = (λm.(λw.wK)(mu))(λx.t)

→2
β (λx.t)uK

=β (λx.tK)u

→β (λx.(t : K))u

= (u(x)(t[]) : K)

The problem is that there is no reduction step from (λx.t)uK to (λx.tK)u in λ-calculus.
Similar remarks apply to the subsystem λJms.

The failed simulation just illustrated would have not occurred, had the β rule been
defined with implicit substitution:

(λx.t)uK →β ([u/x]t)K = [u/x](tK)→β [u/x](t : K)→∗
β ([u/x]t : K) = ({[u/x]t}[] : K)

This is consistent with another fact: weak simulation, through the simpler CPS, is recovered
as soon as one moves down in the spectrum to λJm or λJ (systems where β-reduction
employs implicit substitution). For these systems, the combination of garbage passing with
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the simpler CPS delivers strict simulation. The theorem below exemplifies the situation
with λJ (to be compared with Theorem 4.9).

Theorem 4.10 (Simulation). For a type A, let A = ⊤ ⊃ ¬¬A∗, X∗ = X and (A ⊃ B)∗ =
A ⊃ B and for t ∈ λJ, let t = λgk.(t : g, k) and (t : G,K) be defined as

t = λgk.(t : g, k)
(x : G,K) = xGK

(λx.t : G,K) = [K(λx.t);G]
(t(u, x.v) : G,K) = (t : s(G), λm.(λx.(v : G,K))(mu))

(1) If Γ ⊢λJ t : A then Γ ⊢λ t : A.
(2) If t→ u in λJ, then t→+

β u in the λ-calculus.

Proof. The proof of (1) is based on the fact that the first rule of Figure 13 is still admissible.
Property (2) follows along the lines of theorems 4.9 and 4.3, requiring some properties
analogous to those in Lemma 4.2. We illustrate below the base case for β (problematic for
λJmse and λJms, as explained above):

((λx.t)(u, y.v) : G,K) = (λx.t : s(G), λm.(λy.(v : G,K))(mu))
= [(λm.(λy.(v : G,K))(mu))(λx.t); s(G)]
→4

β [[u/x]t]/y](v : G,K)

→∗
β [[u/x]t]/y](v : G,K)

→∗
β ([[u/x]t]/y]v : G,K)

Note that this translation of types, variables and λ-abstractions coincides with that
of [20]. Evidently, the case of generalized application is new since it was not considered
there. Only here is the need for a garbage increment.

Finally, let us observe that the extra double negation in (A ⊃ B)∗ has to be integrated
as ¬B ⊃ ¬A, and not as A ⊃ ¬¬B. Had the latter alternative been adopted, and again,
already for CPS, we would lose weak simulation. The CPS would then be defined by:

(λx.t : K) = K(λxw.wt)
(u :: l : K) = λw.w(λm.mu(l : K))

(t(u :: l) : K) = (t : λm.mu(l : K))

With these definitions, one calculates:

((λx.t)(u :: []) : K) = (λm.mu(λw.wK))(λxw.wt)

→β (λxw.wt)u(λw.wK)

=β (λx.(λw.wt)(λw.wK))u

→3
β (λx.(t : K))u

= (u(x)(t[]) : K)

Again, the undirected =β-step cannot be dispensed with by reduction steps in λ-calculus.
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5. Higher-Order Systems

In this section, we extend the CGPS translation to, and obtain strong normalisation
for, the extensions of λJmse described in the following table:

intuitionistic logic sequent calculus natural deduction system
propositional λJmse λ

second-order propositional λ2Jmse λ2
higher-order propositional λωJmse λω

higher-order predicate λHJmse λH

Such extensions constitute several systems of intuitionistic logic formulated as sequent cal-
culi, and have a corresponding natural deduction system. The latter are formulated as
domain-free type theories [3], and all but one belong to the domain-free cube. The only
exception is λH, which is a domain-free formulation of Geuvers’ treatment of higher-order
intuitionistic logic [14].

Each CGPS translation goes from a sequent calculus to the corresponding natural
deduction system, where the latter is expected to satisfy strong normalisation. This is the
case for the systems in the domain-free cube [3]. As to λH, it is well known that it is a
pure type system [14] which, in addition, has a functional specification [3]. Now op.cit.
shows that in such cases, strong normalisation of the domain-full system implies the same
property for the domain-free one. Therefore, we infer from the strong normalisation of
Geuvers’ system that of λH.

The formulation of the systems of higher order (unlike those at second order) require
the introduction of an upper level of domains of quantification and their inhabitants. In
order to avoid that these technicalities blur the simplicity by which the properties of the
CGPS extend beyond the (zero-th order) propositional case, we decided to develop first
the second-order case with the simplest formulation, even at the price of a little amount of
redundancy.

5.1. Second Order. All the results of the previous sections readily extend to the sec-
ond order which is one of the important advantages of double-negation translations w. r. t.
Gödel’s negative translation (employed for first-order λµ-calculus by Parigot [31]). In order
to give an idea of how to proceed, we will sketch how to equip λJmse by a second-order
universal quantifier (yielding system λ2Jmse) and how to extend the CGPS translation of
λJmse into simply-typed λ-calculus to a translation of λ2Jmse into a “domain-free” version
λ2 [3] of second-order λ-calculus a. k. a. system F [15].

5.1.1. System λ2. To recall, system F corresponds to second-order propositional logic and
consequently also has the types of the form ∀X.A. Therefore, also on the type level, we
need to allow silent renaming of bound variables. Just as it is done in [20], we stay with the
Curry-style typing of our previous systems but nevertheless add ΛX.t and tA to the term
syntax for λ, for universal introduction and universal elimination, respectively. These two
constructions normally belong to the typing discipline à la Church, but in addition to λ,
they give (a variant of) system λ2 of [3]. The new typing rules are:

Γ ⊢ t : A
Γ ⊢ ΛX.t : ∀X.A

RIntro2
Γ ⊢ t : ∀X.A

Γ ⊢ tB : [B/X]A
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with [B/X]A denoting type substitution, where RIntro2 is under the proviso that X is not
free in any type in Γ. The new reduction rule is β2:

(ΛX.t)B → [B/X]t

with [B/X]T type substitution in term t. It is shown in [3] that strong normalisation of
typable terms is inherited from the same property for system F , that has been established
by Tait’s refinement [37] of Girard’s weak normalisation proof [15].

5.1.2. System λ2Jmse. For λ2Jmse, we also extend the term syntax by ΛX.t and extend
the co-term syntax by A :: l that count among the evaluation contexts. The cases u :: l
and A :: l can be uniformly seen as U :: l, where U now stands for a term or type. Type
substitution [B/X]T for T a term/co-term/command can be defined in the obvious way.
λ2Jmse extends λJmse also by the rule RIntro2 above and by

Γ|l : [B/X]A ⊢ C

Γ|B :: l : ∀X.A ⊢ C
LIntro2

The notion l@l′ is redefined with u replaced by U (and stays associative), and the admissible
typing rules for substitution, weakening and @ carry over from λJmse, as well as the obvious
typing rules for type substitution. The only new reduction rule is

(β2) (ΛX.t)(B :: l)→ ([B/X]t)l

So, term substitution is dealt with in an explicit way in λ2Jmse, but type substitution is
still left implicit. This gap would be annoying for dependently-typed systems, see [24] for
a proposal that solves this problem.

The one-step reduction relation takes into account the new syntactic constructions, and
subject reduction follows.

5.1.3. CGPS translation. The CGPS-translation of λJmse into λ is now extended to a CGPS
of λ2Jmse into λ2. Unlike the case of implication, no further double negation w. r. t. [20]
has to be added, since our sequent calculi do not provide an explicit type substitution; we
set

(∀X.A)∗ = ∀X.A .

Evidently, ([B/X]A)∗ = [B∗/X]A∗, hence (but to be proven simultaneously) [B/X]A =
[B∗/X]A. We extend the definition of (T : G,K) for λJmse, with G,K terms of λ2, by

(ΛX.t : G,K) = [K(ΛX.t);G]
(t(B :: l) : G,K) = (t : G,λm.(l : G,K)(mB∗))

(B :: l : G,K) = λw.wG(λm.(l : G,K)(mB∗))

The clause for ΛX.t is taken from [20]. This extended translation obeys to the same typing
as for λJmse (now always w. r. t. λ2), hence satisfies type soundness.

Lemma 5.1. The CGPS translation of λ2Jmse into λ2 satisfies the following:

(1) − (7) as in Lemma 4.2.

(8) [B∗/X](T : G,K) = ([B/X]T : [B∗/X]G, [B∗/X]K) and [B∗/X]t = [B/X]t.
(9) [B/X](T : G,K) = (T : [B/X]G, [B/X]K) for X not free in T .

(10) (a) (tl : s(G), λm.(l′ : G,K)(mB∗))→+
β (t(l@(B :: l′)) : G,K)

(b) (l : s(G), λm.(l′ : G,K)(mB∗))→+
β (l@(B :: l′) : G,K)
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Now we prove the following theorem just as before Theorem 4.3.

Theorem 5.2 (Simulation). If t→ u in λ2Jmse, then t→+
β u in λ2.

Proof. We show the new base cases.
Case β2: (ΛX.t)(B :: l)→ ([B/X]t)l.

((ΛX.t)(B :: l) : G,K)
= (ΛX.t : G,λm.(l : G,K)(mB∗))
= [(λm.(l : G,K)(mB∗))(ΛX.t);G]
→3

β (l : G,K)[B∗/X]t

= (l : G,K)[B/X]t (Lemma 5.1.8.)
→∗

β (([B/X]t)l : G,K) (Lemma 5.1.5.)

Case π: Sub-case E = B :: l′.

({tl}(B :: l′) : G,K) = (tl : s(G), λm.(l′ : G,K)(mB∗))
→+

β (t (l@(B :: l′)) : G,K) (Lemma 5.1.10.)

Corollary 5.3. The typable terms of λ2Jmse are strongly normalising.

A technically more involved CGPS for the Church-style version of λ2Jmse into Church-
style system F can be given along the lines of [26], where the colon translation has to be
made relative to a context Γ.

5.2. Fω and Higher-Order Logic. In the second order systems, one assumes that X in
the quantification ∀X.A ranges over the domain PROP of all propositions (or types). In
this subsection we study systems allowing the formation of other domains of quantification,
usually denoted D, E . Quantification now has the form ∀X : D.A, but, at the proof-term
level, abstraction ΛX.t remains domain-free.

In the following we formulate intuitionistic higher-order predicate logic, both in the nat-
ural deduction format λH, and the sequent calculus format λHJmse. A minor restriction in
each of these systems gives two formulations (λω and λωJmse, respectively) of intuitionistic
higher-order propositional logic, or system Fω.

5.2.1. Domains of quantification. Domains (of quantification) are given by:

D, E ::= PROP |X | D → D

X ranges over a set of domain variables. These play the role of “sorts” in multi-sorted
first-order logic. The set of domains is very much like Church’s structure of simple types,
except that, besides PROP (the type of propositions), Church only admitted one other
base type ι of individuals.

Next come the propositional, or type, or individual, function(al)s:

A,B,C ::= X | ⋋X.A |AB |A ⊃ B | ∀X : D.A

These are the inhabitants of domains. X ranges over a set, whose elements may be seen
as type variables, or propositional variables, or individual variables, etc. In the last case
a meta-variable like x would be more expressive. Also, one may employ meta-variables ϕ
and ψ instead of A, if one wants to emphasize that the inhabitant is a proposition, or t if
one wants to emphasize that the inhabitant lives in some domain of individuals X. ⋋X.A
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Figure 14: Domain assignment rules for higher-order logic

(X : D) ∈ ∆

∆ ⊢ X : D
Ax

∆,X : D ⊢ A : E

∆ ⊢ ⋋X.A : D → E
I →

∆ ⊢ A : D → E ∆ ⊢ B : D
∆ ⊢ AB : E

E →

∆ ⊢ A : PROP ∆ ⊢ B : PROP
∆ ⊢ A ⊃ B : PROP

F ⊃
∆,X : D ⊢ A : PROP

∆ ⊢ ∀X : D.A : PROP
F∀

and AB are the generic, and usual, mechanism for building inhabitants at all levels of the
domain structure.9

The relationship between domains and their inhabitants is governed by domain assign-
ment rules. Let ∆ range over consistent sets of declarations X : D. Such rules derive
sequents of the form ∆ ⊢ A : D, as described in Figure 14. Besides the ordinary rules of the
simply-typed λ-calculus, one has two formation rules. If ∆ ⊢ A : PROP , then we say that
A is a ∆-proposition, or just proposition. Alternative terminology is “formula” or “type”.

Finally, the inhabitants of domains may reduce according to the following reduction
rule:

(β0) (⋋X.A)B → [B/X]A .

The given definition of domains, their inhabitants, and the derivable sequents ∆ ⊢ A : D
remains fixed for the rest of this subsection (that is, in all the systems λω, λH, λωJmse,
and λHJmse), except for one thing: in λω and λωJmse, domain variables X are not allowed.

5.2.2. Systems λω and λH. We now define the natural deduction system λH and its minor
variant λω. Specifically, we define proof expressions and their “typing” rules, that is, the
rules governing what expressions inhabit what propositions. At this level, the systems λω
and λH are indistinguishable; indeed, the single difference is the one already pointed out
at the domains level.

In addition, at this level, also λH and λ2 would be indistinguishable, provided that
(i) we had defined λ2 with a trivial domain level D = PROP , and with formal “domain
assignment rules” generating the types/ propositions; (ii) we wrote ∀X : D.A and not just
∀X.A; (iii) sequents Γ ⊢ t : A carried an outer set ∆ declaring necessary variables X with
domain PROP . So, what follows may be used as a recapitulation of λ2.

In λH one has the following proof terms:

t, u, v ::= x |λx.t | tu |ΛX.t | tA

Proof terms are assigned to propositions through proposition assignment rules, which
generate sequents of the form ∆;Γ ⊢ t : A according to the rules of Figure 15. Here
Γ is a consistent set of declarations x : A; in addition we expect ∆ ⊢ Γ : PROP and

9Notation: different forms of abstraction are denoted by variants of the symbol λ, but application is
always denoted by juxtaposition.
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Figure 15: Proposition assignment rules of λH

∆ ⊢ Γ : PROP (x : A) ∈ Γ

∆;Γ ⊢ x : A
Ax

∆;Γ ⊢ t : A ⊃ B ∆;Γ ⊢ u : A

∆;Γ ⊢ tu : B
E ⊃

∆;Γ, x : A ⊢ t : B

∆;Γ ⊢ λx.t : A ⊃ B
I ⊃

∆;Γ ⊢ t : ∀X : D.A ∆ ⊢ B : D

∆;Γ ⊢ tB : [B/X]A
E∀

∆,X : D; Γ ⊢ t : A

∆;Γ ⊢ ΛX.t : ∀X : D.A
I∀

∆;Γ ⊢ t : A ∆ ⊢ B : PROP A =β0
B

∆;Γ ⊢ t : B
Conv.

∆ ⊢ A : PROP , whenever ∆; Γ ⊢ t : A is generated. The notation ∆ ⊢ Γ : PROP means
(x : A) ∈ Γ⇒ ∆ ⊢ A : PROP . Proof terms reduce according to these two reduction rules:

(β1) (λx.t)u → [u/x]t
(β2) (ΛX.t)B → [B/X]t

Proof terms are capable of β0-reduction, via the closure rule B →β0
B′ =⇒ tB →β0

tB′.

5.2.3. Systems λωJmse and λHJmse. We now define the sequent calculi λHJmse and its
minor variant λωJmse. Again, at the level of proof expressions and their “typing” rules,
the systems λωJmse and λHJmse are indistinguishable; indeed, the single difference is the
one already pointed out at the domains level.

In addition, at this level, also λHJmse and λ2Jmse would be indistinguishable, under
the same provisos as before for the indistinguishability of λH and λ2. Hence, also the
following definition is mostly a recapitulation of λ2Jmse.

In λHJmse one has the following proof expressions:

(Proof terms) t, u, v ::= x |λx.t |ΛX.t | {c}
(Proof co-terms) l ::= [] |u :: l |B :: l | (x)c
(Proof commands) c ::= tl

Proposition assignment rules generate sequents of the forms ∆;Γ ⊢ t : A, and ∆;Γ|l :

B ⊢ A, and ∆;Γ
c
−→ B. In these sequents we expect ∆ ⊢ Γ : PROP , ∆ ⊢ A : PROP , and

∆ ⊢ B : PROP . The rules are shown in Figure 16.
The rules for the reduction of proof expressions are:

(β1) (λx.t)(u :: l) → u((x)tl)
(β2) (ΛX.t)(B :: l) → ([B/X]t)l
(π) {tl}E → t (l@E)
(σ) t(x)c → [t/x]c
(µ) (x)xl → l, if x /∈ l
(ǫ) {t[]} → t
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Figure 16: Proposition assignment rules of λHJmse

∆ ⊢ Γ : PROP ∆ ⊢ A : PROP
∆;Γ|[] : A ⊢ A

LAx
∆ ⊢ Γ : PROP (x : A) ∈ Γ

∆;Γ ⊢ x : A
RAx

∆;Γ ⊢ u : A ∆;Γ|l : B ⊢ C

∆;Γ|u :: l : A ⊃ B ⊢ C
L ⊃

∆;Γ, x : A ⊢ t : B

∆;Γ ⊢ λx.t : A ⊃ B
R ⊃

∆ ⊢ B : D ∆;Γ|l : [B/X]A ⊢ C

∆;Γ|B :: l : ∀X : D.A ⊢ C
L∀

∆,X : D; Γ ⊢ t : A

∆;Γ ⊢ ΛX.t : ∀X : D.A
R∀(X /∈ Γ)

∆;Γ, x : A
c
−→ B

∆;Γ|(x)c : A ⊢ B
LSel

∆;Γ
c
−→ A

∆;Γ ⊢ {c} : A
RSel

∆;Γ ⊢ t : A ∆;Γ|l : A ⊢ B

∆;Γ
tl
−→ B

Cut

∆;Γ ⊢ t : A ∆ ⊢ B : PROP A =β0
B

∆;Γ ⊢ t : B
Conv.

Proof expressions are capable of β0-reduction, via the closure rule B →β0
B′ =⇒ B :: l→β0

B′ :: l.

5.2.4. CGPS translations. We will see that, when the CGPS translation is extended to
λωJmse and λHJmse, its properties (type soundness and the simulation theorem) remain
valid and are proved almost verbatim relative to the second-order case. Here is an ex-
planation. The proofs of the properties of the CGPS translation have two components.
The first component is a proof that the CGPS translation behaves well relative to domain
inhabitants/assignment. This comprises (i) domain soundness (Lemma 5.4 below); (ii) com-
mutation with substitution of type variables X; (iii) simulation of β0 (Lemma 5.5). This
component depends on the domain inhabitants/assignment and inhabitants reduction (β0)
of the system where the translation is defined. Very little variation exists between λ2Jmse,
λωJmse, and λHJmse regarding these aspects, the only singularity being that there is no β0

at second order. The second component is the proper proofs of type soundness and strict
simulation, which are all the same for λ2Jmse, λωJmse, and λHJmse, except for one induc-
tive case of the strict simulation theorem, absent in λ2Jmse, and relative to β0 reduction at
proof-expression level.

We define a CGPS translation from λHJmse to λH. It can be seen as a CGPS transla-
tion from λωJmse to λω as well, and generalises only slightly the previous CGPS translation
from λ2Jmse to λ2, by providing translations for ⋋X.A and AB.

Domains remain fixed, but their inhabitants are translated as in Figure 17. Recall that
the relation of domain assignment of λHJmse is the same as that of λH. Such relation is
intended in the following result.
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Figure 17: Translation of propositional/individual function(al)s

X∗ = X
(A ⊃ B)∗ = ¬B ⊃ ¬A

(∀X : D.A)∗ = ∀X : D.A
(⋋X.A)∗ = ⋋X.A∗

(AB)∗ = A∗B∗

A = ⊤ ⊃ ¬¬A∗

Lemma 5.4 (Domain soundness). The following holds:

∆ ⊢ A : D
∆ ⊢ A∗ : D

∆ ⊢ A : PROP

∆ ⊢ A : PROP

Proof. By simultaneous induction on A.

Recall also that the relation of domain assignment of λωJmse is the same as that of λω.
If this latter relation is intended, the previous result also holds, with the same proof. The
previous lemma generalises the fact that, at second order, if A is a proposition (type), then
so is A∗ and A.

The same grammar generates the sets of proof expressions of λHJmse, λωJmse, and
λ2Jmse; another single grammar generates the sets of proof expressions of λH, λω, and
λ2. These two grammars are already known from the second-order systems, so the CGPS
translation at the level of proof expressions is known and we do not repeat it.

The equations ([B/X]A)∗ = [B∗/X]A∗ and [B/X]A = [B∗/X]A still hold, and are
proved by the same simultaneous induction, supplemented with the straightforward new
cases ⋋X.A and AB.

Lemma 5.5. If A →β0
B in λHJmse (resp. λωJmse), then A∗ →β0

B∗ and A →β0
B in

λH (resp. λω).

Proof. Straightforward induction on A →β0
B. The base case follows from ([B/X]A)∗ =

[B∗/X]A∗. The inductive cases are routine.

Then one obtains the admissible typing rules of Figure 18. This is the same typing
obeyed by the CGPS translation from λ2Jmse to λ2, provided, as remarked before, λ2Jmse

and λ2 are defined with a formal level of domains, etc.

Lemma 5.6. The CGPS translations of λHJmse into λH, and of λωJmse into λω, satisfy
the items (1) to (10) of Lemma 5.1.

Theorem 5.7 (Simulation). If t → u in λHJmse (resp. λωJmse), then t →+
β u in λH

(resp. λω).

Proof. The same proof as in the second-order case applies. There is only one new inductive
case, to prove (B :: l : G,K) →+

β (B′ :: l : G,K), when B →β0
B′, a case which is an

immediate consequence of Lemma 5.5 and the definition of the CGPS translation.
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Figure 18: Admissible proposition assignment rules for CGPS translation of λHJmse

∆;Γ ⊢ t : A

∆;Γ ⊢ t : A

∆;Γ ⊢ t : A ∆;Γ,Γ′ ⊢ G : ⊤ ∆;Γ,Γ′ ⊢ K : ¬A∗

∆;Γ,Γ′ ⊢ (t : G,K) : ⊥

∆;Γ|l : A ⊢ B ∆;Γ,Γ′ ⊢ G : ⊤ ∆;Γ,Γ′ ⊢ K : ¬B∗

∆;Γ,Γ′ ⊢ (l : G,K) : ¬A

∆;Γ
c
−→ A ∆;Γ,Γ′ ⊢ G : ⊤ ∆;Γ,Γ′ ⊢ K : ¬A∗

∆;Γ,Γ′ ⊢ (c : G,K) : ⊥

Corollary 5.8. The typable terms of λHJmse and λωJmse are strongly normalising.

6. Further remarks

Contributions. This article provides reduction-preserving CGPS translations of λJmse

and other intuitionistic calculi, hence obtaining embeddings into the simply-typed λ-calcu-
lus and proving strong normalisation. As a by-product, the connections between systems
like λJ and λJm and the intuitionistic fragment of λµµ̃ are detailed, and confluence for them
obtained. It is shown that all the results smoothly extend to systems with quantification
over propositions and even functionals over propositions and (many-sorted) individuals. In
all cases, the sequent-calculus format is embedded into the natural-deduction style.

C(G)PS and strong normalisation. In the literature one finds strong normalisation
proofs for sequent calculi [7, 8, 23, 24, 33, 38], but not by means of CPS translations; or
CPS translations for natural deduction systems [1, 2, 6, 17, 20, 30].

This article provides, in particular, a reduction-preserving CGPS translation for the
lambda-calculus with generalised applications λJ. [30] covers full propositional classical
logic with general elimination rules and its intuitionistic implicational fragment corresponds
to λJ. However, [30] does not prove a strict simulation by CPS (permutative conversions
are collapsed), so an auxiliary argument in the style of de Groote [6], involving a proof in
isolation of SN for permutative conversions, is used.

In Curien and Herbelin’s work [5, 18] one finds a CPS translation ( )n of the call-by-

name restriction of λµµ̃. We compare ( )n with our ( ). (i) ( )n generalises Hofmann-

Streicher translation [19]; ( ) generalises Plotkin’s call-by-name CPS translation [32]. (ii)

( )n does not employ the colon operator; ( ) does employ (we suspect that doing admin-
istrative reductions at compile time is necessary to achieve strict simulation of reduction);
(iii) ( )n is defined for expressions where every occurrence of u :: l is of the particular form

u :: E; no such restriction is imposed in the definition of ( ). (iv) at some points it is unclear
what the properties of ( )n are, but no proof of strong normalisation is claimed; the CGPS

( ) strictly simulates reduction and thus achieves a proof of strong normalisation.
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Higher-order sequent calculi. Our formulations of system Fω and higher-order logic
in the sequent calculus format were helpful for showing the wide applicability of the CGPS
technique. Nevertheless, they are another experience in the formulation of type theories
as sequent calculi [24]. We adopted the guideline that only proof-expression could suffer
a change in the proof-theoretical format, but other, more “uniform”, possibilities exist,
where also the domain assignment relation is changed to the sequent calculus format. An
improvement, in view of proof-search, is to restrict the conversion rule of the typing system
to an expansion rule [36]. Finally, in λHJmse, λωJmse, and λ2Jmse we re-encounter explicit
substitutions in higher-order type theories [4, 28], but with a simpler treatment (no explicit
execution) and in a simpler setting (no dependent types).

Future work. We plan to extend the technique of continuation-and-garbage passing
to λµµ̃ and to dependently-typed systems. We tried to extend the CGPS to CBN λµµ̃, but
already for a CPS translation, we do not see how to profit from the continuation argument
for the translation of co-terms and commands. Moreover, a special case of the rule we call π
corresponds to the renaming rule a(µb.M)→ [a/b]M of λµ-calculus. This rule is evidently
not respected by the CGPS translation by Ikeda and Nakazawa [20] (nor by the CPS they
recall) since the continuation argument K is omitted in the interpretation of the left-hand
side but not in the right-hand side. So, new ideas or new restrictions will be needed.
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