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Tangent bundle and Sasaki metric

π : TM −→ M the tangent vector bundle of a manifold M; TM is
the total space.
Then V = ker dπ ⊂ T (TM), vertical subvector bundle, giving
tangent bundle of the fibres. We find

V ' π?TM.

We have a tautological vector field; ξ is vertical, defined over
TM by

ξu = u ∈ V , ∀u ∈ TM .
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(M, g) Riemannian of dim m. Then canonical splitting:

T (TM) = H∇ ⊕ V ' π∗TM ⊕ π?TM.

dπ|H∇ vector bundle isometry H∇ ' π∗TM over the manifold TM .
TM is an oriented Riemannian 2m-manifold with the Sasaki
metric

gS = π∗g ⊕ π?g .

∃ a mirror endomorphism, indeed a tensor:

B : T TM −→ T TM

{
Bwh = w v

Bw v = 0

isometry H∇ −→ V .
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The structure group of manifold TM reduces to O(m) as the
diagonal subgroup of O(m)×O(m).
Clearly O(m) ⊂ GL+(2m,R).

Remark: we may take orthonormal frames Tu(TM\0) of the form
(m = n + 1)

e0, e1, . . . , en,
ξ
‖ξ‖ , en+1, . . . , e2n with

{
Bei = ei+n

e0 : Be0 = ξ
‖ξ‖

These are the adapted frames.
(Btξ ∈ H∇ is known as the geodesic spray.)

The structure group of TM\0 is reducible, from the
principal O(2n + 2)-bundle of orthonormal frames to the
principal O(n)-bundle over TM\0 of adapted frames.
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Many have worked on the geometry of TM and that of the tangent
sphere bundles: M. T. Abbassi, G. Calvaruso, O. Kowalski,
E. Musso, V. Oproiu, N. Papaghiuc, M. Sekizawa, S. Sasaki,
L. Vanhecke ... and many collaborators.

Example: Let M = M±R denote the n + 1-dimensional space-form
with metric g of constant sectional curvature ±1/R2 where R > 0.

Consider the radius s > 0 sphere bundle Ss,M −→ M.
The scalar curvature of the manifold Ss,M is

Scal(Ss,M ,gS ) = ±n(n + 1)

R2
− s2n

2R4
+

(n − 1)n

s2
.

This is a constant, positive (negative) for small (large) s, though
the metric is not Einstein.
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For M orientable:
We have the exterior differential system on SM defined by the
contact 1-form θ = e0 (due to Y. Tashiro) and the invariant
n-forms

α0, . . . , αn

where

αi =
1

i !(n − i)!

∑
σ∈Sn

sg(σ) eσ1∧· · ·∧eσn−i∧e(n+σn−i+1)∧· · ·∧e(n+σn).

αi correspond with the generators of 1-dimensional SO(n)
representations in Λn(R⊕ Rn ⊕ Rn).
These yield global forms over SM .
cf. arXiv:1112.3213 [math.DG] for the applications.
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This slide is an add from the white-board written during exposition:
For n = 1, we recognize Cartan’s structural equations:
θ = e0, dθ = e21, α0 = e1, α1 = e2 where e0, e1 ∈ H∇ and
e2 ∈ V , satisfying (K =Gauss curvature):

dα0 = θ ∧ α1, dα1 = Kα0 ∧ θ.

For n = 2, i.e. dim M = 3, we have new equations:
θ = e0, dθ = e31 + e42, α0 = e12, α1 = e14 − e23, α2 = e34

where e0, e1, e2 ∈ H∇ and e3, e4 ∈ V , such that:

dα0 = θ ∧ α1, dα1 = 2θ ∧ α2 − r θ ∧ α0, dα2 = Rξα2

where r = r(u) = ric(u, u), ∀u ∈ SM , and Rξα2 is a 3-form,
interesting to decompose under SO(2), cf.
http://arxiv.org/abs/1504.04659, with
further applications in http://arxiv.org/abs/1604.05390.

http://arxiv.org/abs/1504.04659
http://arxiv.org/abs/1604.05390
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Generalised Sasaki metric

Sasaki also introduced an almost complex structure

I = I1,1 = B − Bt .

Integrable if and only if the Levi-Civita connection is flat.

More generally, given any linear connection ∇, we have I
integrable if and only if

T∇ = 0 and R∇ = 0

(P. Dombrovski).
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For any f , h ∈ C∞TM
(R+), we may define a metric and almost

complex structure, a Hermitian structure by

gf ,h = f π∗g ⊕ hπ?g

If ,h =

√
f

h
B −

√
h

f
Bt .

Then

ωf ,h = gf ,h
(
If ,h ,

)

=
√

fhω1,1

One class of weight functions comes with pullback or constant
along the fibre functions

f , h ∈ C∞M,π(R+).
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Theorem (2011)

For the class of pullback weight functions:

1. ωf ,h is closed ⇐⇒ T∇ = 1 ∧ dψ, where ψ = 1
2 log(hf )

2. If ,h is integrable ⇐⇒ R∇ = 0 and T∇ = 1 ∧ dψ, where
ψ = 1

2 log(hf )

3. gf ,h is Kähler ⇐⇒ R∇ = 0 and T∇ = 1 ∧ dψ = 1 ∧ dψ, this
is, f is constant.

Note the case when ∇ is torsion-free.

—— // ——
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Another important class of functions on TM :

f , h functions of r = ‖u‖
M
.

Now let ∇ be the Levi-Civita connection.

Theorem (—, 2015; V. Oproiu and N. Papaghiuc, 2009)

For the class of functions of r :

1. ωf ,h is closed ⇐⇒ fh is a constant.

2. If ,h is integrable ⇐⇒ M has constant sectional curvature K
and f

h = c + Kr2, where c > 0 constant.

3. The metric is Kähler ⇐⇒

gf ,h =
√

c + Kr2 π∗g +
1√

c + Kr2
π?g .
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For K ≥ 0 the metric is complete:
∫ +∞
0

1
4√c+Kr2

dr = +∞.

For K < 0 we must restrict to the disk-bundle

DM =
{

u ∈ TM : ‖u‖2 < − c

K

}
.

But then ∫ √− c
K

0

1
4
√

c + Kr2
dr < +∞.

The metric is not complete.
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Notice H∇ and V are Lagrangian. Not complex...

For K = ±1, let us take isoperimetric coordinates:

g =
2

(1± |z |2)2
dz � dz .

The germ of TM is given by (z ,w). Then, how do we integrate,
i.e. what are the holomorphic charts of the new metric gf , 1

f
on

TM? ( f (r) =
√

c + Kr2 )

We may indeed prove N = 0 just using the coordinates z ,w .
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The metric g
TM

has SU(2) holonomy in case dim M = m = 2.
Non flat, Kähler Ricci-flat metric.

The metric is just U(m) holonomy in higher dimensions.

Should this be the celebrated Stenzel metric on S2 ?
But how...
Besides, it is not Ricci-flat in higher dimensions.
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Ciconia metric

Let M denote the real Riemannian manifold.
What other metrics may be defined invariantly on TM as

gS(A , ) ?

What other metrics reduce to the principal O(m)-bundle of
adapted diagonal frames?
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The equation is that the self-adjoint map A : T (TM) −→ T (TM)
must satisfy

A

[
o

o

]
=

[
o

o

]
A , ∀o ∈ O(m),

respecting canonical decomposition T (TM) = H∇ ⊕ V .

We have seen

A =



f
. . .

f
h

. . .

h


.
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The equation is that the self-adjoint map A : T (TM) −→ T (TM)
must satisfy

A

[
o

o

]
=

[
o

o

]
A , ∀o ∈ O(m),

respecting canonical decomposition T (TM) = H∇ ⊕ V .

We also have

A =



f b
. . .

. . .

f b
b h

. . .
. . .

b h


.
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For m = 2 and M orientable we have also

A =


f

f
b c
−c b

b −c
c b

h
h

 .
For m even > 2 and M almost-Hermitian we may consider
reduction to unitary group and proceed...

This is called ciconia metric, arXiv:1612.07596.

Figure: Ciconia ciconia
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By construction, ciconia metric is compatible with the almost
complex structure π∗J ⊕ π?J over TM .

—— // ——

We concentrate in dim 2.

A function a will correspond to

a =

[
b c
−c b

]
= b + ic

with b, c new R functions on TM . Note: i =
√
−1).

We have positive definite metric iff

f > 0, fh − |a|2 > 0.
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Take isothermal coordinates on U ⊂ M, g = λ dzdz .

Let ∇zdz = −Γdz . Then

∇zdz = 0, Γ =
1

λ

∂λ

∂z
.

The sectional curvature of M is given by,

R∇(∂z , ∂z)∂z = ∇z∇z∂z −∇z∇z∂z = −∂Γ

∂z
∂z = −∂

2 log λ

∂z∂z
∂z ,

K =
g(R∇(∂z , ∂z)∂z , ∂z)

g(∂z , ∂z)2
= − 2

λ

∂Γ

∂z
= − 2

λ

∂2 log λ

∂z∂z
.
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Next we consider the open subset TU = π−1(U) ⊂ TM . We have
trivialising coordinates

TU = {(z ,w) : z ∈ U , w ∈ C}.

The horizontal lift X = π∗∂z = ∂z − wΓ∂w gives place to the
(1, 0)-form

η = wΓdz + dw

such that η(X ) = 0, η(∂w ) = 1.

π∗g = λ dzdz , π?g = λ ηη

aλ dzη + aλ ηdz

are well-defined, where a : TM −→ C global.
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Finally, we have ciconia metric

gf ,a,h = λ(f dzdz + a dzη + a ηdz + h ηη),

with symplectic 2-form

ωf ,a,h =
iλ

2
(f dz ∧ dz + a dz ∧ η + a η ∧ dz + h η ∧ η).

and Hermitian structure

Hf ,a,h = λ(f dz ⊗ dz + a dz ⊗ η + a η ⊗ dz + h η ⊗ η).
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Recall C∞U ,π(C), the set of functions which are the pullback by π of
functions on M, i.e. functions which depend only of z .

A second set, C∞r2 = C∞[0,+∞[(C), where

r2 = r2(u) = g(u, u) = λ|w |2, u ∈ TM , is the set of functions ϕ
on π−1(U) which depend only of r2 and have derivatives ϕ′, ϕ′′, . . .
at 0 (n.b.: we let ϕ′ = dϕ/dr2).

Next we assume f , h take real values, f > 0 and fh − |a|2 > 0.
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Theorem
Suppose a given ciconia metric gf ,a,h is Kähler with weight
functions of any of the two types above. We have that:
(i) if f , a, h ∈ C∞M,π, then K = 0, a is holomorphic and h is
constant;
(ii) if f , h ∈ C∞M,π and a ∈ C∞r2 , then K = 0 and a, h are constant;
(iii) if f , a ∈ C∞M,π and h ∈ C∞r2 , then K = 0 and a is holomorphic;

(iv) if a, h ∈ C∞M,π and f ∈ C∞r2 , then f (r2) = f1r2 + f0, K = −2f1
h ,

h, f0, f1 are constant and a is holomorphic;
(v) if f ∈ C∞M,π and a, h ∈ C∞r2 , then K = 0 and a is constant;

(vi) if a ∈ C∞M,π and f , h ∈ C∞r2 , then K = −2f ′

h and a is
holomorphic;
(vii) if h ∈ C∞M,π and f , a ∈ C∞r2 , then f (r2) = f1r2 + f0, K = −2f1

h ,
a, h, f0, f1 are constant;
(viii) if f , a, h ∈ C∞r2 , then K = −2f ′

h and a is constant.
Reciprocally, any of the conditions above imply the metric is
Kähler.



Tangent bundle and Sasaki metric Generalised Sasaki metric Ciconia metric Calabi-Yau ciconia metric

Example:
For any open set U ⊂ C and any a ∈ C∞U holomorphic in z , the
Hermitian metric on U × C

H = (1 + |a|2)dz ⊗ dz + adz ⊗ dw + adw ⊗ dz + dw ⊗ dw

is Kähler and flat.
However, it is biholomorphic to the same U × C with canonical
metric. We take
F (z ,w) = (z ,w +

∫
a(z) dz).
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Calabi-Yau type ciconia metric

H = Hf ,a,h. The Ricci-form is the closed (1, 1)-form

ρ = i∂∂ log det H.

Proposition

We have
ρ = 2Kπ∗ω + i∂∂ log(fh − |a|2).

Proof.
By invariance of the unitary structure we may use the type-(1, 0)
frame field π∗∂z , ∂w , and therefore deduce that

det H = λ2(fh − |a|2). Combining with K = − 2
λ
∂2 log λ
∂z∂z and

π∗ω = iλ
2 dz ∧ dz , the result follows.
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Notice that

H =

λ
(
f + h|w |2|Γ|2 + 2<(awΓ)

)
dz ⊗ dz + λ(a + hwΓ)dz ⊗ dw

+λ(a + hwΓ)dw ⊗ dz + λh dw ⊗ dw

so det H = λ2(fh − |a|2) is also confirmed from the matrix of H on
the holomorphic frame ∂z , ∂w .

Let TM\M denote the complement of the zero-section.

Theorem
For any Riemann surface (M, g) and every set of smooth functions
f , a, h on TM such that f > 0 and fh − |a|2 = 1

r4
, the ciconia

metric gf ,a,h on the open manifold TM\M is Ricci-flat.
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Theorem
Let (M, g) be an oriented compact Riemann surface of constant
Gauss curvature K = −1, 0 or 1. For any ε2 > ε1 ≥ 0, let us
denote by Z = Zε1,ε2 the open manifold
Z = {u ∈ TM : ε1 < r2 < ε2} ⊂ TM where r2 = g(u, u). Given
the following conditions on a constant c0 ∈ R and on ε1, ε2, f , a, h,
the respective ciconia metrics gf ,a,h on the manifold Z are Kähler
and Ricci-flat:
(i) if K = 0, we consider Z0,+∞ with

f (r2) = f > 0 constant, a 6= 0 constant, h(r2) =
|a|2

f
+

1

fr4

and then the metric is complete.
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Theorem (cont.)

(ii) if K = 1, we let Z = Z0, 1
c0

, for any c0 > 0, and take

f (r2) =

√
1− c0r2

r
, a = 0, h(r2) =

1

r3
√

1− c0r2
;

and then the associated metric space may be completed to Z\M.
(iii) also if K = 1, we let Z = Z0,β+ , where ∀c0 ∈ R

β+ =
−c0 +

√
c2
0 + 4|a|2

2|a|2
,

and let

f =
1

r

√
−|a|2r4 − c0r2 + 1, a 6= 0 constant, h =

|a|2r4 + 1

r3
√
−|a|2r4 − c0r2 + 1

,

so that the associated metric space structure on Z\M is complete.
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Theorem (cont.)

(iv) if K = −1, we let Z = Zβ+,+∞ with β+ as above and take

f =
1

r

√
|a|2r4 + c0r2 − 1, a 6= 0 constant, h =

|a|2r4 + 1

r3
√
|a|2r4 + c0r2 − 1

,

implying the associated metric space structure on Z is complete.
Reciprocally, the above are all the Cauchy-complete solutions.
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