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Tangent bundle and Sasaki metric

Tangent bundle and Sasaki metric

7w TM — M the tangent vector bundle of a manifold M; Ty, is
the total space.

Then V = kerdm C T(Tpu), vertical subvector bundle, giving
tangent bundle of the fibres. We find

V ~1*TM.
We have a tautological vector field; ¢ is vertical, defined over

Tm by
Ev=u €V, Yue Ty.



Tangent bundle and Sasaki metric

(M, g) Riemannian of dim m. Then canonical splitting:
T(Ty)=HY @&V =1*"TM @ n*TM.

dm v vector bundle isometry HY ~ 7*TM over the manifold Tj.
T is an oriented Riemannian 2m-manifold with the Sasaki
metric

g°=ngeng.

3 a mirror endomorphism, indeed a tensor:

Bw" = wV

B:TTy—TT
M M {BWVZO

isometry HY — V.
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The structure group of manifold Ty reduces to O(m) as the
diagonal subgroup of O(m) x O(m).
Clearly O(m) € GL4(2m,R).

Remark: we may take orthonormal frames T,(Tp\0) of the form
(m=n+1)

Be; = ej;n

e : Bey = £

€0, €1, - - -, €En, @,e,,ﬂ,...,egn with {
(€l

These are the adapted frames.
(Bt¢ € HY is known as the geodesic spray.)

The structure group of Tps\0 is reducible, from the
principal O(2n + 2)-bundle of orthonormal frames to the
principal O(n)-bundle over Tys\0 of adapted frames.



Tangent bundle and Sasaki metric

Many have worked on the geometry of Ty, and that of the tangent
sphere bundles: M. T. Abbassi, G. Calvaruso, O. Kowalski,

E. Musso, V. Oproiu, N. Papaghiuc, M. Sekizawa, S. Sasaki,

L. Vanhecke ... and many collaborators.

Example: Let M = M% denote the n + 1-dimensional space-form
with metric g of constant sectional curvature +1/R? where R > 0.

Consider the radius s > 0 sphere bundle 55y — M.
The scalar curvature of the manifold Sy is

n(n+1) s°n n (n—1)n
R2 2R4 s2 '

Scal(ss Mvgs) =+
This is a constant, positive (negative) for small (large) s, though

the metric is not Einstein.



Tangent bundle and Sasaki metric

For M orientable:
We have the exterior differential system on Sy, defined by the
contact 1-form 6 = €° (due to Y. Tashiro) and the invariant

n-forms
Qag,...,Qp
where
1 g
Qf = 7 sglo)e 1/\---/\eU"—i/\e("+Un—i+1)/\_../\e(n-i-o,,)'
TS > s8(0)

UGSn

«j correspond with the generators of 1-dimensional SO(n)
representations in A"(R @ R" & R").

These yield global forms over Sy.

cf. arXiv:1112.3213 [math.DG] for the applications.
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This slide is an add from the white-board written during exposition:
For n = 1, we recognize Cartan’s structural equations:

0 =e% df = e?!, ap = el, a; = e® where ey, e; € HY and

e € V, satisfying (K =Gauss curvature):

dag =0 A aq, da; = Kag A 6.

For n =2, i.e. dim M = 3, we have new equations:
0=e df = e +e®, ag=el? a; =e® — B a, = e
where ey, e1, & € HY and e3, e, € V, such that:

dag =0 N aq, da; =20 ANas — r A ag, danggag

where r = r(u) = ric(u, u), Yu € Sy, and Réay is a 3-form,
interesting to decompose under SO(2), cf.
http://arxiv.org/abs/1504.04659, with

further applications in http://arxiv.org/abs/1604.05390.


http://arxiv.org/abs/1504.04659
http://arxiv.org/abs/1604.05390

Generalised Sasaki metric

Generalised Sasaki metric
Sasaki also introduced an almost complex structure
|=h1=B-B"

Integrable if and only if the Levi-Civita connection is flat.

More generally, given any linear connection V, we have /
integrable if and only if

TV=0 and RV =0

(P. Dombrovski).



Generalised Sasaki metric

For any f,h € C¥ (R™), we may define a metric and almost
complex structure, a Hermitian structure by

grh=Fn"g® hr'g
f h

len=1/—-B — 1/ =B".

Foh \/; \/;

wrn = grnllen 5 )

Then



Generalised Sasaki metric

For any f,h € C¥ (R™), we may define a metric and almost
complex structure, a Hermitian structure by

grh=fr'g ® hr*g
f h

len=1/—-B — 1/ =B".

i

wrn = grnllen 5 )

= \/Ele

Then

One class of weight functions comes with pullback or constant
along the fibre functions

f,he Cy(RY).



Generalised Sasaki metric

Theorem (2011)
For the class of pullback weight functions:
1. wrp is closed < TV =1 A dip, where ¢ = % log(hf)

2. ¢ p is integrable <= RY =0 and TV =1 A dy, where
i = 5 log(})

3. gr.n is Kihler &< RV =0 and TV = 1 Ady = 1 Ady, this
is, f is constant.

Note the case when V is torsion-free.



Generalised Sasaki metric

Another important class of functions on Ty:
f,h functions of r = ||ul],,.

Now let V be the Levi-Civita connection.

Theorem (—, 2015; V. Oproiu and N. Papaghiuc, 2009)
For the class of functions of r:

1. wr p is closed <= fh is a constant.

2. I¢ p is integrable <= M has constant sectional curvature K
and £ = c + Kr?, where ¢ > 0 constant.

3. The metric is Kahler <

1
=Ve+Krlrig+ ——— n*g.
&b £ c + Kr? £



Generalised Sasaki metric

.. —+o00 1
> . J—
For K > 0 the metric is complete: [)" ™ - C+Kr2dr = +o00.

For K < 0 we must restrict to the disk-bundle
c
DM = {U € T[\/] . HUH2 < —?}

But then

dr < +o0.

/\/7 1
0 Ve + Kr?

The metric is not complete.



Generalised Sasaki metric

Notice HY and V are Lagrangian. Not complex...

For K = %1, let us take isoperimetric coordinates:

2

=— ( dz.
8- W zpp @

The germ of Ty is given by (z, w). Then, how do we integrate,
i.e. what are the holomorphic charts of the new metric gr,1 On

Tm?  (f(r)=Vc+Kr?)

We may indeed prove N = 0 just using the coordinates z, w.



Generalised Sasaki metric

The metric g, has SU(2) holonomy in case dim M = m = 2.
Non flat, Kahler Ricci-flat metric.

The metric is just U(m) holonomy in higher dimensions.
Should this be the celebrated Stenzel metric on S2 ?

But how...
Besides, it is not Ricci-flat in higher dimensions.



Ciconia metric

Ciconia metric

Let M denote the real Riemannian manifold.
What other metrics may be defined invariantly on Ty, as

g°(A, ) 7

What other metrics reduce to the principal O(m)-bundle of
adapted diagonal frames?



Ciconia metric

The equation is that the self-adjoint map A: T(Ty) — T(Tm)
must satisfy

A[OO}:[OO}A, Yo € O(m),

respecting canonical decomposition T(Ty) = HY @ V.



Ciconia metric

The equation is that the self-adjoint map A: T(Ty) — T(Tm)
must satisfy

A[O }:[O }A, Yo € O(m),
o o
respecting canonical decomposition T(Ty) = HY @ V.

We have seen




Ciconia metric

The equation is that the self-adjoint map A: T(Ty) — T(Tm)
must satisfy

A[O }:[O }A, Vo € O(m),
o o
respecting canonical decomposition T(Ty) = HY @ V.

We also have




Ciconia metric

For m = 2 and M orientable we have also

f b ¢
f —c b

A= b —c h
c b h

For m even > 2 and M almost-Hermitian we may consider
reduction to unitary group and proceed...

This is called ciconia metric, arXiv:1612.07596.
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For m = 2 and M orientable we have also

f b ¢
f —c b

A= b —c h
c b h

For m even > 2 and M almost-Hermitian we may consider
reduction to unitary group and proceed...

This is called ciconia metric, arXiv:1612.07596.

Figure: Ciconia ciconia



Ciconia metric

By construction, ciconia metric is compatible with the almost
complex structure 7*J @ 7*J over Ty.

— ) —
We concentrate in dim 2.

A function a will correspond to

b ¢ )
a= [—c b] =b+ic

with b, ¢ new R functions on Ty. Note: i = /—1).
We have positive definite metric iff

f>0, fh—la®>>0.



Ciconia metric

Take isothermal coordinateson Y C M, g = Adzdz.
Let V,dz = —I'dz. Then

C10A

Jdz=0 =222
Vzdz A0z

The sectional curvature of M is given by,

5 V.V vakv. ar 0% log A
v _ a0 o -  Plog A
R (9= 020 2Vz0; 2Vz0z azaz 020z

g(RY (9;,02)0z, 0z) 200 2 8% log A

K = _ —_——— = — .
g(9;,07)? \ 0z \ 0z0z

0z,




Ciconia metric

Next we consider the open subset T;y = 7~ (i) C Tp. We have
trivialising coordinates

Tu={(z,w): zel, weC}.

The horizontal lift X = n*9, = 9, — wl'9,, gives place to the
(1,0)-form
n=wldz+dw

such that n(X) =0, n(dw) = 1.

g = Adzdz, g = Ann
aAdzn +aindz

are well-defined, where a: Ty — C global.



Ciconia metric

Finally, we have ciconia metric
gfah=Afdzdz + adz+andz + hny),
with symplectic 2-form
i _ _ _ _
Wf ah = g(fdz/\dz + adzA+anAdz + hnAR).

and Hermitian structure

Hf,a,h:)\(de(X)df + adz@n+an®dz + h77®ﬁ)-



Ciconia metric

Recall C77 (C), the set of functions which are the pullback by 7 of
functions on M, i.e. functions which depend only of z.

A second set, C% = C[O&Jroo[((C), where

r> = r?(u) = g(u,u) = \wl|?, u € Ty, is the set of functions ¢
on m~1(U) which depend only of r? and have derivatives ¢, ", ...
at 0 (n.b.: we let ¢/ = dip/dr?).

Next we assume f, h take real values, f > 0 and fh — |a|?> > 0.



Ciconia metric

Theorem

Suppose a given ciconia metric gr 5 is Kahler with weight
functions of any of the two types above. We have that:

(i) if f,a,h € Cj ., then K =0, a is holomorphic and h is
constant;

(i) if f,h € Cf; . and a € C%, then K = 0 and a, h are constant;
(i) if f,a € COO7r and h € C;’g, then K = 0 and a is holomorphic;
(iv) ifa,h € C35 and f € C, then f(r?) = fir? + fy, K = -2
h, fo, fi are constant and a is holomorphic;

(v) iff € Cyy; . and a,h € C%, then K =0 and a is constant;
(vi) ifa€ Cfy . and f, h € C%, then K = *T and a is
holomorphic;

(vii) if h € C5 . and f,a € C%, then f(r?) = fir? + fo, K = =21,
a, h, fy, f1 are constant;

viii) if f,a, h € then K = —<- and a is constant.

( ) ff,a,he C%, then K = h d

Reciprocally, any of the conditions above imply the metric is
Kabhler.

i



Ciconia metric

Example:
For any open set f C C and any a € C; holomorphic in z, the
Hermitian metricon U x C

H=(1+a*)dz ®dz + adz ® dW + adw ® dZ + dw @ dw

is Kahler and flat.
However, it is biholomorphic to the same I/ x C with canonical
metric. We take

F(z,w) = (z,w+ [ a(z)dz).



Calabi-Yau ciconia metric

Calabi-Yau type ciconia metric

H = Hf 5. The Ricci-form is the closed (1,1)-form

p = i00log det H.

Proposition

We have
p = 2K7*w + i00 log(fh — |a|?).

Proof.

By invariance of the unitary structure we may use the type-(1,0)
frame field 7*0,, d,,, and therefore deduce that

det H = \?(fh — |a]?). Combining with K = —%8;55?’\ and

™w = %dz A dz, the result follows. ]




Calabi-Yau ciconia metric

Notice that

H =
A(f + hlw[?|T? + 2R(awl)) dz ® dz + A(a + hwl) dz @ dw
+A(@+ hwl) dw ® dz + Ahdw @ dw
so det H = A\%(fh — |a|?) is also confirmed from the matrix of H on
the holomorphic frame 9,,0,,.
Let Tp/\M denote the complement of the zero-section.

Theorem

For any Riemann surface (M, g) and every set of smooth functions
f,a,h on Ty such that f > 0 and fh — |a|?> = 714 the ciconia
metric g¢ 5 on the open manifold Ty)\M is Ricci-flat.



Calabi-Yau ciconia metric

Theorem
Let (M, g) be an oriented compact Riemann surface of constant
Gauss curvature K = —1,0 or 1. For any e; > €1 > 0, let us

denote by Z = Z, ., the open manifold
Z={ueTm: &1 <r’<e} C Ty where r* = g(u,u). Given
the following conditions on a constant cy € R and on €1,¢€2,f, a, h,
the respective ciconia metrics gr 5 , on the manifold Z are Kahler
and Ricci-flat:
(i) if K =0, we consider Zy o with

a* | 1

f(r?) = f > 0 constant, a# 0 constant, h(r?) = —~ + r

and then the metric is complete.
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Theorem (cont.)
(i) if K =1, we let Z = Z, 1, for any cg > 0, and take

=

1—cor? 1
f(rAy=Y—"" a=0, h(r)= ————;
() = Y= ()= s

and then the associated metric space may be completed to Z\M.
(iii) also if K =1, we let Z = Zy g, , where Vg € R

—co+ /g +4]al?

l8+: 2’3‘2 )
and let
1 2441
fzf\/—|a|2r4_c0r2_|_17 a # 0 constant, h= ja*r® +
r

r3/—|al?r* — cor?

so that the associated metric space structure on Z\M is complete.
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Theorem (cont.)
(iv) if K = —1, we let Z = Zg, o~ with B4 as above and take

la]?r* 41

1
f= f\/ al’r* + c¢r? —1, a#0constant, h=
r 2 7 r3\/|a|2r4+c0r2—1

implying the associated metric space structure on Z is complete.
Reciprocally, the above are all the Cauchy-complete solutions.
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