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Introduction and Motivation

We came upon a blogpost by J. Baez called ”Classical
Mechanics versus Thermodynamics”. There J. Baez compares
Maxwell Relations with Hamilton’s equations in the following
way.

Let’s say (q, p) describe the coordinate and momentum of a
particle, and H(q, p) is its energy; then Hamilton’s equations
give dq

dt = ∂H
∂p and dp

dt = −∂H
∂q

He then proposes to write the Hamilton equations in the weird

way ∂q
∂t

∣∣∣
p

= ∂H
∂p

∣∣∣
t

and ∂p
∂t

∣∣∣
q

= − ∂H
∂q

∣∣∣
t

On the other hand, consider the following Maxwell relations
for a thermodynamic system described by entropy S ,
temperature T , volume V and pressure P: ∂S

∂V

∣∣
T

= ∂P
∂T

∣∣
V

and ∂T
∂V

∣∣
S

= − ∂P
∂S

∣∣
V

We see the strong resemblance between these sets of relations
if we make the substitutions q → S , p → T , t → V and
H → P.
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Let’s say we have a function U on a plane, with coordinates S
and V , so that dU = TdS − PdV .

Then this is just another way of writing T = ∂U
∂S

∣∣
V

and

−P = ∂U
∂V

∣∣
S

.

Because mixed partial derivatives commute, ∂2U
∂S∂V = ∂2U

∂V∂S ,

we arrive at one of Maxwell’s relations: ∂T
∂V

∣∣
S

= − ∂P
∂S

∣∣
V

The other relation can be obtained from the integrability
condition of the function F = U − TS . In fact,
dF = −SdT − PdV so S = − ∂F

∂T

∣∣
V

and P = − ∂F
∂V

∣∣
T

. Then

from Schwarz theorem, ∂S
∂V

∣∣
T

= ∂P
∂T

∣∣
V

.

The same effect can be achieved using Hamilton’s principal
function S(q, t). We have dS = pdq − Hdt for some

functions p and H, so that p = ∂S
∂q

∣∣∣
t

and H = − ∂S
∂t

∣∣
p

Finally, second derivatives of S give the Hamilton equation
∂p
∂t

∣∣∣
q

= − ∂H
∂q

∣∣∣
t
. The other relation can be obtained by

considering the function S − qp.
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The main idea was to explore a duality between
thermodynamics and mechanics by writing integrability
conditions between thermodynamic variables as Poisson
brackets between corresponding quantities in some phase
space.

On a more geometric standpoint [Herman 73], one assigns a
contact structure to the thermodynamic phase space, such
that the Legendre submanifolds describe equilibrium states.
One then defines a Riemannian metric on the phase space
which is compatible with the contact structure. The contact
structure is responsible for encoding the first law, while the
metric structure encodes the second law.
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General Framework

Consider the equations of state of a single thermodynamic
system in the energy representation:

T = T (S ,V ,N1, ...,Nk)

P = P (S ,V ,N1, ...,Nk)

µj = µj (S ,V ,N1, ...,Nk)

And a dictionary between thermodynamical variables and
coordinates (q, p) in phase-space

q1 = S , q2 = V , qj = Nj , p1 = T , p2 = −P, pj = µj , j = 3, ..., n.

One defines the tautological one-form θ = pidq
i , the

canonical symplectic form ω = dθ, and Poisson brackets:

{f , g} =
n∑

i=1

∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
,
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General Framework

The equations of state become primary constraints

pi =
∂u

∂qi
(q)⇔ φi (q, p) = pi −

∂u

∂qi
(q) , i = 1, ..., n .

On the constraint surface φi = 0, θ is the differential internal
energy du:

θ|φ=0 =
n∑

i=1

pi (q) dqi = TdS − PdV +
k∑

i=1

µidNi ≡ du .

Given two states in the thermodynamic configuration space
any trajectory connecting them must be a valid
thermodynamic path, there are no physical degrees of freedom
in the corresponding mechanical analog.

Rodrigo Fresneda (UFABC) A Hamiltonian Approach to Thermodynamics



General Framework

The equations of state become primary constraints

pi =
∂u

∂qi
(q)⇔ φi (q, p) = pi −

∂u

∂qi
(q) , i = 1, ..., n .

On the constraint surface φi = 0, θ is the differential internal
energy du:

θ|φ=0 =
n∑

i=1

pi (q) dqi = TdS − PdV +
k∑

i=1

µidNi ≡ du .

Given two states in the thermodynamic configuration space
any trajectory connecting them must be a valid
thermodynamic path, there are no physical degrees of freedom
in the corresponding mechanical analog.

Rodrigo Fresneda (UFABC) A Hamiltonian Approach to Thermodynamics



General Framework

The equations of state become primary constraints

pi =
∂u

∂qi
(q)⇔ φi (q, p) = pi −

∂u

∂qi
(q) , i = 1, ..., n .

On the constraint surface φi = 0, θ is the differential internal
energy du:

θ|φ=0 =
n∑

i=1

pi (q) dqi = TdS − PdV +
k∑

i=1

µidNi ≡ du .

Given two states in the thermodynamic configuration space
any trajectory connecting them must be a valid
thermodynamic path, there are no physical degrees of freedom
in the corresponding mechanical analog.

Rodrigo Fresneda (UFABC) A Hamiltonian Approach to Thermodynamics



Lagrange function and constraint structure

The Lagrange function is first degree homogenous in the
velocities L (q, λq̇) = λL (q, q̇).

The Hamiltonian is a linear combination of constraints,
H =

∑n
i=1 λ

iφi

Let the total set of irreducible constraints {Φi}ni=1 of a
Hamiltonian system be time-independent primary first-class
constraints, where 2n is the dimension of the symplectic
manifold. Then the Lagrange function is a total derivative.

Let {Φi}ki=1 be a set of irreducible primary time-independent
first-class constraints, and {χi}pi=1 a set of second-class
constraints, such that n = k + p/2. Then the Lagrange
function is a total derivative.
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Legendre transformations

Legendre transformations between thermodynamic potentials
are canonical transformations

For instance, consider
(
q1, p1

)
7→ (q′, p′) =

(
−p1, q

1
)

θ′ = p′dq′ +
n∑

i=2

piq
i .

The difference θ − θ′ = d
(
q1p1

)
is a closed form.

On the constraint surface θ′|φ=0 = d (U − TS) is the
Helmoltz potential F (T ,V ,N1, ...,Nk) = U − TS .

This is also expected: the thermodynamic description does
not depend on the potential, so the mechanic description
cannot either.
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The Ideal Gas

Equations of state in specific quantities are

T (u, v) =
2

3
u , P (T , v) =

T

v
,

Consider the dictionary (τ, π) = (s,T ), (q, p) = (v ,−P) and
resulting primary constraints in the phase-space T ∗R4 with
symplectic form ω = dp ∧ dq + dπ ∧ dτ

φ = p + Ae
2
3
τq−

5
3 , H = π − Ae

2
3
τq−

2
3 .

The Hamiltonian is Hc = σH + λφ and conservation of the
constraints in time provide the fundamental equation

u (s, v) =
3

2

A

v2/3
exp

(
2

3
s

)
.

The Lagrange function for the ideal gas is
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van der Waals gas

By means of the canonical transformation η 7→ η′

q = q′ − b , p = p′ − aq′−2 , π = π′ , τ = τ ′,

The primary constraints of the ideal gas become

H ′
(
η′
)

= H
(
η
(
η′
))

= π′ − Ae
2
3
τ ′(q′ − b)−

2
3 ,

φ′
(
η′
)

= φ
(
η
(
η′
))

= p′ − a

q′2
+

Ae
2
3
τ ′

(q′ − b)
5
3

.

Or, in thermodynamic variables,

T (u, v) =
2

3

(
u +

a

v

)
, P (T , v) =

T

v − b
− a

v2
.

And the fundamental equation follows from du − du′ = ad
(
q′−1

)
u′ =

3

2

Ae
2
3 τ

′

(q′ − b)2/3
− a

q′
=

3

2

A

(v − b)2/3
exp

(
2

3
s

)
− a

v
.
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Clausius gas

Consider the canonical transformation from the ideal gas

τ̃ = τ + b , π̃ = π − ap−1

(τ + b − c)2
, q̃ = q +

ap−2

τ + b − c
, p̃ = p .

The primary constraints are

H̃ = p̃ + (τ̃ − b)

[
π̃ +

a

p̃ (τ̃ − c)2

]
φ̃ = π̃ +

ap̃−1

(τ̃ − c)2
+

A

(τ̃ − b)
5
3

exp

[
2

3

(
q̃ − ap̃−2

τ̃ − c

)]

Taking into account dũ = du′ + d
(

1
p̃

2a
(τ̃−c)

)
, we get the internal

energy and Helmoltz free energy f = ũ − Ts

ũ = u +
1

p̃

2a

(τ̃ − c)
=

3

2
T +

1

T

2a

(v − c)
.

f =
a

T (v − c)
+

3

2
T

[
1− ln

T

A
− ln (v − b)

2
3

]
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Schwarzschild-anti-de Sitter back hole: minimal
thermodynamics

The SAdS metric is the spherically symmetric solution of the
Einstein equations in vacuum and asymptotically anti-de Sitter:

ds2 = −(1− 2M

r
− Λ

3
r2)dt2 + (1− 2M

r
− Λ

3
r2)−1dr2 + r2dΩ2.

Its thermodynamics can be minimally described by its mass M and
surface gravity κ, with Killing horizon area A = 4πr2

+

2M = r+

(
1− Λ

3
r2
+

)
, κ =

1

2

(
1

r+
− Λr+

)

One defines U
.

= M, S
.

= A/4 and T
.

= κ/2π. Then

3

2
U − TS =

1

2π
(πS)

1
2 , dM =

κ

8π
dA⇒ dU = TdS .

However: no homogeneity! no Euler relation!
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Schwarzschild-anti-de Sitter back hole:extension

Consider Λ a thermodynamic variable [Teitelboim 85]

4-D Smarr formula M = κA
4π −

θΛ
4π , where θ = −4

3πr
3
+.

θ ∼ volume, then Λ ∼ pressure and M ∼ enthalpy [Kastor 09]

In fact, ∂H
∂P

∣∣
S

= V .

However, from U = H − PV one has

κ

2π
= T 6= ∂U

∂S

So if one treats Λ as a thermodynamic variable, the physical
interpretation of its conjugate is not clear.
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Hamiltonian approach to SAdS black hole thermo

The one-dimensional thermodynamics has natural coordinates
q = S/π and p = πT = κ/2

The equation of state gives the constraint

φ = p − 1
4q
− 1

2 − 1
4 Λq

1
2 .

And dM = $dq|φ=0, where $ = p − 1
6q

3
2
∂Λ
∂q and

(q, p) 7→ (q, $) is canonical

A consistent non-minimal description can be obtained by
extending phase space β = $dq + ξdτ such that Λ = Λ(q, τ)

and dM = β|φ=χ=0 where χ = ξ + 1
6q

3
2
∂Λ
∂τ .

The constraints are first-class and thus there are no physical
degrees of freedom.
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SAdS black hole: some results

There is a canonical transformation
($, q; ξ, τ) 7→ ($′, q′; ξ, τ) generated by FΛ = −1

6q
3
2 Λ +$′q

such that M ′ = M − EΛ , EΛ = θ Λ
8π , is the Schwarzschild

(SAdS with Λ = 0) black hole mass.

Λ parametrizes a family of thermodynamic systems: the case
Λ = 8πτ corresponds to the introduction of volume.

The Smarr formula for SAdS is the image of Euler relation for
the Schwarzschild solution by the canonical transformation
generated by FΛ.

By imposing homogeneity of the equations of state in the
extended phase space, we fix Λ to be

Λ = −
[(

4S
BD−2

)a
Pb/c

] 2
2−D

, a + b = 1 , 2b 6= (2− D) c

Thermodynamic instability for a ∈ [1/2, acrit ], where
acrit = D−1

2 .
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Conclusions and perspectives

We are able to provide a Lagrangian description, which is a
total derivative because of the lack of mechanical degrees of
freedom.

The primitive function of the Lagrangian furnishes a
fundamental equation for the thermodynamic description.

We are able to easily obtain the solutions of more difficult
problems (such as Clausius gas or SAdS black hole) from a
much simpler system (ideal gas or Schwarzschild).

It is not clear what are phase-transitions in this context.

We have not investigated a way to implement the second law
from a geometric standpoint.

The Dirac formalism for constrained systems is also the basis
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obrigado!

Figure: UFABC Campus in Santo André, São Paulo

Permanent positions open: 5 vacancies in Applied Math and 4
vacancies in Pure Math.

Inscriptions up until 01/Nov/17. (http://www.ufabc.edu.br)
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