Higher structures in Deformation Quantization

Ricardo Campos

Paris 13

September, 2017

Ricardo Campos (Paris 13)

Deformation Quantization

September, 2017 1 / 19

Definition

Let *M* be a smooth manifold. A star product on *M* is an $\mathbb{R}[\![\hbar]\!]$ -linear product \star on $C^{\infty}(M)[\![\hbar]\!]$ such that:

- * is associative: $f \star (g \star h) = (f \star g) \star h$,
- If or f, g ∈ C[∞](M) ⊂ C[∞](M) [[h]], f ★ g = f ⋅ g + ∑_{k=1}[∞] h^kB_k(f,g) for some bidifferential operators B_k.

$$1 \star f = f \star 1 = f, \forall C^{\infty}(M)[[\hbar]].$$

Definition

Let *M* be a smooth manifold. A star product on *M* is an $\mathbb{R}[\![\hbar]\!]$ -linear product \star on $C^{\infty}(M)[\![\hbar]\!]$ such that:

- * is associative: $f \star (g \star h) = (f \star g) \star h$,
- If or f, g ∈ C[∞](M) ⊂ C[∞](M)[[h]], f ★ g = f ⋅ g + ∑_{k=1}[∞] h^kB_k(f,g) for some bidifferential operators B_k.

$$1 \star f = f \star 1 = f, \forall C^{\infty}(M)[[\hbar]].$$

Given a star product \star one can define a bracket $\{f,g\}_{\star} = B_1(f,g) - B_1(g,f)$ for $f,g \in C^{\infty}(M)$ and it follows from the properties above that such bracket defines a Poisson structure on M.

Definition

Let $(M, \{-, -\})$ be a Poisson manifold. A (formal deformation) quantization of M is a star product \star such that $\{-, -\}_{\star} = \{-, -\}$.

Ricardo Campos (Paris 13)

Image: A matched block of the second seco

Question

Can every Poisson manifold be quantized? If so, can one do it in a "canonical" way using explicit formulas?

Question

Can every Poisson manifold be quantized? If so, can one do it in a "canonical" way using explicit formulas?

The crucial object of study is the deformation complex where star products naturally live

This corresponds to the Lie algebra of formal multidifferential operators

 $\star \in D_{\mathrm{poly}}[\![\hbar]\!](M)$

Multidifferential operators

The space of multidifferential operators $D^{\bullet}_{\text{poly}}(M)$ is the chain complex of operators given by partial derivatives:

$$D^n_{\mathrm{poly}}(M) = \left\{ D: C^{\infty}(M)^{\otimes n} \to C^{\infty}(M) \middle| D \stackrel{\mathsf{locally}}{=} \sum f \frac{\partial}{\partial x_{I_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{I_n}} \right\},\$$

Multidifferential operators

The space of multidifferential operators $D^{\bullet}_{\text{poly}}(M)$ is the chain complex of operators given by partial derivatives:

$$D^n_{\mathrm{poly}}(M) = \left\{ D: C^{\infty}(M)^{\otimes n} \to C^{\infty}(M) \middle| D \stackrel{\mathsf{locally}}{=} \sum f \frac{\partial}{\partial x_{I_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{I_n}} \right\},\$$

 $D^{\bullet}_{\text{poly}}(M) \simeq CH(C^{\infty}(M)) = \text{Hochschild complex of } C^{\infty}(M)$

$$\begin{split} D \in D^2_{\text{poly}}(M) & \rightsquigarrow d(D)(f_1, f_2, f_3) = \\ & = f_1 D(f_2, f_3) - D(f_1 f_2, f_3) + D(f_1, f_2 f_3) - D(f_1, f_2) f_3. \end{split}$$

Multidifferential operators

The space of multidifferential operators $D^{\bullet}_{\text{poly}}(M)$ is the chain complex of operators given by partial derivatives:

$$D^n_{\mathrm{poly}}(M) = \left\{ D: C^{\infty}(M)^{\otimes n} \to C^{\infty}(M) \middle| D \stackrel{\mathsf{locally}}{=} \sum f \frac{\partial}{\partial x_{I_1}} \otimes \cdots \otimes \frac{\partial}{\partial x_{I_n}} \right\},\$$

 $D^{\bullet}_{\text{poly}}(M) \simeq CH(C^{\infty}(M)) = \text{Hochschild complex of } C^{\infty}(M)$

$$D \in D^2_{\text{poly}}(M) \rightsquigarrow d(D)(f_1, f_2, f_3) = \\ = f_1 D(f_2, f_3) - D(f_1 f_2, f_3) + D(f_1, f_2 f_3) - D(f_1, f_2) f_3.$$

 D_{poly} is actually a differential graded Lie algebra: $[D, D'] = D \circ D' - D' \circ D.$

* associative
$$\Leftrightarrow d \star + \frac{1}{2} [\star, \star] = 0 \Leftrightarrow \star \in \mathsf{MC}(D_{\text{poly}}[\![\hbar]\!])$$

The data of a Poisson structure on M is encoded by the Poisson bivector $\Pi \in \bigwedge^2 T_M$.

The data of a Poisson structure on M is encoded by the Poisson bivector $\Pi \in \bigwedge^2 T_M$.

The space of multivector fields on *M* is $T^d_{\text{poly}}(M) = \Gamma(M, \bigwedge^d T_M)$.

•Lie bracket = Schouten-Nijenhuis bracket: Extend Lie bracket on $T_{poly}^1 = \Gamma(T_M)$ by $[X, Y \land Z] = [X, Y] \land Z \pm Y \land [X, Z].$

 $\Pi \text{ Poisson} \Leftrightarrow [\Pi, \Pi] = 0 \Leftrightarrow \Pi \in \mathsf{MC}(T_{\text{poly}})$

Theorem (Kontsevich Formality, 1997)

There exists an L_{∞} (Lie_{∞}/Lie up to homotopy) map

$$\mathcal{U}{:}\, T_{\mathrm{poly}}(M) \to D_{\mathrm{poly}}(M)$$

which is a quasi-isomorphism (inducing an isomorphism in homology).

Theorem (Kontsevich Formality, 1997)

There exists an L_{∞} (Lie_{∞}/Lie up to homotopy) map

$$\mathcal{U}:T_{\mathrm{poly}}(M)\to D_{\mathrm{poly}}(M)$$

which is a quasi-isomorphism (inducing an isomorphism in homology).

Corollary

There is a bijection

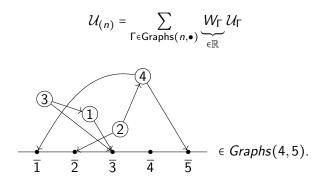
 $\mathsf{MC}(\mathcal{T}_{\mathrm{poly}}[\![\hbar]\!])/\textit{gauge equiv.} \to \mathsf{MC}(\mathcal{D}_{\mathrm{poly}}[\![\hbar]\!])/\textit{gauge equiv.}$

$$\Pi \mapsto \sum_{n \ge 1} \frac{1}{n!} \mathcal{U}_{(n)}(\underbrace{\Pi, \dots, \Pi}_{n \text{ times}})$$

Image: Image:

How does the morphism look like?

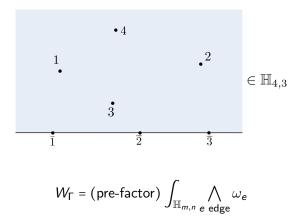
Remarkably, Kontsevich's morphism can be explicitly written in \mathbb{R}^{D} .



$$U_{\mathsf{\Gamma}}:(T_{\mathrm{poly}}(\mathbb{R}^D))^{\wedge 4} \to D^5_{\mathrm{poly}}(\mathbb{R}^D)$$

Configuration spaces

Let $H = \{(x, y) \in \mathbb{R}^2 | y \ge 0\}$ be the upper half plane. We consider its configuration space $\mathbb{H}_{m,n} = Conf_{m,n}(H)$ of *m* non-overlapping points in the bulk and *n* non-overlapping points at the boundary.



Additional structure

A BV algebra A is a cochain complex with three operations:

- The product $\wedge -$ of degree 0
- \bullet The Lie bracket [-,-] of degree -1
- The BV operator $\Delta(-)$ of degree -1 satisfying relations such as

$$[-,-] \text{ is a Lie bracket,} x_1 \land x_2 = x_2 \land x_1, (x_1 \land x_2) \land x_3 = x_1 \land (x_2 \land x_3), \Delta \circ \Delta = 0, [x_1, x_2 \land x_3] = [x_1, x_2] \land x_3 + x_2 \land [x_1, x_3], [x_1, x_2] = \Delta(x_1 \land x_2) - \Delta(x_1) \land x_2 - x_1 \land \Delta(x_2).$$

for $\deg(x_1) = \deg(x_2) = 0$.

Additional structure - Multivector fields

Let (M, vol) be an oriented manifold. $T_{poly}(M)$ is a BV algebra. •BV operator:

$$\Delta: T^k_{\mathrm{poly}}(M) \stackrel{\mathsf{vol}(\bullet)}{\to} \Omega^{D-k}(M) \stackrel{d_{d_R}}{\to} \Omega^{D-k+1}(M) \to T^{k-1}_{\mathrm{poly}}(M)$$

Additional structure - Multivector fields

Let (M, vol) be an oriented manifold. $T_{poly}(M)$ is a BV algebra. •BV operator:

$$\Delta: \mathcal{T}^k_{\mathrm{poly}}(M) \stackrel{\mathsf{vol}(\bullet)}{\to} \Omega^{D-k}(M) \stackrel{d_{dR}}{\to} \Omega^{D-k+1}(M) \to \mathcal{T}^{k-1}_{\mathrm{poly}}(M)$$

Question

Can Kontsevich's map be made to preserve the BV structure?

Additional structure - Multivector fields

Let (M, vol) be an oriented manifold. $T_{poly}(M)$ is a BV algebra. •BV operator:

$$\Delta: T^k_{\mathrm{poly}}(M) \stackrel{\mathsf{vol}(\bullet)}{\to} \Omega^{D-k}(M) \stackrel{d_{dR}}{\to} \Omega^{D-k+1}(M) \to T^{k-1}_{\mathrm{poly}}(M)$$

Question

Can Kontsevich's map be made to preserve the BV structure?

Candidates for BV-algebra structure on D_{poly} : • $D \land D' = [f_1, \ldots, f_n \mapsto D(f_1, \ldots, f_k) \cdot D'(f_{k+1}, \ldots, f_n)],$ • Δ Connes' B operator.

 D_{poly} is **not** a BV-algebra, but these operations induce a BV-algebra structure on cohomology $H(D_{\text{poly}})$.

Ricardo Campos (Paris 13)

Deformation Quantization

Proposition

There is a BV_{∞} structure on $D_{poly}(M)$ inducing this structure in cohomology.

Theorem (C., 2016)

There exists a BV_{∞} quasi-isomorphism $T_{poly}(M) \rightarrow D_{poly}(M)$ extending Kontsevich's.

Star products

Corollary

The set of gauge equivalence classes of closed star products is isomorphic to the set of gauge equivalence classes of formal unimodular Poisson structures.

Star products

Corollary

The set of gauge equivalence classes of closed star products is isomorphic to the set of gauge equivalence classes of formal unimodular Poisson structures.

String Topology

Object of interest: free loop space $LM = Map(S^1, M)$. BV Structure on

$$H(LM) = HH(\Omega(M)) = H(D_{\text{poly}}(\Pi TM))$$

A closer look into Kontsevich's proof

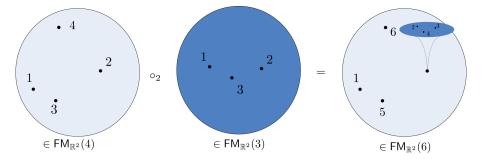
$$W_{\Gamma} = (\text{pre-factor}) \int_{\mathbb{H}_{m,n}} \bigwedge_{e \text{ edge}} \omega_e$$

Consider the Fulton-MacPherson compactification of configuration spaces of points in $\ensuremath{\mathbb{R}}^2$

$$\mathsf{FM}_{\mathbb{R}^2}(n) = \overline{Conf_n(\mathbb{R}^2)}$$

Consider the Fulton-MacPherson compactification of configuration spaces of points in \mathbb{R}^2 forms an operad, i.e. there are natural "insertion" operations

$$\circ_i \colon \mathsf{FM}_{\mathbb{R}^2}(m) \times \mathsf{FM}_{\mathbb{R}^2}(n) \to \mathsf{FM}_{\mathbb{R}^2}(m+n-1), i = 1, \dots, m$$



 $H_{\bullet}(X \times Y) = H_{\bullet}(X) \otimes H_{\bullet}(Y) \Rightarrow H_{\bullet}(\text{Top. operad}) = \text{Alg. operad}.$

 $H(FM_{\mathbb{R}^2})$ = Ger, the operad governing Gerstenhaber algebra structures.

$$\begin{array}{cccc} \mathsf{Lie} & \subset & \mathsf{Ger} & \subset & \mathsf{BV} \\ [-,-] & - \wedge - & \Delta \end{array}$$

イロト イポト イヨト イヨト 二日

 $H_{\bullet}(X \times Y) = H_{\bullet}(X) \otimes H_{\bullet}(Y) \Rightarrow H_{\bullet}(\text{Top. operad}) = \text{Alg. operad}.$

 $H(FM_{\mathbb{R}^2})$ = Ger, the operad governing Gerstenhaber algebra structures.

$$\begin{array}{rcl} \mathsf{Lie} & \subset & \mathsf{Ger} & \subset & \mathsf{BV} \\ [-,-] & -\wedge - & \Delta \end{array}$$

Kontsevich's Formality Theorem can be expressed in terms of the natural map of operads

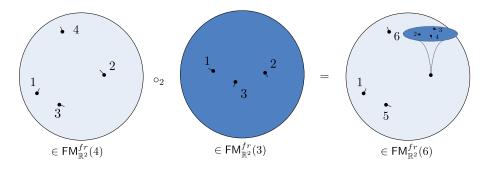
$$\mathsf{Lie}_{\infty} \to Chains(\mathsf{FM}_{\mathbb{R}^2})$$

sending the k-th bracket to the fundamental chain of $FM_{\mathbb{R}^2}(k)$.

Configuration spaces - The Fulton-MacPherson operad

The framed Fulton-MacPherson operad $\mathsf{FM}^{fr}_{\mathbb{R}^2}$ is given by

$$\mathsf{FM}^{fr}_{\mathbb{R}^2}(n) = (S^1)^{\times n} \ltimes \overline{Conf_n(\mathbb{R}^2)}$$



$$H_{\bullet}(\mathsf{FM}^{fr}_{\mathbb{R}^2}) = \mathsf{BV}.$$

Proposition

There is a quasi-isomorphism of operads $BV_{\infty} \rightarrow Chains(FM_{\mathbb{R}^2}^{fr})$

3

$$H_{\bullet}(\mathsf{FM}^{fr}_{\mathbb{R}^2}) = \mathsf{BV}.$$

Proposition

There is a quasi-isomorphism of operads $BV_{\infty} \rightarrow Chains(FM_{\mathbb{R}^2}^{fr})$

This $+\ \text{expressing}$ the spaces of graphs in terms of operads $+\ \text{relating}$ all objects by appropriate maps yield

Theorem

Let *M* be an orientable manifolds. There exists a BV_{∞} quasi-isomorphism $T_{poly}(M) \rightarrow D_{poly}(M)$ extending Kontsevich's.

Thank you for your attention

References:

BV Formality - R. Campos- Advances in Mathematics 306, (2016) *Operadic Torsors* - R. Campos & T. Willwacher- Journal of Algebra 458, (2016)

