Higher structures in Deformation Quantization

Ricardo Campos

Paris 13
September, 2017

A brief overview of deformation quantization

Definition

Let M be a smooth manifold. A star product on M is an $\mathbb{R} \llbracket \hbar \rrbracket$-linear product * on $C^{\infty}(M) \llbracket \hbar \rrbracket$ such that:
(1) \star is associative: $f \star(g \star h)=(f \star g) \star h$,
(2) for $f, g \in C^{\infty}(M) \subset C^{\infty}(M) \llbracket \hbar \rrbracket, f \star g=f \cdot g+\sum_{k=1}^{\infty} \hbar^{k} B_{k}(f, g)$ for some bidifferential operators B_{k}.
(3) $1 \star f=f \star 1=f, \forall C^{\infty}(M) \llbracket \hbar \rrbracket$.

A brief overview of deformation quantization

Definition

Let M be a smooth manifold. A star product on M is an $\mathbb{R} \llbracket \hbar \rrbracket$-linear product * on $C^{\infty}(M) \llbracket \hbar \rrbracket$ such that:
(1) \star is associative: $f \star(g \star h)=(f \star g) \star h$,
(2) for $f, g \in C^{\infty}(M) \subset C^{\infty}(M) \llbracket \hbar \rrbracket, f \star g=f \cdot g+\sum_{k=1}^{\infty} \hbar^{k} B_{k}(f, g)$ for some bidifferential operators B_{k}.
(3) $1 \star f=f \star 1=f, \forall C^{\infty}(M) \llbracket \hbar \rrbracket$.

Given a star product \star one can define a bracket $\{f, g\}_{\star}=B_{1}(f, g)-B_{1}(g, f)$ for $f, g \in C^{\infty}(M)$ and it follows from the properties above that such bracket defines a Poisson structure on M.

Definition

Let $(M,\{-,-\})$ be a Poisson manifold. A (formal deformation) quantization of M is a star product \star such that $\{-,-\}_{\star}=\{-,-\}$.

Deformation Quantization

Question

Can every Poisson manifold be quantized? If so, can one do it in a "canonical" way using explicit formulas?

Deformation Quantization

Question

Can every Poisson manifold be quantized? If so, can one do it in a "canonical" way using explicit formulas?

The crucial object of study is the deformation complex where star products naturally live
This corresponds to the Lie algebra of formal multidifferential operators

$$
\star \in D_{\text {poly }} \llbracket \hbar \rrbracket(M)
$$

Multidifferential operators

The space of multidifferential operators $D_{\text {poly }}^{\bullet}(M)$ is the chain complex of operators given by partial derivatives:

$$
D_{\text {poly }}^{n}(M)=\left\{D: C^{\infty}(M)^{\otimes n} \rightarrow C^{\infty}(M) \left\lvert\, D \stackrel{\text { locally }}{=} \sum f \frac{\partial}{\partial x_{l_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{l_{n}}}\right.\right\}
$$

Multidifferential operators

The space of multidifferential operators $D_{\text {poly }}^{\bullet}(M)$ is the chain complex of operators given by partial derivatives:

$$
D_{\text {poly }}^{n}(M)=\left\{D: C^{\infty}(M)^{\otimes n} \rightarrow C^{\infty}(M) \left\lvert\, D \stackrel{\text { locally }}{=} \sum f \frac{\partial}{\partial x_{l_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{l_{n}}}\right.\right\}
$$

$$
D_{\text {poly }}^{\bullet}(M) \simeq C H\left(C^{\infty}(M)\right)=\text { Hochschild complex of } C^{\infty}(M)
$$

$D \in D_{\text {poly }}^{2}(M) \leadsto d(D)\left(f_{1}, f_{2}, f_{3}\right)=$

$$
=f_{1} D\left(f_{2}, f_{3}\right)-D\left(f_{1} f_{2}, f_{3}\right)+D\left(f_{1}, f_{2} f_{3}\right)-D\left(f_{1}, f_{2}\right) f_{3}
$$

Multidifferential operators

The space of multidifferential operators $D_{\text {poly }}^{\bullet}(M)$ is the chain complex of operators given by partial derivatives:

$$
D_{\text {poly }}^{n}(M)=\left\{D: C^{\infty}(M)^{\otimes n} \rightarrow C^{\infty}(M) \left\lvert\, D^{\text {locally }}=\sum f \frac{\partial}{\partial x_{l_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x_{l_{n}}}\right.\right\}
$$

$$
D_{\text {poly }}^{\bullet}(M) \simeq C H\left(C^{\infty}(M)\right)=\text { Hochschild complex of } C^{\infty}(M)
$$

$D \in D_{\text {poly }}^{2}(M) \leadsto d(D)\left(f_{1}, f_{2}, f_{3}\right)=$

$$
=f_{1} D\left(f_{2}, f_{3}\right)-D\left(f_{1} f_{2}, f_{3}\right)+D\left(f_{1}, f_{2} f_{3}\right)-D\left(f_{1}, f_{2}\right) f_{3}
$$

$D_{\text {poly }}$ is actually a differential graded Lie algebra:
$\left[D, D^{\prime}\right]=D \circ D^{\prime}-D^{\prime} \circ D$.
\star associative $\Leftrightarrow d \star+\frac{1}{2}[\star, \star]=0 \Leftrightarrow \star \in \operatorname{MC}\left(D_{\text {poly }} \llbracket \hbar \rrbracket\right)$

Multivector fields

The data of a Poisson structure on M is encoded by the Poisson bivector $\Pi \in \wedge^{2} T_{M}$.

Multivector fields

The data of a Poisson structure on M is encoded by the Poisson bivector $\Pi \in \wedge^{2} T_{M}$.
The space of multivector fields on M is $T_{\text {poly }}^{d}(M)=\Gamma\left(M, \wedge^{d} T_{M}\right)$.
-Lie bracket $=$ Schouten-Nijenhuis bracket:
Extend Lie bracket on $T_{\text {poly }}^{1}=\Gamma\left(T_{M}\right)$ by
$[X, Y \wedge Z]=[X, Y] \wedge Z \pm Y \wedge[X, Z]$.
Π Poisson $\Leftrightarrow[\Pi, \Pi]=0 \Leftrightarrow \Pi \in \operatorname{MC}\left(T_{\text {poly }}\right)$

Kontsevich Formality

Theorem (Kontsevich Formality, 1997)

There exists an $L_{\infty}\left(\mathrm{Lie}_{\infty} /\right.$ Lie up to homotopy) map

$$
\mathcal{U}: T_{\text {poly }}(M) \rightarrow D_{\text {poly }}(M)
$$

which is a quasi-isomorphism (inducing an isomorphism in homology).

Kontsevich Formality

Theorem (Kontsevich Formality, 1997)

There exists an L_{∞} ($\mathrm{Lie}_{\infty} /$ Lie up to homotopy) map

$$
\mathcal{U}: T_{\text {poly }}(M) \rightarrow D_{\text {poly }}(M)
$$

which is a quasi-isomorphism (inducing an isomorphism in homology).

Corollary

There is a bijection
$\mathrm{MC}\left(T_{\text {poly }} \llbracket \hbar \rrbracket\right) /$ gauge equiv. $\rightarrow \mathrm{MC}\left(D_{\text {poly }} \llbracket \hbar \rrbracket\right) /$ gauge equiv.

$$
\Pi \mapsto \sum_{n \geq 1} \frac{1}{n!} \mathcal{U}_{(n)}(\underbrace{\Pi, \ldots, \Pi}_{n \text { times }})
$$

How does the morphism look like?

Remarkably, Kontsevich's morphism can be explicitly written in \mathbb{R}^{D}.

$$
\mathcal{U}_{(n)}=\sum_{\Gamma \in \operatorname{Graphs}(n, \bullet)} \underbrace{W_{\Gamma}}_{\in \mathbb{R}} \mathcal{U}_{\Gamma}
$$

$$
U_{\Gamma}:\left(T_{\text {poly }}\left(\mathbb{R}^{D}\right)\right)^{\wedge 4} \rightarrow D_{\text {poly }}^{5}\left(\mathbb{R}^{D}\right)
$$

Configuration spaces

Let $H=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0\right\}$ be the upper half plane. We consider its configuration space $\mathbb{H}_{m, n}=\operatorname{Conf}_{m, n}(H)$ of m non-overlapping points in the bulk and n non-overlapping points at the boundary.

Additional structure

A BV algebra A is a cochain complex with three operations:

- The product $-\wedge$ - of degree 0
- The Lie bracket $[-,-]$ of degree -1
- The BV operator $\Delta(-)$ of degree -1
satisfying relations such as

$$
\begin{aligned}
& {[-,-] \text { is a Lie bracket, }} \\
& x_{1} \wedge x_{2}=x_{2} \wedge x_{1} \\
& \left(x_{1} \wedge x_{2}\right) \wedge x_{3}=x_{1} \wedge\left(x_{2} \wedge x_{3}\right) \\
& \Delta \circ \Delta=0 \\
& {\left[x_{1}, x_{2} \wedge x_{3}\right]=\left[x_{1}, x_{2}\right] \wedge x_{3}+x_{2} \wedge\left[x_{1}, x_{3}\right]} \\
& {\left[x_{1}, x_{2}\right]=\Delta\left(x_{1} \wedge x_{2}\right)-\Delta\left(x_{1}\right) \wedge x_{2}-x_{1} \wedge \Delta\left(x_{2}\right)}
\end{aligned}
$$

for $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=0$.

Additional structure - Multivector fields

Let ($M, v o l$) be an oriented manifold. $T_{\text {poly }}(M)$ is a BV algebra.
-BV operator:

$$
\Delta: T_{\text {poly }}^{k}(M) \xrightarrow{v o l(\bullet)} \Omega^{D-k}(M) \xrightarrow{d_{d R}} \Omega^{D-k+1}(M) \rightarrow T_{\text {poly }}^{k-1}(M)
$$

Additional structure - Multivector fields

Let ($M, v o l$) be an oriented manifold. $T_{\text {poly }}(M)$ is a BV algebra.
-BV operator:

$$
\Delta: T_{\text {poly }}^{k}(M) \xrightarrow{v o l(\bullet)} \Omega^{D-k}(M) \xrightarrow{d_{d R}} \Omega^{D-k+1}(M) \rightarrow T_{\text {poly }}^{k-1}(M)
$$

Question

Can Kontsevich's map be made to preserve the BV structure?

Additional structure - Multivector fields

Let ($M, v o l$) be an oriented manifold. $T_{\text {poly }}(M)$ is a BV algebra.
-BV operator:

$$
\Delta: T_{\text {poly }}^{k}(M) \xrightarrow{v o l(\bullet)} \Omega^{D-k}(M) \xrightarrow{d_{d R}} \Omega^{D-k+1}(M) \rightarrow T_{\text {poly }}^{k-1}(M)
$$

Question

Can Kontsevich's map be made to preserve the BV structure?

Candidates for BV -algebra structure on $D_{\text {poly }}$:

- $D \wedge D^{\prime}=\left[f_{1}, \ldots, f_{n} \mapsto D\left(f_{1}, \ldots, f_{k}\right) \cdot D^{\prime}\left(f_{k+1}, \ldots, f_{n}\right)\right]$,
$\bullet \Delta$ Connes' B operator.
$D_{\text {poly }}$ is not a BV-algebra, but these operations induce a BV-algebra structure on cohomology $H\left(D_{\text {poly }}\right)$.

The main result

Proposition

There is a BV_{∞} structure on $D_{\text {poly }}(M)$ inducing this structure in cohomology.

Theorem (C., 2016)

There exists a BV_{∞} quasi-isomorphism $T_{\text {poly }}(M) \rightarrow D_{\text {poly }}(M)$ extending Kontsevich's.

Consequences/Applications

Star products

Corollary

The set of gauge equivalence classes of closed star products is isomorphic to the set of gauge equivalence classes of formal unimodular Poisson structures.

Consequences/Applications

Star products

Corollary

The set of gauge equivalence classes of closed star products is isomorphic to the set of gauge equivalence classes of formal unimodular Poisson structures.

String Topology

Object of interest: free loop space $L M=\operatorname{Map}\left(S^{1}, M\right)$.
BV Structure on

$$
H(L M)=H H(\Omega(M))=H\left(D_{\text {poly }}(П T M)\right)
$$

A closer look into Kontsevich's proof

$$
W_{\Gamma}=(\text { pre-factor }) \int_{\mathbb{H}_{m, n}} \bigwedge_{e} \omega_{e d g e}
$$

Consider the Fulton-MacPherson compactification of configuration spaces of points in \mathbb{R}^{2}

$$
\mathrm{FM}_{\mathbb{R}^{2}}(n)=\overline{\operatorname{Conf}_{n}\left(\mathbb{R}^{2}\right)}
$$

A topological operad

Consider the Fulton-MacPherson compactification of configuration spaces of points in \mathbb{R}^{2} forms an operad, i.e. there are natural "insertion" operations

$$
\circ_{i}: \mathrm{FM}_{\mathbb{R}^{2}}(m) \times \mathrm{FM}_{\mathbb{R}^{2}}(n) \rightarrow \mathrm{FM}_{\mathbb{R}^{2}}(m+n-1), i=1, \ldots, m
$$

From topology to algebra

$H_{0}(X \times Y)=H_{0}(X) \otimes H_{0}(Y) \Rightarrow H_{0}($ Top. operad $)=$ Alg. operad.
$H\left(\mathrm{FM}_{\mathbb{R}^{2}}\right)=$ Ger, the operad governing Gerstenhaber algebra structures.

$$
\begin{array}{ccccc}
\text { Lie } & \subset & \text { Ger } & \subset & \text { BV } \\
{[-,--]} & & -\wedge- & & \Delta
\end{array}
$$

From topology to algebra

$H_{0}(X \times Y)=H_{0}(X) \otimes H_{0}(Y) \Rightarrow H_{0}($ Top. operad $)=$ Alg. operad.
$H\left(\mathrm{FM}_{\mathbb{R}^{2}}\right)=$ Ger, the operad governing Gerstenhaber algebra structures.

$$
\begin{array}{ccccc}
\text { Lie } & \subset & \text { Ger } & \subset & \text { BV } \\
{[-,-]} & & -\wedge- & & \Delta
\end{array}
$$

Kontsevich's Formality Theorem can be expressed in terms of the natural map of operads

$$
\operatorname{Lie}_{\infty} \rightarrow \text { Chains }\left(\mathrm{FM}_{\mathbb{R}^{2}}\right)
$$

sending the k-th bracket to the fundamental chain of $\mathrm{FM}_{\mathbb{R}^{2}}(k)$.

Configuration spaces - The Fulton-MacPherson operad

The framed Fulton-MacPherson operad $\mathrm{FM}_{\mathbb{R}^{2}}^{f r}$ is given by
$\mathrm{FM}_{\mathbb{R}^{2}}^{\mathrm{fr}}(n)=\left(S^{1}\right)^{\times n} \ltimes \overline{\operatorname{Conf}_{n}\left(\mathbb{R}^{2}\right)}$

From Topology to Algebra

$$
H_{\bullet}\left(\mathrm{FM}_{\mathbb{R}^{2}}^{f r}\right)=\mathrm{BV} .
$$

Proposition

There is a quasi-isomorphism of operads $\mathrm{BV}_{\infty} \rightarrow$ Chains $\left(\mathrm{FM}_{\mathbb{R}^{2}}^{f r}\right)$

From Topology to Algebra

$$
H_{\bullet}\left(\mathrm{FM}_{\mathbb{R}^{2}}^{f r}\right)=\mathrm{BV} .
$$

Proposition

There is a quasi-isomorphism of operads $\mathrm{BV}_{\infty} \rightarrow$ Chains $\left(\mathrm{FM}_{\mathbb{R}^{2}}^{f r}\right)$
This + expressing the spaces of graphs in terms of operads + relating all objects by appropriate maps yield

Theorem

Let M be an orientable manifolds.
There exists a BV_{∞} quasi-isomorphism $T_{\text {poly }}(M) \rightarrow D_{\text {poly }}(M)$ extending Kontsevich's.

Thank you for your attention

References:
BV Formality - R. Campos- Advances in Mathematics 306, (2016)
Operadic Torsors - R. Campos \& T. Willwacher- Journal of Algebra 458, (2016)

In case someone asked me the difficult questions

