

Hamilton-Jacobi approach to contrast functions and geodetical motion in information geometry

Juan Manuel Pérez-Pardo

k

q

S

D

a

d

j

С

b

F

n

0

1

e

У

1

uc3m Universidad Carlos III de Madrid

n

i

b

C

F

i

a

C

m

 \mathbf{Z}

e

Departamento de Matemáticas

J.M. Pérez-Pardo

d

m

m

0

r

e

q

n

m

i

0

F

r

a

n

С

0

V

e

n

j

1

d

n

i

q

У

g

j

r

t	е	f	р	b	F,	a	b	i	0	D	i	C	0	S	m	0	m
ľ	\mathbf{Z}	\mathbf{Z}	р	у	n	t	m	0	k	m	a	j	Μ	d	r	р	W
i	р	a	e	р	W	0	i	Μ	t	х	V	\mathbf{Z}	a	С	с	t	d
<u>y</u>	t	v	Μ	b	x	1	f	e	x	g	i	0	n	1	\mathbf{Z}	у	Ο
1	q	k	a	e	W	р	S	1	n	С	t	h	С	V	k	k	m
i	b	n	r	r	t	h	\mathbf{t}	e	С	р	a	р	i	d	b	S	h
a	k	S	m	d	r	q	m	j	n	b	1	у	n	b	\mathbf{Z}	С	i
1	q	D	0	m	e	n	i	С	0	F	e	1	i	С	e	m	a

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

F	1	0	r	i	0	Μ	С	i	a	g	1	i	a			
r						a										
a						r										
n						С					Р		S			
С			G			0					a		t			
0			i			L					t		e			
V			u			a		F			r		f			
e			S			u		a			i		a			
n			e			d		b			\mathbf{Z}		n			
t			р		F	a	b	i	0	D	i	С	0	S	m	0
r			р			\mathbf{t}		0			a		Μ			
i			e			0		Μ			V		a			
g			Μ					е			i		n			
1			a					1			t		С			
i			r					е			a		i			
a			m								1		n			
		D	0	m	e	n	i	С	0	F	e	1	i	с	е	

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

Introduction and motivation

Generating Potentials for arbitrary tensors

Hamilton-Jacobi approach to contrast functions

	D D A	KO7)ard	•
J.IV	I. Pe	rez-r		U
				-

Pure states are a complex projective space

$$\tilde{h} = \frac{\langle \mathrm{d}\psi \otimes \mathrm{d}\psi \rangle}{\langle \psi | \psi \rangle} - \frac{\langle \psi | \mathrm{d}\psi \rangle}{\langle \psi | \psi \rangle} \otimes \frac{\langle \mathrm{d}\psi | \psi \rangle}{\langle \psi | \psi \rangle}$$

$$\pi : \mathcal{H} \to \mathcal{P}\mathcal{H}$$
$$\pi(|\psi\rangle) = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$$

• Orthonormal basis $\{|e_j\rangle\}$ $\langle e^j |e_k\rangle = \delta_k^j$ $z_j = \langle e_j |\psi\rangle$ $\bar{z}^j = \langle \psi |e^j\rangle$

$$\tilde{h} = \frac{\mathrm{d}\bar{z}^{j} \otimes \mathrm{d}z_{j}}{\|z\|^{2}} - \frac{(\bar{z}^{j}\mathrm{d}z_{j}\otimes) \otimes (\mathrm{d}\bar{z}_{k}z^{k})}{\|z\|^{4}}$$

J.M. Pérez-Pardo

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

Geometrical Quantum Mechanics

$$\mathcal{H} \equiv \mathcal{L}^2(\chi) \qquad |\psi\rangle \to \langle x |\psi\rangle = \psi(x)$$
$$\langle \psi |x\rangle = \psi^*(x)$$

Immersion of a measure space manifold Θ into PH $\psi(x|\theta) = \sqrt{p(x|\theta)}e^{i\alpha(x|\theta)}$

$$d \ln \psi(x|\boldsymbol{\theta}) = \frac{1}{2} d \ln p(x|\boldsymbol{\theta}) + i d\alpha(x|\boldsymbol{\theta})$$

$$h = g - iw$$

$$g = \frac{1}{4}E_p[(d \ln p) \otimes (d \ln p)] + E_p[d\alpha \otimes d\alpha] - E_p(d\alpha) \otimes E_p(d\alpha)$$

$$w = E_p[d \ln p \wedge d\alpha]$$

 $E_p(df) := \int_{\chi} (df) p dx$ $\mathcal{F} = \frac{1}{4} E_p(d \ln p \otimes d \ln p) \text{ Fisher-Rao metric}$

J.M. Pérez-Pardo

Statistical Manifold: M
Each point p ∈ M represents a probability density
Fisher-Rao metric, a Riemannian metric: g
Infinitesimal "distinguishability" of probability densities
Dualistic Structure: (g, ∇, ∇*) X, Y, Z ∈ X(M)

 $X(g(Y,Z)) = g(\nabla_X Y,Z) + g(Y,\nabla_X^*Z)$ • Usually defined by perturbation of the hermitean connection

$$\Gamma_{ijk} = {}_{g}\Gamma_{ijk} \pm T_{ijk}$$

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

- Statistical manifold: *M*
- Divergence function: $S: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
 - $S(\mathbf{x}, \mathbf{y}) \ge 0$

•
$$S(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$$

Oriented distance-like function

 $S(x,y) \neq S(y,x)$

• If S is differentiable

$$\frac{\partial S}{\partial x^i}\Big|_{\mathbf{x}=\mathbf{y}} = \frac{\partial S}{\partial y^i}\Big|_{\mathbf{x}=\mathbf{y}} = 0$$

- $\hfill\blacksquare\ensuremath{\,^{\circ}}\ensuremath{S}$ is a generating function
- Generates tensors intrinsically

$$\frac{\partial^2 S}{\partial x^i \partial x^j} = g_{ij}$$

Introduction and motivation

Generating Potentials for arbitrary tensors

Hamilton-Jacobi approach to contrast functions

Some examples

Hessian Riemannian Structures^[1]:

• $\mathbf{x} = \{x^i\}$ Local coordinates on $U \subset \mathcal{M}$

• Convex function: $f: U \to \mathbb{R}$

$$g_{ij}(\mathbf{x}) := \frac{\partial^2 f}{\partial x^i \partial x^j}$$

This is not a tensor!

Kähler Potential

$$\omega = \frac{\partial^2 f}{\partial z \partial \bar{z}}$$

Quote from Wikipedia: "There is no comparable way of describing a general Riemannian metric in terms of a single function."

[1]: J.J. Duistermaat. On Hessian Riemannian Structures. Asian J. Math, 5 (1) (2001), pp. 79-92

IM Déroz Dardo	uc3m Universidad Carlos III de Ma	Idrid
J.W. FEIEZ-Faluo	Departamento de Matemáticas	

Two copies of the manifold to define a two-point function

 $S: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$

Provides several canonical structures:

 $X \in \mathfrak{X}(\mathcal{M})$

 $\pi_L : \mathcal{M} \times \mathcal{M} \to \mathcal{M} \qquad \qquad \text{Left-lift:} \qquad X_L \in \mathfrak{X}(\mathcal{M} \times \mathcal{M}) \\ \pi_R : \mathcal{M} \times \mathcal{M} \to \mathcal{M} \qquad \qquad \text{Right-lift:} \qquad X_R \in \mathfrak{X}(\mathcal{M} \times \mathcal{M})$

Diagonal embedding:

 $d: \mathcal{M} \hookrightarrow \mathcal{M} \times \mathcal{M}$ $p \mapsto (p, p)$

Restriction to the diagonal:

$$S|_d := d^*S$$

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

Consider the contrast function $S: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ $(\mathcal{L}_{X_L} \mathcal{L}_{Y_L} S)|_d := g(X, Y)$

• It is clearly f-linear in X

11

 ${\ensuremath{\, \bullet }}$ Let us show that it is also f-linear in Y

$$\mathcal{L}_{X_L} \mathcal{L}_{(fY)_L} S = \mathcal{L}_{X_L} (f \mathcal{L}_{Y_L} S)$$

= $f \mathcal{L}_{X_L} \mathcal{L}_{Y_L} S + \mathcal{L}_{X_L} f \cdot \mathcal{L}_{Y_L} S$

Consider the contrast function $S: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ $(\mathcal{L}_{X_L} \mathcal{L}_{Y_L} S)|_d := g(X, Y)$

• It is clearly f-linear in X

J.M. Pérez-Pardo

ÍI

 ${\ensuremath{\,^\circ}}$ Let us show that it is also f-linear in Y

$$\begin{aligned} \left(\mathcal{L}_{X_L}\mathcal{L}_{(fY)_L}S\right)\Big|_d &= \left(\mathcal{L}_{X_L}(f\mathcal{L}_{Y_L}S)\right)\Big|_d \qquad 0\\ &= \left(f\mathcal{L}_{X_L}\mathcal{L}_{Y_L}S\right)\Big|_d + \left(\mathcal{L}_{X_L}f \cdot \mathcal{L}_{Y_L}S\right)\Big|_d\\ &= fg(X,Y) \end{aligned}$$

Consider the contrast function $S: \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ $(\mathcal{L}_{X_L} \mathcal{L}_{Y_L} S)|_d := g(X, Y)$

• It is clearly f-linear in X

 \bullet Let us show that it is also f-linear in Y

$$\begin{aligned} \left(\mathcal{L}_{X_L}\mathcal{L}_{(fY)_L}S\right)\Big|_d &= \left(\mathcal{L}_{X_L}(f\mathcal{L}_{Y_L}S)\right)\Big|_d \qquad 0\\ &= \left(f\mathcal{L}_{X_L}\mathcal{L}_{Y_L}S\right)\Big|_d + \left(\mathcal{L}_{X_L}f \cdot \mathcal{L}_{Y_L}S\right)\Big|_d\\ &= fg(X,Y) \end{aligned}$$

One can define more rank 2 tensors:

$$\left(\mathcal{L}_{X_R}\mathcal{L}_{Y_R}S\right)\Big|_d = \left(\mathcal{L}_{X_L}\mathcal{L}_{Y_L}S\right)\Big|_d = -\left(\mathcal{L}_{X_R}\mathcal{L}_{Y_L}S\right)\Big|_d = g(X,Y)$$

J.M. Pérez-Pardo

- This procedure can be used for tensors of order 3
- One needs to find suitable linear combinations to cancel the non-tensorial terms

$$\left(\mathcal{L}_{X_L}\mathcal{L}_{Y_R}\mathcal{L}_{Z_R}S - \mathcal{L}_{X_R}\mathcal{L}_{Y_L}\mathcal{L}_{Z_L}S\right)\Big|_d = T(X, Y, Z)$$

or

$$\left(\mathcal{L}_{X_L}\mathcal{L}_{Y_L}\mathcal{L}_{Z_R}S - \mathcal{L}_{X_R}\mathcal{L}_{Y_R}\mathcal{L}_{Z_L}S\right)\Big|_d = T(X, Y, Z)$$

- There are 8 possible combinations that lead to tensorial quantities.
 - They define the same symmetric tensor up to a sign
 - In information geometry this is used to define pairs of dual connections

Can one go to higher order tensors?
For instance the Riemann tensor

Can one generate non-symmetric tensors?

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

Introduction and motivation

Generating Potentials for arbitrary tensors

Hamilton-Jacobi approach to contrast functions

J.I	M. P	érez-l	Pardo)	

Find a canonical contrast function

- Given g T
- Construct a two point function with vanishing derivatives
- Hamilton's Principal function

$$S[\gamma] = \int_{t_{\text{in}}}^{t_{\text{fin}}} \mathfrak{L}(\gamma(t), \dot{\gamma}(t)) \mathrm{d}t$$

• Solution of the equations of motion γ

•
$$\gamma(0) = \mathbf{x}$$
 $\gamma(1) = \mathbf{y}$
 $S[\mathbf{x}, \mathbf{y}] = \int_0^1 \mathfrak{L}(\gamma(t), \dot{\gamma}(t)) dt$
• $dS = p_i(\mathbf{x}, \mathbf{y}) dx^i - P_i(\mathbf{x}, \mathbf{y}) dy^i$
 $\mathbf{x} = \mathbf{y}$ $\gamma(t) = \mathbf{x}$ \Longrightarrow $p_i(\mathbf{x}, \mathbf{y})|_{\mathbf{x} = \mathbf{y}} = 0$
 $P_i(\mathbf{x}, \mathbf{y})|_{\mathbf{x} = \mathbf{y}} = 0$

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Hamilton-Jacobi Approach to Contrast Functions II

Choose the Lagrangian

$$\mathfrak{L}(x,v) = \frac{1}{2}g_{ij}v^iv^j + \frac{1}{6}T_{ijk}v^iv^jv^j$$

Compute derivatives

$$\frac{\partial S}{\partial y^j} = g_{jk}(\mathbf{y})v_{\text{fin}}^k + \frac{1}{2}T_{jkl}(\mathbf{y})v_{\text{fin}}^k v_{\text{fin}}^l$$

- \bullet We need the relation between $\mathbf{v}_{\mathrm{fin}}$ and \mathbf{x},\mathbf{y}
- Taylor expansion

$$\gamma(t) = \gamma(1) + \mathbf{v}_{\text{fin}}(1-t) + \frac{1}{2}\dot{\mathbf{v}}_{\text{fin}}(1-t)^2 + \frac{1}{6}\ddot{\mathbf{v}}_{\text{fin}}(1-t)^3$$

$$\Rightarrow \mathbf{v}_{fin} = \mathbf{y} - \mathbf{x} + \frac{1}{2} \dot{\mathbf{v}}_{fin} - \frac{1}{6} \ddot{\mathbf{v}}_{fin}$$

• Eq. of motion

$$\dot{v}^l = -T^l_{jk}v^k \dot{v}^j - \Gamma^l_{jk}v^j v^k - \frac{1}{6}g^{lr}A_{rjks}v^j v^k v^s$$

J.M. Pérez-Pardo

Hamilton-Jacobi Approach to Contrast Functions III ()

Assuming that $\dot{\mathbf{v}}$ is analytic in \mathbf{v} $\Delta^k := y^k - x^k$

$$\frac{\partial S}{\partial y^{j}} = g(\mathbf{y})_{jk} \Delta^{k} - \frac{1}{2} \Gamma_{jkl}(\mathbf{y}) \Delta^{k} \Delta^{l} + \frac{1}{2} T_{jkl}(\mathbf{y}) \Delta^{k} \Delta^{l} + \frac{1}{6} \Gamma_{jkr}(\mathbf{y}) \Gamma_{ls}^{r}(\mathbf{y}) \Delta^{k} \Delta^{l} \Delta^{s} - \frac{1}{12} A_{jkls}(\mathbf{y}) \Delta^{k} \Delta^{l} \Delta^{s}$$

$$\frac{\partial^2 S}{\partial x^i \partial y^j}\Big|_d = -g_{ij}(\mathbf{x})$$

$$\frac{\partial^3 S}{\partial x^l \partial x^k \partial y^j}\Big|_d = -\Gamma_{jkl} + T_{jkl}$$

By similar calculations: $\frac{\partial^3 S}{\partial y^l \partial y^k \partial x^j}\Big|_d = -\Gamma_{jkl} - T_{jkl}$

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

Find a combination of 4th order derivatives that is f-linear

$$\mathcal{L}_{X_L} \mathcal{L}_{Y_R} \mathcal{L}_{Z_L} \mathcal{L}_{W_R} S \big|_d =: LRLR$$

Two possible linear combinations:

 $Q_1(X, Y, Z, W) = (LRRL - RLLR) + (LRRR - RLLL)$ + (LRLL - RLRR) + (LRLR - RLRL)

 $Q_2(X, Y, Z, W) = (LLLL - RRRR) + (LLLR - RRRL)$ + (LLRL - RRLR) + (LLRR - RRLL) Find a combination of 4th order derivatives that is f-linear

$$\mathcal{L}_{X_L} \mathcal{L}_{Y_R} \mathcal{L}_{Z_L} \mathcal{L}_{W_R} S \big|_d =: LRLR$$

Two possible linear combinations:

 $Q_1(X, Y, Z, W) = (LRRL - RLLR) + (LRRR - RLLL)$ + (LRLL - RLRR) + (LRLR - RLRL)

 $Q_2(X, Y, Z, W) = (LLLL - RRRR) + (LLLR - RRRL)$ + (LLRL - RRLR) + (LLRR - RRLL)

After a lengthy calculation:

J.M. Pérez-Pardo

$$Q_1 = Q_2 = 0$$

Jc3m	Universidad Carlos III de Madrid
	Departamento de Matemáticas

5

Choose a lagrangian

$$\mathfrak{L}(x,v) = \frac{1}{2}g_{ij}v^{i}v^{j} + \frac{1}{6}T_{ijk}v^{i}v^{j}v^{j} + \frac{1}{24}C_{ijkl}v^{i}v^{j}v^{j}v^{l}$$

J.M. Pérez-Pardo

uc3m Universidad Carlos III de Madrid

5

Choose a lagrangian

$$\mathfrak{L}(x,v) = \frac{1}{2}g_{ij}v^{i}v^{j} + \frac{1}{6}T_{ijk}v^{i}v^{j}v^{j} + \frac{1}{24}C_{ijkl}v^{i}v^{j}v^{j}v^{l}$$

After a lengthy calculation:

$$Q_1 = Q_2 = 0$$

M Pérez Pardo	uc3m Universidad Carlos III de Madrid
	Departamento de Matemáticas

Choose a lagrangian

$$\mathfrak{L}(x,v) = \frac{1}{2}g_{ij}v^{i}v^{j} + \frac{1}{6}T_{ijk}v^{i}v^{j}v^{j} + \frac{1}{24}C_{ijkl}v^{i}v^{j}v^{j}v^{l}$$

After a lengthy calculation:

$$Q_1 = Q_2 = 0$$

What about non-symmetric tensors?

References

- F.M. Ciaglia, F. di Cosmo, D. Felice, S. Mancini, G. Marmo and J.M. Pérez-Pardo. *Hamilton-Jacobi approach to Potential Functions in Information Geometry*. J. Math. Phys. 58, 063506. (2017).
- P. Facchi, R. Kulkarni, V.I. Man'ko, G. Marmo, E.C.G. Sudarshan and F. Ventriglia. *Classical and quantum Fisher information in the geometrical formulation of quantum mechanics.* Phys. Lett. A 374, (2010), 4801-4803