the GAUSS MAP

 for CMC SURFACES
in HOMOGENEOUS SPACES

ISABEL FERNÁNDEZ

Instituto de Matemáticas IMUS Universidad de Sevilla

XXVI Fall workshop on Geometry and Physics

Joint work with
PABLO MIRA and BENOIT DANIEL
Braga, September 2017
The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015)

Mean curvature of surfaces

Mean curvature of surfaces

- Sectional curvatures: curvature of the normal sections.

Mean curvature of surfaces

CURVATURE:

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat.
(= eigenvalues of the 2nd fund. form)

Mean curvature of surfaces

CURVATURE:

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat.
(= eigenvalues of the 2nd fund. form)
- Mean curvature: arthimetic mean of the principal curvat. (= I/2 (trace of the 2nd fund. form))

Mean curvature of surfaces

CURVATURE:

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat.
(= eigenvalues of the 2nd fund. form)
- Mean curvature: arthimetic mean of the principal curvat. (= I/2 (trace of the 2nd fund. form))

CMC surface $=$ CONSTANT MEAN CURVATURE surface

Surfaces that minimize the area (I)

Surfaces that minimize the area (I)

Surfaces that minimize the area (I)

Among all the surfaces
lying on a fixed curve,

Which one has less area?

closed curve

Surfaces that minimize the area (I)

Among all the surfaces
lying on a fixed curve,

Which one has less area?

closed curve

A surface is locally area minimizing

Its mean curvature vanishes identically
(CMC=0, MINIMAL SURFACES)

Surfaces that minimize the area (I)

Among all the surfaces
lying on a fixed curve,

Which one has less area?

closed curve

A surface is locally area minimizing

Its mean curvature vanishes identically
(CMC=0, MINIMAL SURFACES)

Surfaces that minimize the area (II)

Surfaces that minimize the area (II)

Among all the surfaces
lying on a fixed curve,

Which one has less area?

Surfaces that minimize the area (II)

Among all the surfaces
lying on a fixed curve, and enclosing a fixed volume

Which one has less area?

Surfaces that minimize the area (II)

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Which one has less area?

Surfaces that minimize the area (II)

Among all the surfaces
lying on a fixed curve, and enclosing a fixed volume

Which one has less area?

Surfaces that minimize the area (II)

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Which one has less area?

A surface is locally area minimizing among those enclosing a fixed volume

Its mean curvature is constant everywhere
(CMC SURFACES)

Some examples in \mathbb{R}^{3}

Some examples in \mathbb{R}^{3}

Some examples in \mathbb{R}^{3}

2 basic results on CMC in \mathbb{R}^{3}

2 basic results on CMC in \mathbb{R}^{3}

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere

2 basic results on CMC in \mathbb{R}^{3}

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2 nd f.f.) is holomorphic.

2 basic results on CMC in \mathbb{R}^{3}

 Hopf (1951): Any topological sphere with CMC in \mathbb{R}^{3} is a round spherePROOF: The Hopf differential (defined in terms of the 2 nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"

2 basic results on CMC in \mathbb{R}^{3}

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2 nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

2 basic results on CMC in \mathbb{R}^{3}

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

2 basic results on CMC in \mathbb{R}^{3}

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the $2 n d$ f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^{3} is a plane

2 basic results on CMC in \mathbb{R}^{3}

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2 nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^{3} is a plane
PROOF:The unit normal vector field (Gauss map) is holomorphic for minimal surf.

2 basic results on CMC in \mathbb{R}^{3}

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^{3} is a plane
PROOF: The unit normal vector field (Gauss map) is holomorphic for minimal surf. (if the surface is an entire graph, it is a holomorphic map from \mathbb{C} into \mathbb{S}_{+}^{2})

The Gauss map in \mathbb{R}^{3}

$\Sigma \subset \mathbb{R}^{3}$ surface

The Gauss map in \mathbb{R}^{3}

$\Sigma \subset \mathbb{R}^{3}$ surface

The Gauss map in \mathbb{R}^{3}

$\Sigma \subset \mathbb{R}^{3}$ surface

The Gauss map in \mathbb{R}^{3}

$\Sigma \subset \mathbb{R}^{3}$ surface
$G: \Sigma \rightarrow \underset{\substack{\text { st.proj. }}}{\mathbb{\mathbb { C }}}$

- The Gauss map of CMC surfaces in \mathbb{R}^{3} is harmonic.
- The Gauss map of minimal surfaces in \mathbb{R}^{3} is holomorphic.

More general ambient ${ }^{3}$ spaces

More general ambient ${ }^{2}$ spaces

- Simply connected

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\operatorname{dim}(I S O)=6$)

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\operatorname{dim}(I S O)=6$)

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)

- As symmetric as possible ($\operatorname{dim}(I S O)=6$)

ONLY THREE SPACES (SPACE FORMS) : $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

Extension of the Hopf \& Bernstein theorems?
Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)

- As symmetric as possible ($\operatorname{dim}(I S O)=6$)

ONLY THREE SPACES (SPACE FORMS) : $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

Extension of the Hopf \& Bernstein theorems?
Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
curvature

ONLY THREE SPACES (SPACE FORMS) : $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

Extension of the Hopf \& Bernstein theorems?
Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

The Gauss map in \mathbb{H}^{3}

The Gauss map in \mathbb{H}^{3}

"hyperbolic,
Gauss map"

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}^{2} \equiv \overline{\mathbb{C}}
$$

Bryant (1988): G is holomorphic for $C M C=I$ surfaces in \mathbb{H}^{3}

The Gauss map in \mathbb{H}^{3}

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \underset{\mathbb{S}^{2}}{\text { st.proj. }} \overline{\mathbb{C}}
$$

Bryant (1988): G is holomorphic for $C M C=1$ surfaces in \mathbb{H}^{3}

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces
\longrightarrow (lower bound for the existence of CMC spheres)

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces
\longrightarrow (lower bound for the existence of CMC spheres)

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces
\longrightarrow (lower bound for the existence of CMC spheres)

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces
\longrightarrow (lower bound for the existence of CMC spheres)

Note: there is no critical value for the mean curvature in 3-spheres

Critical mean curvature

$\mathrm{H}=0, \mathrm{H}=\mathrm{I}$ are the CRITICAL values for the mean curvature in these spaces
\longrightarrow (lower bound for the existence of CMC spheres)

Note: there is no critical value for the mean curvature in 3-spheres

CRITICAL CMC surfaces in space forms

$$
\longrightarrow \text { Minimal }(\mathrm{H}=0) \text { surfaces in } \mathbb{R}^{3}
$$

More general ambient ${ }^{3}$ spaces

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\operatorname{dim}(I S O)=6$)

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\operatorname{dim}(I S O)=6$) only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
$(\operatorname{dim}(I S O)=4)$

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
($\operatorname{dim}(\mathrm{ISO})=4$)
$\mathbb{E}^{3}(\kappa, \tau)$ SPACES:
Fibrations over $\mathbb{R}^{2}, \mathbb{S}^{2}(\kappa), \mathbb{H}^{2}(\kappa)$ with constant bundle curvature τ

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
($\operatorname{dim}(I S O)=4$)
$\mathbb{E}^{3}(\kappa, \tau)$ SPACES:
Fibrations over $\mathbb{R}^{2}, \mathbb{S}^{2}(\kappa), \mathbb{H}^{2}(\kappa)$ with constant bundle curvature τ

$$
\begin{aligned}
& \mathbb{E}^{3}(\kappa, \tau)=\mathbb{D}\left(\frac{2}{\sqrt{-\kappa}}\right) \times \mathbb{R}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}<-4 / \kappa\right\} \\
& d s^{2}=\Lambda^{2}\left(\mathrm{~d} x_{1}^{2}+\mathrm{d} x_{2}^{2}\right)+\left(\tau \Lambda\left(x_{2} \mathrm{~d} x_{1}-x_{1} \mathrm{~d} x_{2}\right)+\mathrm{d} x_{3}\right)^{2} \quad \Lambda=\frac{1}{1+\frac{\kappa}{4}\left(x_{1}^{2}+x_{2}^{2}\right)}
\end{aligned}
$$

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
($\operatorname{dim}(\mathrm{ISO})=4$)
$\mathbb{E}^{3}(\kappa, \tau)$ SPACES:
Fibrations over $\mathbb{R}^{2}, \mathbb{S}^{2}(\kappa), \mathbb{H}^{2}(\kappa)$ with constant bundle curvature τ

More general ambient ${ }^{2}$ spaces

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible only $\mathbb{R}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}$
($\operatorname{dim}(\mathrm{ISO})=4$)
$\mathbb{E}^{3}(\kappa, \tau)$ SPACES:
Fibrations over $\mathbb{R}^{2}, \mathbb{S}^{2}(\kappa), \mathbb{H}^{2}(\kappa)$ with constant bundle curvature τ

$\underset{\substack{\text { bunde } \\ \text { currat }}}{\substack{\text { base } \\ \text { currat }}}$	$\kappa<0$	$\kappa=0$	$\kappa>0$
$\tau=0$	$\mathbb{H}^{2} \times \mathbb{R}$	廷3	$\mathbb{S}^{2} \times \mathbb{R}$
$\tau \neq 0$	$\widetilde{\operatorname{PSL}(2, \mathbb{R})}$	Nil_{3}	Ber_{3}

Critical Mean Curvature

Critical Mean Curvature

(lower bound for the existence of CMC spheres)

Critical Mean Curvature

(lower bound for the existence of CMC spheres)

Critical value in $\mathbb{E}^{3}(\kappa, \tau)$

$$
H=\frac{\sqrt{-k}}{2}
$$

	$\kappa<0$	$\kappa=0$	$\kappa>0$
$\tau=0$	$\widetilde{\mathbb{H}^{2} \times \mathbb{R}}$	χ^{3}	$\mathbb{S}^{2} \times \mathbb{R}$
$\tau \neq 0$	$\widetilde{\mathrm{PSL}(2, \mathbb{R})}$	Nil_{3}	Ber_{3}

Extension of Hopf thm to $\mathbb{E}^{3}(\kappa, \tau)$

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

Extension of Hopf thm to $\mathbb{E}^{3}(\kappa, \tau)$

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

Extension of Hopf thm to $\mathbb{E}^{3}(\kappa, \tau)$

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, the Hopf differential is no longer holomorphic :(

Abresch, Rosenberg (2004):
Any topological sphere with CMC in $\mathbb{E}^{3}(\kappa, \tau)$ is a rotational sphere

Extension of Hopf thm to $\mathbb{E}^{3}(\kappa, \tau)$

Hopf (195I): Any topological sphere with CMC in \mathbb{R}^{3} is a round sphere
PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, the Hopf differential is no longer holomorphic

Abresch, Rosenberg (2004):
Any topological sphere with CMC in $\mathbb{E}^{3}(\kappa, \tau)$ is a rotational sphere
PROOF: There is a modification of the Hopf differential that is holomorphic for CMC surfaces!! (AR differential)

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.
PROOF: The Gauss map is a (complex-valued) holomorphic map.

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.
PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):
 Classification of entire graphs with zero $C M C$ in \mathbb{R}^{3} : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (I909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in $\mathbb{E}^{3}(\kappa, \tau)$:

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (I909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.
PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
-The space of solutions is in bijective correspondence with the space of $\{$ holomorphic quadratic diff. on \mathbb{C} or $\mathbb{D}\} \times \mathbb{C}$

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.
PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
-The space of solutions is in bijective correspondence with the space of $\{$ holomorphic quadratic diff. on \mathbb{C} or $\mathbb{D}\} \times \mathbb{C}$

PROOF:

- A hyperbolic Gauss map for surfaces in $\mathbb{E}^{3}(-1,0)$ that is harmonic for CRITICAL CMC surf.

Extension of Bernstein thm to $\mathbb{E}^{3}(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^{3} : they are all planes.
PROOF: The Gauss map is a (complex-valued) holomorphic map.
In the $\mathbb{E}^{3}(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map
F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
-The space of solutions is in bijective correspondence with the space of $\{$ holomorphic quadratic diff. on \mathbb{C} or $\mathbb{D}\} \times \mathbb{C}$

PROOF:

- A hyperbolic Gauss map for surfaces in $\mathbb{E}^{3}(-1,0)$ that is harmonic for CRITICAL CMC surf. - A correspondence between CMC surfaces in all the $\mathbb{E}^{3}(\kappa, \tau)$ spaces.

SPACE FORMS vs. HOMOGENOUS FIBRATIONS

simply connected homogeneous 3 -spaces with $\operatorname{dim}($ Iso $)=6$

$$
\mathbb{E}^{3}(K, \tau) \quad \begin{gathered}
\text { simply connected } \\
\text { homogeneous } 3 \text {-spaces } \\
\text { with } \operatorname{dim}(\text { Iso })=4
\end{gathered}
$$

SPACE FORMS vs. HOMOGENOUS FIBRATIONS

simply connected homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=6$

$\mathbb{E}^{3}(\kappa, \tau)$

simply connected homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=4$

- A holomorphic quad. differential (Hopf differential)

SPACE FORMS vs. HOMOGENOUS FIBRATIONS

simply connected homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=6$

- A holomorphic quad. differential (Hopf differential)

$\pi 3($ simply connected

 homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=4$- A holomorphic quad. differential (AR differential)

SPACE FORMS vs. HOMOGENOUS FIBRATIONS

 homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=6$

- A holomorphic quad. differential (Hopf differential)
- A holomorphic Gauss map for CRITICAL CMC surfaces

SPACE FORMS vs. HOMOGENOUS FIBRATIONS

 homogeneous 3 -spaces with $\operatorname{dim}($ lso $)=6$

- A holomorphic quad. differential (Hopf differential)
- A holomorphic Gauss map for CRITICAL CMC surfaces

$$
\mathbb{N}^{3}(K, \tau) \quad \begin{gathered}
\text { simply connected } \\
\text { homogeneous } 3 \text {-spaces } \\
\text { with } \operatorname{dim}(\text { Iso })=4
\end{gathered}
$$

- A holomorphic quad. differential (AR differential)
- A harmonic Gauss map for CRITICAL CMC surfaces ?

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

Σ

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

$G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}_{\substack{2 \\ \text { strpol }}}^{\overline{\mathbb{C}}} \begin{aligned} & \text { hyperbolic } \\ & \text { Gouss map }\end{aligned}$

$\mathbb{H}^{2} \times \mathbb{R}$

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}_{\text {stppol }}^{2} \equiv \overline{\mathbb{C}} \quad \begin{aligned}
& \text { hyperbolic } \\
& \text { Guuss map }
\end{aligned}
$$

[^0]
$\mathbb{H}^{2} \times \mathbb{R}$

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}_{\text {stpol }}^{2} \equiv \overline{\mathbb{C}} \quad \begin{aligned}
& \text { hyperbolic } \\
& \text { Guuss map }
\end{aligned}
$$

```
horizontal vectors upwards vectors
```

\longleftrightarrow interior disc

In particular, for local graphs G takes values into \mathbb{D}

$\mathbb{H}^{2} \times \mathbb{R}$

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}_{\text {s.proj. }}^{\bar{\equiv} \overline{\mathbb{C}} \quad \begin{array}{l}
\text { hyperbolic } \\
\text { Gauss map }
\end{array}}
$$

```
horizontal vectors upwards vectors
```

\longleftrightarrow interior disc

In particular, for local graphs G takes values into \mathbb{D}
--, Mira (2007) :

- G satisfies $\left(1-|G|^{2}\right) G_{z \bar{z}}+2 \bar{G} G_{z} G_{\bar{z}}=0$ for CRITICAL CMC surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Hyperbolic Gauss map in $\mathbb{E}^{3}(-1,0)=\mathbb{H}^{2} \times \mathbb{R}$

$$
G: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3} \equiv \mathbb{S}_{\text {s.proj. }}^{2} \overline{\bar{C}} \quad \begin{aligned}
& \text { hyperbolic } \\
& \text { Gauss map }
\end{aligned}
$$

```
horizontal vectors
    upwards vectors
    \longleftrightarrow interior disc
```

In particular, for local graphs G takes values into \mathbb{D}
--, Mira (2007) :

- G satisfies $\left(1-|G|^{2}\right) G_{z \bar{z}}+2 \bar{G} G_{z} G_{\bar{z}}=0$ for CRITICAL CMC surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
- In particular, G is HARMONIC into $\mathbb{D} \equiv \mathbb{H}^{2}$ for CRITICAL CMC local graphs

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure
(left translations are isometries)

$$
\begin{aligned}
& \operatorname{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure
(left translations are isometries)

$$
\begin{aligned}
& \mathrm{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure
(left translations are isometries)

$$
\begin{aligned}
& \mathrm{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure
(left translations are isometries)

$$
\begin{aligned}
& \mathrm{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

stereogr.
proj.

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure (left translations are isometries)

$$
\begin{aligned}
& \mathrm{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure (left translations are isometries)

$$
\begin{aligned}
& \operatorname{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure (left translations are isometries)

$$
\begin{aligned}
& \operatorname{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

The analogous Gauss map in $\mathbb{E}^{3}(0, \tau)=\mathrm{Nil}_{3}$

- Critical value for MC : $\mathrm{H}=0$
- LIE GROUP structure (left translations are isometries)

$$
\begin{aligned}
& \operatorname{Nil}_{3}=\left(\mathbb{R}^{3}, d s^{2}\right) \\
& d s^{2}=d x^{2}+d y^{2}+\left(\frac{1}{2}(y d x-x d y)+d z\right)^{2}
\end{aligned}
$$

Daniel (20II) : G is harmonic into \mathbb{H}^{2} for CRITICAL CMC local graphs in Nil3

What is left...

$\mathbb{E}^{3}(\kappa, \tau)$	$\mathrm{k}<0$	$\mathrm{k}=0$	k > 0
$\mathrm{t}=0$	$\mathbb{H}^{2} \times \mathbb{R}$	x^{3}	$\mathbb{S}^{2} \times \mathbb{R}$
$t \neq 0$	$\widetilde{\operatorname{PSL}(2, \mathbb{R})}$	Nil_{3}	Ber_{3}

What is left...

Critical value for the mean curvature:

$$
H=\frac{\sqrt{-\kappa}}{2}
$$

What is left...

Critical value for the mean curvature:

$$
H=\frac{\sqrt{-\kappa}}{2}
$$

What is left...

Critical value for the mean curvature:

$$
H=\frac{\sqrt{-\kappa}}{2}
$$

UNIFIED DEFINITION in all the spaces?

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
$\mathbb{H}^{2} \times \mathbb{R}$

$\mathbb{H}^{2} \times \mathbb{R}$
Nil_{3}

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- They also have different properties (even for critical CMC graphs):

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- They also have different properties (even for critical CMC graphs):
- Different behavior when prescribing the Gauss map:
* In Nil_{3} there is only one surface for each Gauss map
* In $\mathbb{H}^{2} \times \mathbb{R}$ there is a 2 -parametric family of surfaces with the same Gauss map

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- But they have COMMON PROPERTIES:

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- But they have COMMON PROPERTIES:
- They only depend on the unit normal vector.

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- But they have COMMON PROPERTIES:
- They only depend on the unit normal vector.
- Points with horizontal normal vector are mapped into the unit circle.

Unified definition of the Gauss map ?

- Definitions of Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3} are different.
- But they have COMMON PROPERTIES:
-They only depend on the unit normal vector.
- Points with horizontal normal vector are mapped into the unit circle.
-They relate well with the ambient isometries.

Definition of the unified Gauss map

Definition of the unified Gauss map

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\sum \xrightarrow[\substack{\text { unit normal } \\ \text { vector }}]{N} U \mathbb{E}^{3}(\kappa, \tau)
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\text { unit normal }]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\text { unit normal }]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\dot{¿} ?} \overline{\mathbb{C}}
$$

Generalized stereographic projection ?

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\text { unit normal }]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\dot{c} ?} \overline{\mathbb{C}}
$$

Generalized stereographic projection?

- Conformal diffeo at each point.

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\text { unit normal }]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\dot{c} ?} \overline{\mathbb{C}}
$$

Generalized stereographic projection?

- Conformal diffeo at each point.
- Well related with ambient isometries.

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\substack{\text { unit normal } \\ \text { vector }}]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Generalized stereographic projection?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\begin{array}{c}
\text { unit normal } \\
\text { vector }
\end{array}]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Generalized stereographic projection ?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Moreover, if $v \in U_{p} \mathbb{E}$ is horizontal, then it is mapped into the endpoint of the geodesic of $\mathbb{H}^{2}(\kappa)$ starting at $\pi(p)$ with speed $d \pi_{p}(v)$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\substack{\text { unit normal } \\ \text { vector }}]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Generalized stereographic projection ?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Moreover, if $v \in U_{p} \mathbb{E}$ is horizontal, then it is mapped into the endpoint of the geodesic of $\mathbb{H}^{2}(\kappa)$ starting at $\pi(p)$ with speed $d \pi_{p}(v)$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\begin{array}{c}
\text { unit normal } \\
\text { vector }
\end{array}]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Generalized stereographic projection ?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Moreover, if $v \in U_{p} \mathbb{E}$ is horizontal, then it is mapped into the endpoint of the geodesic of $\mathbb{H}^{2}(\kappa)$ starting at $\pi(p)$ with speed $d \pi_{p}(v)$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\sum \xrightarrow[\substack{\text { unit normal } \\ \text { vector }}]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\text { i? }} \overline{\mathbb{C}}
$$

Generalized stereographic projection?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Moreover, if $v \in U_{p} \mathbb{E}$ is horizontal, then it is mapped into the endpoint of the geodesic of $\mathbb{H}^{2}(\kappa)$ starting at $\pi(p)$ with speed $d \pi_{p}(v)$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \xrightarrow[\text { unit normal }]{N} U \mathbb{E}^{3}(\kappa, \tau) \xrightarrow{\dot{c} ?} \overline{\mathbb{C}}
$$

Generalized stereographic projection ?

- Conformal diffeo at each point.
- Well related with ambient isometries.
- Vectors go to the unit circle iff they are horizontal.

Moreover, if $v \in U_{p} \mathbb{E}$ is horizontal, then it is mapped into the endpoint of the geodesic of $\mathbb{H}^{2}(\kappa)$ starting at $\pi(p)$ with speed $d \pi_{p}(v)$

PROPOSITION
! There is only one way of doing this \vdots (and it has a nice explicit expression)

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\Sigma \underset{\substack{\text { unit normal } \\ \text { vector }}}{N} U \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \overline{\mathbb{C}}
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration
$\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
G(p)=\frac{N_{1}+i N_{2}+c\left(1+N_{3}\right) \pi(p)}{1+N_{3}+c\left(N_{1}+i N_{2}\right) \pi(p)} \quad c=\frac{\sqrt{-\kappa}}{2}
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$

> For all
> $E(k, t)$ spaces!
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
G(p)=\frac{N_{1}+i N_{2}+c\left(1+N_{3}\right) \pi(p)}{1+N_{3}+c\left(N_{1}+i N_{2}\right) \pi(p)} \quad c=\frac{\sqrt{-\kappa}}{2}
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$

> For all
> $\mathrm{E}(\mathrm{k}, \mathrm{t})$ spaces!
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface
$\mathrm{G}=$ Gauss map for surfaces in $\mathbb{E}^{3}(\kappa, \tau)$

$$
G(p)=\frac{N_{1}+i N_{2}+c\left(1+N_{3}\right) \pi(p)}{1+N_{3}+c\left(N_{1}+i N_{2}\right) \pi(p)} \quad c=\frac{\sqrt{-\kappa}}{2}
$$

it agrees with the prev. known Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3}

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$

> For all
> $\mathrm{E}(\mathrm{k}, \mathrm{t})$ spaces!
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$
\underset{\text { surfaces in } \mathbb{E}^{3}(\kappa, \tau)}{\mathrm{G}=\text { Gauss map for }} \Sigma \underset{\substack{\text { unit normal } \\ \text { vector }}}{N} U \mathbb{E}^{3}(\kappa, \tau)
$$

$$
G(p)=\frac{N_{1}+i N_{2}+c\left(1+N_{3}\right) \pi(p)}{1+N_{3}+c\left(N_{1}+i N_{2}\right) \pi(p)} \quad c=\frac{\sqrt{-\kappa}}{2}
$$

it agrees with the prev. known Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3}

Daniel, --, Mira : If the surface has CRITICAL CMC then G satisfies

$$
\left(1-|G|^{2}\right) G_{z \bar{z}}+2 \bar{G} G_{z} G_{\bar{z}}=0
$$

Definition of the unified Gauss map

$\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$
For all
$E(k, t)$ spaces!
$\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

stereographic
projection

$$
G(p)=\frac{N_{1}+i N_{2}+c\left(1+N_{3}\right) \pi(p)}{1+N_{3}+c\left(N_{1}+i N_{2}\right) \pi(p)} \quad c=\frac{\sqrt{-\kappa}}{2}
$$

 prev. known Gauss maps in $\mathbb{H}^{2} \times \mathbb{R}$ and Nil_{3}

Daniel, --, Mira : If the surface has CRITICAL CMC then G satisfies

$$
\left(1-|G|^{2}\right) G_{z \bar{z}}+2 \bar{G} G_{z} G_{\bar{z}}=0
$$

In particular, G is harmonic into $\mathbb{D} \equiv \mathbb{H}^{2}$ for CRITICAL CMC local graphs.

Representation formula

$X: \Sigma \rightarrow \mathbb{E}^{3}(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph)
$G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map
Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

$$
\left\{\begin{array}{ll}
\zeta_{z}=\frac{2}{c+i \tau} \frac{(1-c \zeta \bar{G})^{2}}{\left(1-|G|^{2}\right)^{2}} G_{z} & \begin{array}{l}
X=\left(x_{1}, x_{2}, x_{3}\right) \\
\zeta=x_{1}+i x_{2}
\end{array} \\
\zeta_{\bar{z}}=\frac{-2}{c-i \tau} \frac{(G-c \zeta)^{2}}{\left(1-|G|^{2}\right)^{2}} \bar{G}_{\bar{z}} & c=\text { mean curvature }=\frac{\sqrt{-\kappa}}{2}
\end{array}\right\}
$$

Representation formula

$X: \Sigma \rightarrow \mathbb{E}^{3}(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph)
$G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map
Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

$$
\begin{cases}\zeta_{z}=\frac{2}{c+i \tau} \frac{(1-c \zeta \bar{G})^{2}}{\left(1-|G|^{2}\right)^{2}} G_{z} & X= \\ \zeta_{\bar{z}}=\frac{-2}{c-i \tau} \frac{(G-c \zeta)^{2}}{(1 \mathbf{S O M} \mathbf{Q}} \text { (formula } & c=x \\ \left(x_{3}\right)_{z}=\frac{-2}{c+i \tau} \frac{(\bar{G}-c \bar{\zeta})(1-c \zeta \bar{G})}{\left(1-c^{2}|\zeta|^{2}\right)\left(1-|G|^{2}\right)^{2}} G_{z}+\frac{i \tau}{2} \frac{\zeta \bar{\zeta}_{z}-\bar{\zeta} \zeta_{z}}{1-c^{2}|\zeta|^{2}}\end{cases}
$$

Representation fornuda

$X: \Sigma \rightarrow \mathbb{E}^{3}(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph)
$G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map
Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

$$
\begin{array}{cl}
\zeta_{z}=\frac{2}{c+i \tau} \frac{(1-c \zeta \bar{G})^{2}}{\left(1-|G|^{2}\right)^{2}} G_{z} & \begin{array}{l}
X= \\
\zeta=x
\end{array} \\
\zeta_{\bar{z}}=\frac{-2}{c-i \tau} \frac{(G-c \zeta)^{2}}{(1 \text { SOM }} \mathbf{\text { e }} \text { (formula } & c=\text { mean }
\end{array}
$$

How many different immersions X are there?

* For $\mathbf{k}<0$ there is a 2 -parametric family of surfaces with the same Gauss map
* For $\mathbf{k}=\mathbf{0}$ there is only one surface for each Gauss map

Summarizing...

There exist a (unified)
Gauss map in all the $\mathrm{E}(\mathrm{k}, \mathrm{t})$ spaces ? (harmonic for critical CMC surfaces)

Summarizing...

There exist a (unified) Gauss map in all the $\mathrm{E}(\mathrm{k}, \mathrm{t})$ spaces ? (harmonic for critical CMC surfaces)

MAIN THEOREM (--, Daniel, Mira):

There exists a unified definition for the Gauss map of a surface in $\mathbb{E}^{3}(\kappa, \tau)$ s.t.:
I) Two surfaces are tangent at one point iff their Gauss maps agree at this point.
2) If the surface is a local graph, then G lies in the unit disc.
3) If in addition the surface has critical $C M C$, then G is harmonic into \mathbb{H}^{2} and nowhere antiholomorphic.

Using coordinates w.r.t the canonical frame:

$$
\mathrm{G}=\frac{N_{1}+i N_{2}+c \zeta\left(1+N_{3}\right)}{c \bar{\zeta}\left(N_{1}+i N_{2}\right)+1+N_{3}}
$$

Summarizing...

There exist a (unified) Gauss map in all the $\mathrm{E}(\mathrm{k}, \mathrm{t})$ spaces ? (harmonic for critical CMC surfaces)

MAIN THEOREM (--, Daniel, Mira):

There exists a unified definition for the Gauss map of a surface in $\mathbb{E}^{3}(\kappa, \tau)$ s.t.:
I) Two surfaces are tangent at one point iff their Gauss maps agree at this point.
2) If the surface is a local graph, then G lies in the unit disc.
3) If in addition the surface has critical CMC, then G is harmonic into \mathbb{H}^{2} and nowhere antiholomorphic.

Using coordinates w.r.t the canonical frame:

$$
\mathrm{G}=\frac{N_{1}+i N_{2}+c \zeta\left(1+N_{3}\right)}{c \bar{\zeta}\left(N_{1}+i N_{2}\right)+1+N_{3}}
$$

CONVERSELY, any nowhere antiholom. harmonic map from a simply connected surface into \mathbb{H}^{2} is the Gauss map of a critical CMC local graph in $\mathbb{E}^{3}(\kappa, \tau)$

the GAUSS MAP for CMC SURFACES in HOMOGENEOUS SPACES

ISABEL FERNÁNDEZ

Instituto de Matemáticas IMUS
Universidad de Sevilla

Joint work with
PABLO MIRA and BENOIT DANIEL

The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015)

Fall workshop on Geometry and Physics

Braga, September 2017

the GAUSS MAP

for CMC SURFACES

in HOMOGENEOUS SPACES

The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015)

[^0]: horizontal vectors
 upwards vectors
 \longleftrightarrow unit circle

