the GAUSS MAP for CMC SURFACES in HOMOGENEOUS SPACES

ISABEL FERNÁNDEZ

Instituto de Matemáticas IMUS Universidad de Sevilla

Joint work with PABLO MIRA and BENOIT DANIEL

The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015) XXVI Fall workshop on Geometry and Physics

Braga, September 2017

• Sectional curvatures: curvature of the normal sections.

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat.

(= eigenvalues of the 2nd fund. form)

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat.

(= eigenvalues of the 2nd fund. form)

• Mean curvature: arthimetic mean of the principal curvat.

(= 1/2 (trace of the 2nd fund. form))

- Sectional curvatures: curvature of the normal sections.
- Principal curvatures: max and min of the sectional curvat. (= eigenvalues of the 2nd fund. form)
- Mean curvature: arthimetic mean of the principal curvat.

(= 1/2 (trace of the 2nd fund. form))

CMC surface = CONSTANT MEAN CURVATURE surface

Among all the surfaces lying on a fixed curve,

Among all the surfaces lying on a fixed curve,

Which one has less area ?

A surface is locally <u>area minimizing</u>

Its mean curvature vanishes identically

(CMC=0, MINIMAL SURFACES)

Among all the surfaces lying on a fixed curve,

Which one has less area ?

A surface is locally area minimizing

Its mean curvature vanishes identically

(CMC=0, MINIMAL SURFACES)

Among all the surfaces lying on a fixed curve,

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Among all the surfaces lying on a fixed curve, and enclosing a fixed volume

Which one has less area ?

A surface is locally <u>area minimizing</u> among those enclosing a <u>fixed volume</u>

Its mean curvature is constant everywhere

(CMC SURFACES)

Some examples in \mathbb{R}^3

Some examples in \mathbb{R}^3

 $H \neq 0$

Some examples in \mathbb{R}^3

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

• "On a sphere, any holomorphic quadratic differential must vanish identically"

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^3 is a plane

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^3 is a plane

PROOF: The unit normal vector field (Gauss map) is holomorphic for minimal surf.

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

- "On a sphere, any holomorphic quadratic differential must vanish identically"
- Zeroes of the Hopf differential agree with the umbilical points.
- Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in \mathbb{R}^3 is a plane

PROOF: The unit normal vector field (*Gauss map*) is holomorphic for minimal surf. (if the surface is an entire graph, it is a holomorphic map from \mathbb{C} into \mathbb{S}_+^2)

The Gauss map in \mathbb{R}^3

 $\Sigma \subset \mathbb{R}^3$ surface

The Gauss map in \mathbb{R}^3 $\Sigma \subset \mathbb{R}^3 \text{ surface}$

The Gauss map in \mathbb{R}^3 N(p) $\Sigma \subset \mathbb{R}^3$ surface Ρ G(p) $\mathsf{G}:\Sigma\to\mathbb{S}^2\equiv\overline{\mathbb{C}}$ st.proj.

- The Gauss map of CMC surfaces in \mathbb{R}^3 is harmonic.
- The Gauss map of minimal surfaces in \mathbb{R}^3 is holomorphic.

More general ambient 'spaces

More general ambient "spaces

- Simply connected

More general ambient "spaces

- Simply connected

- The space looks the same at any point (HOMOGENEOUS)
- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim (ISO)=6)

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim (ISO)=6)

← constant

curvature

ONLY THREE SPACES (SPACE FORMS): \mathbb{R}^3 , \mathbb{S}^3 , \mathbb{H}^3

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim (ISO)=6)

curvature

ONLY THREE SPACES (SPACE FORMS): \mathbb{R}^3 , \mathbb{S}^3 , \mathbb{H}^3

Extension of the Hopf & Bernstein theorems?

Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim (ISO)=6)

ONLY THREE SPACES (SPACE FORMS): $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

Extension of the Hopf & Bernstein theorems?

Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim (ISO)=6)

ONLY THREE SPACES (SPACE FORMS): \mathbb{R}^3 , \mathbb{S}^3 , \mathbb{H}^3

Extension of the Hopf & Bernstein theorems?

Tools:

- Holomorphic Hopf differential
- Harmonic/holomorphic Gauss map

curvature

$G: \Sigma \to \partial_{\infty} \mathbb{H}^3 \equiv \mathbb{S}^2 \equiv \overline{\mathbb{C}}$

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces

 \rightarrow (lower bound for the existence of CMC spheres)

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces (lower bound for the existence of CMC spheres)

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces (lower bound for the existence of CMC spheres)

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces (lower bound for the existence of CMC spheres)

Note: there is no critical value for the mean curvature in 3-spheres

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces (lower bound for the existence of CMC spheres)

Note: there is no critical value for the mean curvature in 3-spheres

CRITICAL CMC surfaces in space forms

→ Minimal (H=0) surfaces in \mathbb{R}^3 → Bryant (H=1) surfaces in \mathbb{H}^3

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible (dim(ISO)=6)

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\mathsf{dim}(\mathsf{ISO})\text{=}6$) only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\frac{\dim(\mathsf{ISO})=6}{}$) only $\mathbb{R}^3,\mathbb{S}^3,\mathbb{H}^3$

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible ($\frac{\dim(ISO)=6}{}$) only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

(dim(ISO)=4)

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible $(\frac{\dim(ISO)=6}{\dim(ISO)=6})$ only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ ($\dim(ISO)=4$)

 $\blacksquare \mathbb{E}^3(\kappa,\tau) \text{ spaces:}$

Fibrations over \mathbb{R}^2 , $\mathbb{S}^2(\kappa)$, $\mathbb{H}^2(\kappa)$ with constant bundle curvature τ

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible $(\frac{\dim(ISO)=6}{\dim(ISO)=6})$ only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ ($\dim(ISO)=4$)

 $\blacksquare \mathbb{E}^3(\kappa,\tau) \text{ spaces:}$

Fibrations over \mathbb{R}^2 , $\mathbb{S}^2(\kappa)$, $\mathbb{H}^2(\kappa)$ with constant bundle curvature τ

$$\mathbb{E}^{3}(\kappa, \tau) = \mathbb{D}\left(\frac{2}{\sqrt{-\kappa}}\right) \times \mathbb{R} = \{(x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : x_{1}^{2} + x_{2}^{2} < -4/\kappa\}$$

 $ds^{2} = \Lambda^{2}(dx_{1}^{2} + dx_{2}^{2}) + (\tau \Lambda(x_{2}dx_{1} - x_{1}dx_{2}) + dx_{3})^{2} \qquad \Lambda = \frac{1}{1 + \frac{\kappa}{4}(x_{1}^{2} + x_{2}^{2})}$

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible $(\frac{\dim(ISO)=6}{\dim(ISO)=6})$ only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ ($\dim(ISO)=4$)

 $\blacksquare \mathbb{E}^3(\kappa,\tau) \text{ spaces:}$

Fibrations over \mathbb{R}^2 , $\mathbb{S}^2(\kappa)$, $\mathbb{H}^2(\kappa)$ with constant bundle curvature τ

- Simply connected
- The space looks the same at any point (HOMOGENEOUS)
- As symmetric as possible $(\frac{\dim(ISO)=6}{\dim(ISO)=6})$ only $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ ($\dim(ISO)=4$)

$$\mathbb{E}^{3}(\kappa, au)$$
 spaces:

Fibrations over $\mathbb{R}^2, \mathbb{S}^2(\kappa), \mathbb{H}^2(\kappa)$

with constant bundle curvature au

base curvat. bundle curvat.	K <0	K = 0	<i>K</i> ≥0
au = 0	$\mathbb{H}^2\times\mathbb{R}$	3	$\mathbb{S}^2 imes \mathbb{R}$
τ ξ 0	$\widetilde{\mathrm{PSL}(2,\mathbb{R})}$	Nil_3	Ber_3

(lower bound for the existence of CMC spheres)

(lower bound for the existence of CMC spheres)

Extension of Hopf thm to $\mathbb{E}^3(\kappa, \tau)$

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

Extension of Hopf thm to $\mathbb{E}^3(\kappa, \tau)$

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, the Hopf differential is no longer holomorphic :(

Extension of Hopf thm to $\mathbb{E}^3(\kappa, au)$

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, the Hopf differential is no longer holomorphic :(

Abresch, Rosenberg (2004): Any topological sphere with CMC in $\mathbb{E}^3(\kappa, \tau)$ is a rotational sphere

Extension of Hopf thm to $\mathbb{E}^3(\kappa, au)$

Hopf (1951): Any topological sphere with CMC in \mathbb{R}^3 is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, the Hopf differential is no longer holomorphic :(

Abresch, Rosenberg (2004): Any topological sphere with CMC in $\mathbb{E}^3(\kappa,\tau)$ is a rotational sphere

<u>PROOF</u>: There is a modification of the Hopf differential that is holomorphic for CMC surfaces!! (AR differential)

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, au)$ spaces, it is not clear how to define such a Gauss map :
Extension of Bernstein thm to $\mathbb{E}^3(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map

F-Mira, Daniel-Hauswirth (2009):

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, au)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map

F-Mira, Daniel-Hauswirth (2009):

Classification of entire graphs with <u>critical CMC</u> in $\mathbb{E}^{3}(\kappa, \tau)$:

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, au)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map

F-Mira, Daniel-Hauswirth (2009):

Classification of entire graphs with <u>critical CMC</u> in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, au)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map

F-Mira, Daniel-Hauswirth (2009):

Classification of entire graphs with <u>critical CMC</u> in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
- The space of solutions is in bijective correspondence with the space of

{ holomorphic quadratic diff. on \mathbb{C} or \mathbb{D} } x \mathbb{C}

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map :

F-Mira, Daniel-Hauswirth (2009):

Classification of entire graphs with <u>critical CMC</u> in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
- The space of solutions is in bijective correspondence with the space of

{ holomorphic quadratic diff. on \mathbb{C} or \mathbb{D} } x \mathbb{C}

PROOF:

- A <u>hyperbolic Gauss map</u> for surfaces in $\mathbb{E}^3(-1,0)$ that is harmonic for CRITICAL CMC surf.

Extension of Bernstein thm to $\mathbb{E}^3(\kappa, \tau)$

Bernstein (1909):

Classification of entire graphs with zero CMC in \mathbb{R}^3 : they are all planes.

PROOF: The Gauss map is a (complex-valued) holomorphic map.

In the $\mathbb{E}^3(\kappa, \tau)$ spaces, it is not clear how to define such a Gauss map :

F-Mira, Daniel-Hauswirth (2009):

Classification of entire graphs with <u>critical CMC</u> in $\mathbb{E}^{3}(\kappa, \tau)$:

- There are infinitely many of them.
- The space of solutions is in bijective correspondence with the space of

{ holomorphic quadratic diff. on \mathbb{C} or \mathbb{D} } x \mathbb{C}

PROOF:

- A <u>hyperbolic Gauss map</u> for surfaces in $\mathbb{E}^3(-1,0)$ that is harmonic for CRITICAL CMC surf.

- A correspondence between CMC surfaces in all the $\mathbb{E}^3(\kappa, au)$ spaces.

 $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ simply connected homogeneous 3-spaces with dim(lso)= 6

- A holomorphic quad. differential (Hopf differential)

 $\mathbb{E}^3(\kappa, au)$

simply connected homogeneous 3-spaces with dim(Iso)= **4**

simply connected homogeneous 3-spaces with dim(Iso)= **6**

- A holomorphic quad. differential (Hopf differential)

 $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

 $\mathbb{E}^3(\kappa, au)$

simply connected homogeneous 3-spaces with dim(lso)= **4**

- A holomorphic quad. differential (AR differential)

simply connected homogeneous 3-spaces with dim(Iso)= **6**

- A holomorphic quad. differential (Hopf differential)

 $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

- A holomorphic Gauss map for CRITICAL CMC surfaces - A holomorphic quad. differential (AR differential)

 $\mathbb{E}^{3}(\kappa, au)$

simply connected

homogeneous 3-spaces

with dim(lso)= 4

simply connected homogeneous 3-spaces with dim(Iso)= **6**

- A holomorphic quad. differential (Hopf differential)

 $\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$

- A holomorphic Gauss map for CRITICAL CMC surfaces

$$\mathbb{E}^3(\kappa, au)$$

simply connected homogeneous 3-spaces with dim(lso)= **4**

- A holomorphic quad. differential (AR differential)

- A harmonic Gauss map for CRITICAL CMC surfaces ?

 \sum

 $\mathbb{H}^2 \times \mathbb{R}$

 $\mathbb{H}^2 \times \mathbb{R}$

 $\mathbb{H}^2 \times \mathbb{R}$

 $\mathbb{H}^2 \times \{0\}$

hyperbolic

Gauss map

$$G: \Sigma \to \partial_{\infty} \mathbb{H}^3 \equiv \mathbb{S}^2_{st.proj.} \overline{\mathbb{C}}$$

horizontal vectors \longleftrightarrow unit circle upwards vectors \longleftrightarrow interior disc

 $\mathbb{H}^2 \times \{0\}$

$$G: \Sigma \to \partial_{\infty} \mathbb{H}^3 \equiv \mathbb{S}^2_{\substack{\text{st.proj.}}} \overline{\mathbb{C}}$$
 hyperbolic
Gauss map
horizontal vectors \longleftrightarrow unit circle
upwards vectors \longleftrightarrow interior disc

In particular, for local graphs G takes values into $\mathbb D$

hyperbolic

Gauss map

$$G: \Sigma \to \partial_{\infty} \mathbb{H}^3 \equiv \mathbb{S}^2 \equiv \overline{\mathbb{C}}$$

horizontal vectors \longleftrightarrow unit circle upwards vectors \longleftrightarrow interior disc

In particular, for local graphs G takes values into \mathbb{D}

--, Mira (2007) :

• G satisfies $(1 - |G|^2) G_{z\bar{z}} + 2\bar{G} G_z G_{\bar{z}} = 0$

for CRITICAL CMC surfaces in $\mathbb{H}^2 imes \mathbb{R}$

hyperbolic

Gauss map

$$G: \Sigma \to \partial_{\infty} \mathbb{H}^3 \equiv \mathbb{S}^2 \equiv \overline{\mathbb{C}}$$

horizontal vectors \longleftrightarrow unit circle upwards vectors \longleftrightarrow interior disc

In particular, for local graphs G takes values into $\mathbb D$

--, Mira (2007) :

• G satisfies $(1 - |G|^2) G_{z\bar{z}} + 2\bar{G} G_z G_{\bar{z}} = 0$

for CRITICAL CMC surfaces in $\mathbb{H}^2\times\mathbb{R}$

• In particular, G is <u>HARMONIC</u> into $\mathbb{D}\equiv\mathbb{H}^2$ for CRITICAL CMC local graphs

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$Nil_3 = (\mathbb{R}^3, ds^2)$$
$$ds^2 = dx^2 + dy^2 + \left(\frac{1}{2}(ydx - xdy) + dz\right)^2$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$Nil_3 = (\mathbb{R}^3, ds^2)$$
$$ds^2 = dx^2 + dy^2 + (\frac{1}{2}(ydx - xdy) + dz)^2$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$Nil_3 = (\mathbb{R}^3, ds^2)$$
$$ds^2 = dx^2 + dy^2 + \left(\frac{1}{2}(ydx - xdy) + dz\right)^2$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$\operatorname{Nil}_{3} = (\mathbb{R}^{3}, ds^{2})$$
$$ds^{2} = dx^{2} + dy^{2} + (\frac{1}{2}(ydx - xdy) + dz)^{2}$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$\operatorname{Nil}_{3} = (\mathbb{R}^{3}, ds^{2})$$
$$ds^{2} = dx^{2} + dy^{2} + (\frac{1}{2}(ydx - xdy) + dz)^{2}$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$\operatorname{Nil}_{3} = (\mathbb{R}^{3}, ds^{2})$$
$$ds^{2} = dx^{2} + dy^{2} + (\frac{1}{2}(ydx - xdy) + dz)^{2}$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$\operatorname{Nil}_{3} = (\mathbb{R}^{3}, ds^{2})$$
$$ds^{2} = dx^{2} + dy^{2} + (\frac{1}{2}(ydx - xdy) + dz)^{2}$$

- Critical value for MC : H=0
- LIE GROUP structure (left translations are isometries)

$$\operatorname{Nil}_{3} = (\mathbb{R}^{3}, ds^{2})$$
$$ds^{2} = dx^{2} + dy^{2} + (\frac{1}{2}(ydx - xdy) + dz)^{2}$$

Daniel (2011) : G is <u>harmonic into \mathbb{H}^2 </u> for CRITICAL CMC local graphs in Nil3

$\mathbb{E}^3(\kappa, au)$ spaces) k < 0	k = 0	k > 0
T	t = 0	$\mathbb{H}^2 imes \mathbb{R}$	\mathbb{R}^3	$\mathbb{S}^2 imes \mathbb{R}$
	t \ € 0	$\widetilde{\mathrm{PSL}(2,\mathbb{R})}$	Nil_3	Ber_3

Critical value for the mean curvature:

$$H = \frac{\sqrt{-\kappa}}{2}$$

Critical value for the mean curvature:

$$H = \frac{\sqrt{-\kappa}}{2}$$

Existence of complex-valued Gauss map, harmonic for critical CMC surfaces

$$\mathbb{H}^2 \times \mathbb{R}$$

$$\mathbb{N}il_3$$

$$\mathbb{P}SL(2,\mathbb{R})$$

Critical value for the mean curvature:

$$H = \frac{\sqrt{-\kappa}}{2}$$

Existence of complex-valued Gauss map, harmonic for critical CMC surfaces

UNIFIED DEFINITION

in all the spaces ?

$$\mathbb{H}^2 \times \mathbb{R}$$

$$\mathbb{N}il_3$$

$$\mathbb{P}SL(2,\mathbb{R})$$

Unified definition of the Gauss map ?

• Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.

Unified definition of the Gauss map ?

• Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- They also have different properties (even for critical CMC graphs):

- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- They also have different properties (even for critical CMC graphs):
 - Different behavior when prescribing the Gauss map:
 - * In Nil_3 there is only one surface for each Gauss map
 - * In $\mathbb{H}^2 \times \mathbb{R}$ there is a 2-parametric family of surfaces with the same Gauss map

• Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.

- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- But they have COMMON PROPERTIES:

- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- But they have COMMON PROPERTIES:
 - They only depend on the unit normal vector.

- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- But they have COMMON PROPERTIES:
 - They only depend on the unit normal vector.
 - Points with horizontal normal vector are mapped into the unit circle.

- Definitions of Gauss maps in $\mathbb{H}^2 \times \mathbb{R}$ and Nil_3 are different.
- But they have COMMON PROPERTIES:
 - They only depend on the unit normal vector.
 - Points with horizontal normal vector are mapped into the unit circle.
 - They relate well with the ambient isometries.

 $\kappa < 0$

 $\mathbb{E}^3(\kappa, au)$ is a fibration over $\mathbb{H}^2(\kappa)$

 $\pi: \mathbb{E}^3(\kappa, \tau) \longrightarrow \mathbb{H}^2(\kappa)$ projection to the base of the fibration

 $\kappa < 0$

 $\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$ $\pi : \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

 $\mathbb{E}^{3}(\kappa, \tau) \text{ is a fibration over } \mathbb{H}^{2}(\kappa)$ $\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa) \text{ projection to the base of the fibration}$ $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau) \text{ surface}$ $\sum_{k=1}^{N} N = \sum_{k=1}^{N} \sqrt{N}$

 $\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$ $\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

 $\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$ $\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

 $\kappa < 0$

 $\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$ $\pi : \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

 $\kappa < 0$

 $\mathbb{E}^{3}(\kappa, \tau)$ is a fibration over $\mathbb{H}^{2}(\kappa)$ $\pi: \mathbb{E}^{3}(\kappa, \tau) \longrightarrow \mathbb{H}^{2}(\kappa)$ projection to the base of the fibration $\Sigma \subset \mathbb{E}^{3}(\kappa, \tau)$ surface

$$\begin{split} & \mathbb{E}^{3}(\kappa,\tau) \text{ is a fibration over } \mathbb{H}^{2}(\kappa) & \text{For all} \\ & \pi: \mathbb{E}^{3}(\kappa,\tau) \longrightarrow \mathbb{H}^{2}(\kappa) \text{ projection to the base of the fibration} \\ & \Sigma \subset \mathbb{E}^{3}(\kappa,\tau) \text{ surface} \end{split}$$

$$\begin{split} & \mathbb{E}^{3}(\kappa,\tau) \text{ is a fibration over } \mathbb{H}^{2}(\kappa) & \text{For all} \\ & \pi: \mathbb{E}^{3}(\kappa,\tau) \longrightarrow \mathbb{H}^{2}(\kappa) \text{ projection to the base of the fibration} \\ & \Sigma \subset \mathbb{E}^{3}(\kappa,\tau) \text{ surface} \end{split}$$

$$\begin{split} & \mathbb{E}^{3}(\kappa,\tau) \text{ is a fibration over } \mathbb{H}^{2}(\kappa) & \text{For all} \\ & \pi: \mathbb{E}^{3}(\kappa,\tau) \longrightarrow \mathbb{H}^{2}(\kappa) \text{ projection to the base of the fibration} \\ & \Sigma \subset \mathbb{E}^{3}(\kappa,\tau) \text{ surface} \end{split}$$

Daniel, --, Mira : If the surface has CRITICAL CMC then G satisfies $(1 - |G|^2) G_{z\bar{z}} + 2\bar{G} G_z G_{\bar{z}} = 0$

$$\begin{split} & \mathbb{E}^{3}(\kappa,\tau) \text{ is a fibration over } \mathbb{H}^{2}(\kappa) & \text{For all} \\ & \pi: \mathbb{E}^{3}(\kappa,\tau) \longrightarrow \mathbb{H}^{2}(\kappa) \text{ projection to the base of the fibration} \\ & \Sigma \subset \mathbb{E}^{3}(\kappa,\tau) \text{ surface} \end{split}$$

Daniel, --, Mira : If the surface has CRITICAL CMC then G satisfies $(1 - |G|^2) G_{z\bar{z}} + 2\bar{G} G_z G_{\bar{z}} = 0$ In particular, G is <u>harmonic</u> into $\mathbb{D} \equiv \mathbb{H}^2$ for CRITICAL CMC local graphs.

Representation formula

 $X: \Sigma \to \mathbb{E}^3(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph) $G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map

Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

Representation formula

 $X: \Sigma \to \mathbb{E}^3(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph) $G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map

Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

Representation formula

 $X: \Sigma \to \mathbb{E}^3(\kappa, \tau)$ CRITICAL CMC inmersion (doesn't have to be a local graph) $G: \Sigma \longrightarrow \overline{\mathbb{C}}$ its Gauss map

Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

How many different immersions X are there ?

- * For k<0 there is a 2-parametric family of surfaces with the same Gauss map
- * For **k=0** there is only one surface for each Gauss map

Summarizing...

There exist a (unified) Gauss map in all the E(k,t) spaces ? (harmonic for critical CMC surfaces)

Summarizing...

There exist a (unified) Gauss map in all the E(k,t) spaces ? (harmonic for critical CMC surfaces)

MAIN THEOREM (--, Daniel, Mira):

There exists a <u>unified definition</u> for the Gauss map of a surface in $\mathbb{E}^3(\kappa, \tau)$ s.t.:

- I) Two surfaces are tangent at one point iff their Gauss maps agree at this point.
- 2) If the surface is a local graph, then G lies in the unit disc.
- 3) If in addition the surface has critical CMC, then G is harmonic into \mathbb{H}^2 and nowhere antiholomorphic.

Using coordinates w.r.t the *canonical frame*:

 $\mathbf{G} = \frac{N_1 + iN_2 + c\zeta(1+N_3)}{c\bar{\zeta}(N_1 + iN_2) + 1 + N_3}$

Summarizing...

There exist a (unified) Gauss map in all the E(k,t) spaces ? (harmonic for critical CMC surfaces)

MAIN THEOREM (--, Daniel, Mira):

There exists a <u>unified definition</u> for the Gauss map of a surface in $\mathbb{E}^3(\kappa, \tau)$ s.t.:

- I) Two surfaces are tangent at one point iff their Gauss maps agree at this point.
- 2) If the surface is a local graph, then G lies in the unit disc.
- 3) If in addition the surface has critical CMC, then G is harmonic into \mathbb{H}^2 and nowhere antiholomorphic.

Using coordinates w.r.t the *canonical frame*:

 $\mathbf{G} = \frac{N_1 + iN_2 + c\zeta(1+N_3)}{c\overline{\zeta}(N_1 + iN_2) + 1 + N_3}$

CONVERSELY, any nowhere antiholom. harmonic map from a simply connected surface into \mathbb{H}^2 is the Gauss map of a critical CMC local graph in $\mathbb{E}^3(\kappa, \tau)$

the GAUSS MAP for CMC SURFACES in HOMOGENEOUS SPACES

ISABEL FERNÁNDEZ

Instituto de Matemáticas IMUS Universidad de Sevilla

Joint work with PABLO MIRA and BENOIT DANIEL

The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015) Fall workshop on Geometry and Physics

Braga, September 2017
the GAUSS MAP for CMC SURFACES in HOMOGENEOUS SPACES

ISABEL FERNÁNDEZ

Instituto de Matemática IM Universidad de evilla

Joint work with PABLO MIRA and BENOIT DANIEL

The Gauss map of surfaces in PSL(2,R), Calc. Var. Partial Differ. Equ. (2015) Geometry and Physics

Braga, September 2017