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CURVATURE: e Sectional curvatures: curvature of the normal sections.

* Principal curvatures: max and min of the sectional curvat.
(= eigenvalues of the 2nd fund. form)

* Mean curvature: arthimetic mean of the principal curvat.

(= 1/2 (trace of the 2nd fund. form) )

CMC surface = CONSTANT MEAN CURVATURE surface




Surfaces that minimize the area (l)



Surfaces that minimize the area (l)

—")

closed curve

|

R R R ——————————————————————————————E R —————————————————————————==———




Surfaces that minimize the area (l)

Among all the

lying on a fixed curve,
/1Y

B

. ?
Which one has less area ! closed curve




Surfaces that minimize the area (l)

Among all the

lying on a fixed curve,
~N

- /

. ?
Which one has less area ! closed curve

A surface is locally Its mean curvature
area minimizing vanishes identically

(CMC=0, MINIMAL SURFACES)




Surfaces that minimize the area (l)

Among all the

lying on a fixed curve,
~N

—~ /

. ?
Which one has less area ! closed curve

A surface is locally Its mean curvature
area minimizing vanishes identically

(CMC=0, MINIMAL SURFACES)




Surfaces that minimize the area (ll)



Surfaces that minimize the area (ll)

Among all the
lying on a fixed curve,

-_—

Which one has less area ?




Surfaces that minimize the area (ll)

Among all the (A?ane
lying on a fixed curve, o™

and enclosing a fixed volume %//

Which one has less area ?




Surfaces that minimize the area (ll)

Among all the
lying on a fixed curve,

and enclosing a fixed volume

Which one has less area ?




Surfaces that minimize the area (ll)

Among all the (A?ane
lying on a fixed curve, o™

and enclosing a fixed volume %//

Which one has less area ?




Surfaces that minimize the area (ll)

Among all the eV

e
lying on a fixed curve, o™
5

and enclosing a fixed volume M
-~ -~

Which one has less area ?

A surface is locally
area minimizing
among those enclosing

a fixed volume (CMC SURFACES)

Its is
constant everywhere
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2 basic results on CMC in R”

Hopf (1951): Any topological sphere with CMC in R*is a round sphere

PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

* “On a sphere, any holomorphic quadratic differential must vanish identically”
» Zeroes of the Hopf differential agree with the umbilical points.

Thus, the sphere must be totally umbillical (it's a round sphere)

Bernstein (1909): Any entire minimal graph in R" is a plane

PROOF: The unit normal vector field (Gauss map) is holomorphic for minimal surf.

(if the surface is an entire graph, it is a holomorphic map from C into S_% )
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The Gauss map in R”

N(p)
> C RB surface /

G:Y —>S°=C

st.prol:

 The Gauss map of CMC surfaces in R® is harmonic.

. @ The Gauss map of minimal surfaces in R” is holomorphic.
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More general ambient “spaces

- Simply connected

- The space looks t

ne same at any point (HOMOGENEOUS) <€ constant

- As symmetric as possible ( dim (ISO)=6) curvature

ONLY THREE SPACES (SPACE FORMS): R? S3 H3

Extension of the Hopf & Bernstein theorems!?

Tools:

- Harmonic/holomorphic Gauss map

lolomorphic

lopf differential

only in some Gases
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The Gauss map in F

G(p)

f geodesic
D

p

S? = o, H’



The Gauss map in [

c‘hyperbonc
Gauss M9P_
, G(p)
G: X
. - / geodesic
0. H°> =S°=C - f
P

St.PrO\'

2
S? = o, H”
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Gauss P D
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The Gauss map in [

G(p)
lic al

uhyperbo .

Gauss map f,“geodesic
s 5: 4

G: Y=o, H =S*=C
st.pon
S? = 9, H°

. Bryant (1988): G is holomorphic for CMC=1 surfaces in H°

e T \

Bryant surfaces



Critical mean curvature

H=0, H=1 are the |CRITICAL values for the mean curvature in these spaces



Critical mean curvature

H=0, H=1 are the |CRITICAL values for the mean curvature in these spaces
l—->(Iower bound for the existence of CMC spheres)



Critical mean curvature

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces
l—-»(lower bound for the existence of CMC spheres)

spheres
H>0




Critical mean curvature

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces
l—->(Iower bound for the existence of CMC spheres)

spheres

spheres H>1

H>0

---------
_----- N
- -~

~
- -
_______




Critical mean curvature

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces
l—->(Iower bound for the existence of CMC spheres)

RS H
spheres
spheres (| /7 H > 1 --
H>0 f.'_-_-_- - -
H=0 B=1

Note: there is no critical value for the mean curvature in 3-spheres |




Critical mean curvature

H=0, H=1 are the CRITICAL values for the mean curvature in these spaces
l—->(Iower bound for the existence of CMC spheres)

R3 H>
spheres
spheres (| /7 H > 1 --
H>0 ~ -
H=0 A=1

Note: there is no critical value for the mean curvature in 3-spheres |

o Minimal (H=0) surfaces in RS

CRITICAL CMC surfaces in space forms
P ~ Bryant (H=1) surfaces in H°
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- Simply connected

- The space looks the same at any point (HOMOGENEOUS)

- As symmetric as possible ctsa3=4) only R?, S H?
( dim(1SO)=4)

: : 2 Q2 2
’ 433(/%,7‘) SPACES. Fibrations over R*, S*(x), H*(k)

with constant bundle curvature 7

2
vV —FK

ds? — Az(d)cl2 -+ dx%) + (t A(xodx; — x1dxr) + dX3)2 A

B3 (k, T) = ]DD(

) x R = {(z1,22,23) ER® : 27+ 25 < —4/K}

1
L+ A+ xd)
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- Simply connected

- The space looks the same at any point (HOMOGENEOUS)

- As symmetric as possible ctsa3=4) only R?, S H?
( dim(1SO)=4)

: : 2 Q2 2
’ 433(/%,7‘) SPACES. Fibrations over R*, S*(x), H*(k)

with constant bundle curvature 7

base

unde | K <0 K =0 K >0

curvat.

T=0 |H?’xR )}{3 S’ x R

T %0 |PSL(2,R)| Nils Bers




Critical Mean Curvature



Critical Mean Curvature

( lower bound for the existence of CMC spheres )

R3 H3
spheres
H>0

o H=0 '




Critical Mean Curvature

( lower bound for the existence of CMC spheres )

RS H3
spheres
H>0
. Ceritical value — ) _ v —F

> in B (k, T) 2
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PROOF: The Hopf differential (defined in terms of the 2nd f.f.) is holomorphic.

In the E°(k, 7) spaces, the Hopf differential is no longer holomorphic
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Extension of Hopf thm to E*(x, 7)

Abresch, Rosenberg (2004):
. Any topological sphere with CMC in 433(/1, T) is a rotational sphere

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

PROOF: There is a modification of the Hopf differential that is holomorphic
for CMC surfaces!! (AR differential)
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Extension of Bernstein thm to E°(k, 7)

. Bernstein (1909): :
. Classification of entire graphs with zero CMC in R, they are all planes. :

. F-Mira, Daniel-Hauswirth (2009):
Classification of entire graphs with critical CMC in [E°(k, 7):

- There are infinitely many of them.
- The space of solutions is in bijective correspondence with the space of
{ holomorphic quadratic diff. on Cor D } x C

PROOF:
- A hyperbolic Gauss map for surfaces in E°(—1,0) that is harmonic for CRITICAL CMC surf.

- A correspondence between CMC surfaces in all the EB(/{, T) spaces.
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simply connected

RS’ 837 HS homogeneous 3-spaces

with dim(Iso)= 6

- A holomorphic quad. differential
(Hopf differential)

- A holomorphic Gauss map for
CRITICAL CMC surfaces

simply connected

| y (/{ T) homogeneous 3-spaces
% with dim(lso)= 4

- A holomorphic quad. differential
(AR differential)

- A harmonic Gauss map for
~ CRITICAL CMC surfaces !
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— ebe“C
G:Y— @OOHS =$?’=C gﬁjss map

5’(,.\3"0.\'

>
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Hyperbolic Gauss map in E°(—1,0) = H* x R

9 _ hYPerbO“C
G:Y— @Ong =5=C Gauss MaP

st.\)ro.\'

>

horizontal vectors « unit circle /
upwards vectors «—» interior disc X2
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_ ebe“C
G:YX— é)OOIHP = S*=C gﬁjss map

st.\)ro.\'

>

horizontal vectors <«<—— Uunit circle /

upwards vectors «—» interior disc

In particular, for local graphs G takes values into 1D

: ==, Mira (2007) : /
e G satisfies (1 — |G|*) G,z + 2G G, G5 = 0 .
for CRITICAL CMC surfaces in H? x R

| H* x {0}




Hyperbolic Gauss map in E°(—1,0) = H* x R

o boliC
G2 = O cH" =8"=C  (gyss map
St-Pro\. < >
horizontal vectors <«<—— Uunit circle
upwards vectors «—» interior disc X2

In particular, for local graphs G takes values into 1D

-=, Mira (2007) : ) , B2 x {0)
. ® G satisfies (1 — GI°)G.: +2G G, Gz =0 '
for CRITICAL CMC surfaces in H? x R

: . . . T2
. o |n particular, G is HARMONIC into D = H

for CRITICAL CMC local graphs
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D (K, T) -
spaces k<0 k=0 k>0
t=0 |H’xR 'S S? x R
t%0 |PSL(2,R)| Nils | Bers
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What is left...

~3
4
< (Ii? T) k>0 Critical value for
SpacCes the mean curvature:
t=0 g VTR
2
tx0

Existence of complex-valued Gauss map, harmonic for critical CMC surfaces

H* x R
: UNIFIED DEFINITION
Nllg :
in all the spaces ?

; ! PSL2.R)



Unified definition of the Gauss map !

e Definitions of Gauss maps in H* x R and Nils are different.

H? x R Nil;
<l >
unit normal .
f >, v (Nl,Ng,N:) U(Nllg)
: Ieft
translation
”A Gauss map M
- UO (ng) — 82

stereogr.
pro;j.

v o

Y
C
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Unified definition of the Gauss map !

e Definitions of Gauss maps in H* x R and Nils are different.

® They also have different properties (even for critical CMC graphs):

» Different behavior when prescribing the Gauss map:
* In Nils there is only one surface for each Gauss map

* In H? x R there is 2 2-parametric family of surfaces
with the same Gauss map
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Unified definition of the Gauss map !

Definitions of Gauss maps in H” x R and Nils are different.

But they have COMMON PROPERTIES:

- They only depend on the unit normal vector.

- Points with horizontal normal vector are mapped into the unit circle.

- They relate well with the ambient isometries.
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73 (k, T) is a fibration over H? (k) k<0

7 :E3(k,7) — H*(k) projection to the base of the fibration

> CE3(k, 7) surface

X4 __
unit normal
vector ...,
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- Conformal diffeo at each point. ..'.(and it has nice a).' of doing this

-Well related with ambient isometries. T TTtteege exp .h.c.’.t.e,XPression)

- Vectors go to the unit circle iff they are horizontal.

Moreover, if v € U,E is horizontal, then it is mapped

into the endpoint of the geodesic of I[-I[Q(/{) 5 M2 =s! endpointof
o0 — the geodesic

starting at 7(p) with speed dm, (v)
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Kk <0

53 (i, T) is a fibration over H* (k)

7 : E?(k,7) — H?(k) projection to the base of the fibration

> CE3(k, 7) surface

C

G= Gauss map for Z N > UES(K ‘L’)

: 3 unit normal generalized
surfaces in [£” (k, T) o coareographic
projection
Ny + Ny +c(1+ N3)m(p) f—

G(p)

1+ N3+c(Ny+iNo)m(p) 7 "2
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L"(K, T) is a fibration over H* (k) ECk,t) spaces!

7 : E?(k,7) — H?(k) projection to the base of the fibration

> CE3(k, 7) surface
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projection X
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L"(K, T) is a fibration over H* (k) ECk,t) spaces!
7 : E?(k,7) — H?(k) projection to the base of the fibration
> CE3(k, 7) surface
G= Gauss map for 3y N > UR3 (k. T) @
: E3 unit normal ’ generalized
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projection
Glp) = Ny +iNsy + ¢ (1 + N3)7w(p) V=R rev. knownh Gauss )
1+ Ny +c(N +iNo)n(p) = 2 P 2 « R and Nils
in

 Daniel, --, Mira : If the surface has CRITICAL CMC then G satisfies
(1 — ‘G|2) ng + 2@ Gz Gz — O

In particular, G is harmonic into [) = H* for CRITICAL CMC local graphs.
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Representation formula

XX — ‘33 (K, T) CRITICAL CMC inmersion (doesn’t have to be a local graph)
G X —> C its Gauss map

Daniel, --, Mira : The surface can be recovered from the Gauss map by means of

C, = 2 (1—CCG)2G X = (x1,x2,x3)

T erir (1G22 7 L = x1 +ix

CZZ _2. (G_CC)Q égrmu\a c=meancurvature=\/f
c—1i7 (1 )

2y, = 2 (G=cQ=cCC) , ir¢l G
Coctir(I-ICP)A-IGP)2 T 2 1= ()P

How many different immersions X are there !

*  For k<O there is a 2-parametric family of surfaces with the same Gauss map

*  For k=0 there is only one surface for each Gauss map



There exist a (unified)

SU m mal"iZi ng... Gauss map in all the E(k,t) spaces ?

(harmonic for critical CMC surfaces)
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SU m mal"iZi ng... Gauss map in all the E(k,t) spaces ?

(harmonic for critical CMC surfaces)

R — |

: MAIN THEOREM (--, Daniel, Mira):

. There exists a unified definition for the Gauss map of a surface in E3(«, 1) s.t.:

|) Two surfaces are tangent at one point iff their Gauss maps agree at this point.
2) If the surface is a local graph, then G lies in the unit disc.

3) If in addition the surface has critical CMC, then G is harmonic into H*
and nowhere antiholomorphic.

~ N1 +iNy +cc(l + N3)

. Using coordinates w.r.t the canonical frame: _
cC(N1+iNy)+ 1+ N3
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MAIN THEOREM (--, Daniel, Mira):

;

. There exists a unified definition for the Gauss map of a surface in E3(«, 1) s.t.:

|) Two surfaces are tangent at one point iff their Gauss maps agree at this point.

2) If the surface is a local graph, then G lies in the unit disc.

3) If in addition the surface has critical CMC, then G is harmonic into H*

. Using coordinates w.r.t the canonical frame:

~ N1 +iNy +cc(l + N3)

ct (N1 +iNy) + 1+ N3

. CONVERSELY, any .harmonic map from a simply connected

. surface into H? is the Gauss map of a critical CMC local graph in

23 (i, T)
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