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Among all the surfaces 
lying on a fixed curve,

Which one has less area ?

A surface is locally 
area minimizing 

among those enclosing 
a fixed volume

Its mean curvature is 
constant everywhere

(CMC SURFACES)
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 (if the surface is an entire graph, it is a holomorphic map from      into       )CN : ⌃ ! S2+
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More general ambient  spaces
- Simply connected

- The space looks the same at any point (HOMOGENEOUS)

- As symmetric as possible ( dim (ISO)=6 )

3-

         constant 
curvature 

Extension of the Hopf & Bernstein theorems?

Tools: 

- Holomorphic Hopf differential 

- Harmonic/holomorphic Gauss map only in some cases

ONLY  THREE  SPACES  (SPACE FORMS) : R3, S3,H3
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Critical mean curvature

H=0

H>0
spheres

 H=0, H=1 are the CRITICAL values for the mean curvature in these spaces

spheres

H=1

H>1

(lower bound for the existence of CMC spheres)

Note: there is no critical value for the mean curvature in 3-spheres

CRITICAL CMC surfaces in space forms
Minimal (H=0) surfaces in 

Bryant (H=1) surfaces in 

R3

H3
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- The space looks the same at any point (HOMOGENEOUS) 
- As symmetric as possible ( dim(ISO)=6 )   

                 ( dim(ISO)=4 )
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R2, S2(),H2()
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α, β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of

123
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The manifold E3(κ, τ ) is diffeomorphic to R3 and isometric

• to Euclidean space R3 when (κ, τ ) = (0, 0); in this case the isometry group has dimension
six, and the fibration π is not unique,

• to the 3-dimensional Heisenberg group endowed with a left-invariant metric when κ = 0
and τ ̸= 0; we will denote it by Nil3(τ ) (up to dilations, all these metrics are isometric),

• to H2(κ) × R when κ < 0 and τ = 0, where H2(κ) is the hyperbolic plane of constant
curvature κ ,

• to the universal cover of PSL2(R) endowed with certain left-invariant metrics when κ < 0
and τ ̸= 0; we will denote it by P̃SL2(R) (up to dilations, all these metrics are isometric
to one such that κ − 4τ 2 = −1).

A vector v is said to be vertical if dπ(v) = 0 and horizontal if it is orthogonal to vertical
vectors. We let ξ be a unit vertical field in E3(κ, τ ) (the field ξ is unique up to multiplication
by −1). We say that a vector v is upwards pointing (respectively, downwards pointing) if
⟨v, ξ⟩ > 0 (respectively, ⟨v, ξ⟩ < 0).

We set

c :=
√−κ

2
.

This constant is called the critical mean curvature because there exist compact CMC H
surfaces in E3(κ, τ ) if and only if |H | > c. When κ < 0, horocylinders, i.e. inverse images
by π of horocycles of H2(κ), have CMC c. When κ = 0, vertical planes, i.e. inverse images
by π of straight lines of R2, are minimal, and hence have CMC c. In particular, any E3(κ, τ )

with κ ! 0 can be foliated by topological planes of critical CMC, all of them congruent to
each other.

A surface is said to be nowhere vertical (or a local graph) if ξ is nowhere tangent to it,
that is, if the restriction of π to the surface is a local diffeomorphism (in H2(κ) × R this
means that the surface has a regular projection on H2(κ)); it is said to be an entire graph if
the restriction of π to the surface is a global diffeomorphism onto M2(κ). The angle function
of an oriented surface % is the function ⟨N , ξ ⟩ where N is the unit normal vector field to %.
Hence, a surface is nowhere vertical if and only if its angle function does not vanish. CMC
local graphs, and in particular entire graphs, play an important role among CMC surfaces;
see for instance [8,15,20,21,23–25].

For ρ > 0 we set

D(ρ) = {z ∈ C; |z| < ρ}.
We also set

D = D(1).

We use the following model for the hyperbolic plane of constant curvature κ:

H2(κ) = D
(

2√−κ

)

endowed with the metric given in canonical coordinates (x1, x2) by

'2(dx2
1 + dx2

2 )

where

' = 1

1 + κ
4 (x2

1 + x2
2 )

= 1
1 − c2|ζ |2

123

ds2 =

D
⇣ 2p

�

⌘
⇥ R = {(x1, x2, x3) 2 R3 : x

2
1 + x

2
2 < �4/}E =
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Hyperbolic Gauss map in E3(�1, 0) = H2 ⇥ R
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The harmonic Gauss map

In space forms...

• R3: The Gauss map of H = 0 surfaces is conformal

• H3 : The hyperbolic Gauss map of H = 1 surfaces is conformal

In E3(�, ⇥) critical CMC have a harmonic Gauss map:

• H2 � R

• Nil3: comes from the left translation of the normal vector field.

• ⇧PSL2(R): a little more involved...

� hyperbolic Gauss map G.

Properties of G

• Two surfaces have the same G at a point p i� they are tangent at p.

• Good behaviour w.r.t. isometries.

• G(p) lies at the equator of S2 i� the surface is vertical at p.

• For critical CMC surfaces that are nowhere vertical G is harmonic into
S2
+ ⇤ H2.

• The surface can be recovered in terms of G (representation formula).
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Unified definition of the Gauss map ?

• Definitions of Gauss maps in              and         are different.H2 ⇥ R Nil3The harmonic Gauss map

In space forms...

• R3: The Gauss map of H = 0 surfaces is conformal

• H3 : The hyperbolic Gauss map of H = 1 surfaces is conformal
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Unified definition of the Gauss map ?

• But they have COMMON PROPERTIES:

- They only depend on the unit normal vector.

- Points with horizontal normal vector are mapped into the unit circle.  

- They relate well with the ambient isometries.

• Definitions of Gauss maps in              and         are different.H2 ⇥ R Nil3
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
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∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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ḡz
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
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A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get
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ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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- Conformal diffeo at each point.
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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(ḡ−cζ̄ )(1 − cζ ḡ)
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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- Well related with ambient isometries.

- Conformal diffeo at each point.

S ⇢ E surface⌃ �! U(Nil3) �! U0(Nil3) ⌘ S2
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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+ η

2
1−c2|ζ |2
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Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
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If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
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τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
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in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of

123

projection to the base of the fibration⇡ : E3(, ⌧) �! H2()



- Well related with ambient isometries.

- Conformal diffeo at each point.

- Vectors go to the unit circle iff they are horizontal.
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Then, using (4.18) and (4.16), we get

P = iτ
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η2+ c2η2
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ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2
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ḡz

= −c − iτ
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )
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simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
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τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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(ḡ−cζ̄ )(1 − cζ ḡ)
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)

123

Generalized stereographic projection ?

Definition of the unified Gauss map

The Gauss map of surfaces in P̃SL2(R) 523

Then, using (4.18) and (4.16), we get
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− cḡη2

2
1+c2|ζ |2
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ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2
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ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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- Well related with ambient isometries.
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- Vectors go to the unit circle iff they are horizontal.

S ⇢ E surface⌃ �! U(Nil3) �! U0(Nil3) ⌘ S2

The Gauss map of surfaces in P̃SL2(R) 523

Then, using (4.18) and (4.16), we get
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
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ĝĝz
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Then, using (4.18) and (4.16), we get
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ḡz

= −c − iτ
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Finally we get $ = −Q(g). ⊓#
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simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
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ĝĝz
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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- Well related with ambient isometries.

- Conformal diffeo at each point.

- Vectors go to the unit circle iff they are horizontal.
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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ḡz
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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- Well related with ambient isometries.

- Conformal diffeo at each point.

- Vectors go to the unit circle iff they are horizontal.
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ
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− cḡη2
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= −c − iτ
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2
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− cḡη2
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
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∂x1

and 1
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in M2(κ).
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In this section we set
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We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
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in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
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If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
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Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.
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defined by
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we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).
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|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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(ḡ−cζ̄ )(1 − cζ ḡ)
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µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where
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Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
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ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
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with

ζ = x1 + i x2.

The model we use for E3(κ, τ ) is D
(

2√−κ

)
× R when κ < 0 or R3 when κ = 0, endowed

with the metric given in canonical coordinates (x1, x2, x3) by

$2(dx2
1 + dx2

2 ) + (τ$(x2dx1 − x1dx2) + dx3)
2.

In this model we have

π(x1, x2, x3) = (x1, x2).

We consider the following orthonormal frame:

V1 = 1
$

∂

∂x1
− τ x2

∂

∂x3
, V2 = 1

$

∂

∂x2
+ τ x1

∂

∂x3
, V3 = ∂

∂x3
= ξ . (2.1)

The fields V1 and V2 are the horizontal lifts in E3(κ, τ ) by the fibration π of the fields 1
$

∂
∂x1

and 1
$

∂
∂x2

in M2(κ).

3 Definition of the Gauss map

In this section we set

κ < 0.

We will define a “geometric” Gauss map for surfaces in E3(κ, τ ) that coincides with the
hyperbolic Gauss map [14] for graphs in H2(κ) × R when τ = 0 and such that, by taking a
limit when κ → 0, we get the Gauss map defined for surfaces in Nil3 using the Lie group
structure studied in [7].

For simplicity we set E = E3(κ, τ ). We denote by Isom0(E) the connected component of
the identity in the isometry group of E. All isometries in Isom0(E) leave the field ξ invariant,
since the sectional curvature of the plane ξ⊥ is a strict minimum (see [6] for more details);
as a consequence, a fiber is mapped to another fiber. An isometry f ∈ Isom0(E) induces via
π an orientation-preserving isometry f̃ of H2(κ), i.e., f̃ ◦ π = π ◦ f ; we will say that f̃ is
the horizontal part of f . Moreover, the field ξ is a Killing field; the isometries it generates
are called vertical translations and their horizontal part is the identity. Let

SU1,1 =
{(

α β

β̄ ᾱ

)
; (α,β) ∈ C2, |α|2 − |β|2 = 1

}
,

PSU1,1 = SU1,1/{±I}.
We let S denote the Riemann sphere C̄ = C ∪ {∞} together with a marked oriented circle

E in C̄. We call E the equator of S. Then S\E has two connected components: we will call
northern hemisphere and denote by S+ the one whose oriented boundary is E , and we will
call southern hemisphere and denote by S− the one whose oriented boundary is E with the
opposite orientation.

The connected group that acts naturally on S is the group of (orientation-preserving)
conformal diffeomorphisms of C̄ that leave E invariant and preserve the orientation of E . This
group is PSU1,1 ≃ PSL2(R), which is also the group of orientation-preserving isometries of
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Then, using (4.18) and (4.16), we get
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(ḡ−cζ̄ )(1 − cζ ḡ)
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(ḡ−cζ̄ )(1 − cζ ḡ)
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ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.
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We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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Then, using (4.18) and (4.16), we get
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
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defined by
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Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
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defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is
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Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)
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the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
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|G| = |ĝ|. (5.9)
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ĝĝz
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|G| = |ĝ|. (5.9)
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Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz
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− cḡη2
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+ η

2
1−c2|ζ |2
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we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).
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ḡz
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we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).
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(1 − |ĝ|2)2 . (5.10)

123

The Gauss map of surfaces in P̃SL2(R) 523

Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ
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+ η

2
1−c2|ζ |2
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µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where
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We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
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defined by
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+ η

2
1−c2|ζ |2
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τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
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immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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Then, using (4.18) and (4.16), we get
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Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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ḡz
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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Then, using (4.18) and (4.16), we get
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5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have
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Summarizing...
There exist a (unified)

Gauss map in all the E(k,t) spaces ?
(harmonic for critical CMC surfaces) 



MAIN THEOREM (--, Daniel, Mira):

 There exists a unified definition for the Gauss map of a surface in               s.t.:

 1) Two surfaces are tangent at one point iff their Gauss maps agree at this point. 

 2) If the surface is a local graph, then G lies in the unit disc.

 3) If in addition the surface has critical CMC, then G is harmonic into
 and nowhere antiholomorphic.

Using coordinates w.r.t the canonical frame: 

514 B. Daniel et al.

we get

Y1 + iY2 = ϕ′
M (w)

"(w)
(Z1 + i Z2) = α

ᾱ
(Z1 + i Z2).

From this we deduce that

$O (d f (Z)) = Y1 + iY2

1 + Y3
= α

ᾱ

Z1 + i Z2

1 + Z3
.

Then by property (a) we have

$y(Z) = ψ−1
M ($O (d f (Z))) = ᾱ$O(d f (Z)) − β

−β̄$O (d f (Z)) + α
= Z1 + i Z2 + cw(1 + Z3)

cw̄(Z1 + i Z2) + 1 + Z3
.

Let us observe that this expression does not depend on the choice of the isometry f ;
this is because $O satisfies (a) for all isometries in Isom0(E) preserving O . This gives the
uniqueness of $ as well as the announced expression, from which we also deduce analyticity.
Conversely, by construction this map satisfies (a), (b), (c) and (d). ⊓$

Definition 3.2 Let ' be an oriented surface in E. Then the Gauss map of ' is the map
$ ◦ N : ' → S where N is the unit normal vector to '.

Remark 3.3 Though we have used a specific model for E to prove Theorem 3.1, its statement
about existence and uniqueness of $ : UE → S satisfying conditions (a)–(d) does not
involve a model for E but only needs the choice of an isomorphism between the group of
orientation-preserving isometries of H2(κ) and the group of orientation-preserving conformal
diffeomorphisms of S that leave E invariant and preserve the orientation of E . In particular,
Definition 3.2 is also independent of the model chosen for E.

If we consider the specific model for E we are working with in this paper, we get the
following expression for the Gauss map.

Corollary 3.4 If N = N1V1 + N2V2 + N3V3, then the Gauss map of ' is

g = N1 + i N2 + cζ(1 + N3)

cζ̄ (N1 + i N2) + 1 + N3
(3.2)

with ζ = x1 + i x2.

Remark 3.5 In the case of H2 × R, the hyperbolic Gauss map defined in [14] for CMC 1/2
graphs can be written as $ ◦ N with $ satisfying conditions (a)–(d) in Theorem 3.1, so it
coincides with g.

Remark 3.6 The formula given in Corollary 3.4 extends for κ = 0, and in this case we get
the Gauss map studied in [7]. Hence formula (3.2) provides a unified treatment for Gauss
maps in all manifolds E3(κ, τ ) with κ ! 0.

Example 3.7 Let γ be a curve of constant curvature k in H2(κ) and let ' = π−1(γ ) ⊂ E.
Then, by property (b) of Theorem 3.1, the image of the Gauss map of ' lies in is the equator
E , since the normal to ' is horizontal. When |k| >

√−κ , it is the whole E ; when |k| = √−κ

(in which case ' is a horocylinder), it is a point in E or its complement (depending on the
orientation); when |k| <

√−κ , it is an open arc in E . More generally, the Gauss map of a
surface ' ⊂ E takes values in E if and only if the normal to ' is everywhere horizontal, i.e.,
if and only if π(') ⊂ H2(κ) is a curve.
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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MAIN THEOREM (--, Daniel, Mira):

 There exists a unified definition for the Gauss map of a surface in               s.t.:

 1) Two surfaces are tangent at one point iff their Gauss maps agree at this point. 

 2) If the surface is a local graph, then G lies in the unit disc.

 3) If in addition the surface has critical CMC, then G is harmonic into
 and nowhere antiholomorphic.

Using coordinates w.r.t the canonical frame: 
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we get

Y1 + iY2 = ϕ′
M (w)

"(w)
(Z1 + i Z2) = α

ᾱ
(Z1 + i Z2).

From this we deduce that

$O (d f (Z)) = Y1 + iY2

1 + Y3
= α

ᾱ

Z1 + i Z2

1 + Z3
.

Then by property (a) we have

$y(Z) = ψ−1
M ($O (d f (Z))) = ᾱ$O(d f (Z)) − β

−β̄$O (d f (Z)) + α
= Z1 + i Z2 + cw(1 + Z3)

cw̄(Z1 + i Z2) + 1 + Z3
.

Let us observe that this expression does not depend on the choice of the isometry f ;
this is because $O satisfies (a) for all isometries in Isom0(E) preserving O . This gives the
uniqueness of $ as well as the announced expression, from which we also deduce analyticity.
Conversely, by construction this map satisfies (a), (b), (c) and (d). ⊓$

Definition 3.2 Let ' be an oriented surface in E. Then the Gauss map of ' is the map
$ ◦ N : ' → S where N is the unit normal vector to '.

Remark 3.3 Though we have used a specific model for E to prove Theorem 3.1, its statement
about existence and uniqueness of $ : UE → S satisfying conditions (a)–(d) does not
involve a model for E but only needs the choice of an isomorphism between the group of
orientation-preserving isometries of H2(κ) and the group of orientation-preserving conformal
diffeomorphisms of S that leave E invariant and preserve the orientation of E . In particular,
Definition 3.2 is also independent of the model chosen for E.

If we consider the specific model for E we are working with in this paper, we get the
following expression for the Gauss map.

Corollary 3.4 If N = N1V1 + N2V2 + N3V3, then the Gauss map of ' is

g = N1 + i N2 + cζ(1 + N3)

cζ̄ (N1 + i N2) + 1 + N3
(3.2)

with ζ = x1 + i x2.

Remark 3.5 In the case of H2 × R, the hyperbolic Gauss map defined in [14] for CMC 1/2
graphs can be written as $ ◦ N with $ satisfying conditions (a)–(d) in Theorem 3.1, so it
coincides with g.

Remark 3.6 The formula given in Corollary 3.4 extends for κ = 0, and in this case we get
the Gauss map studied in [7]. Hence formula (3.2) provides a unified treatment for Gauss
maps in all manifolds E3(κ, τ ) with κ ! 0.

Example 3.7 Let γ be a curve of constant curvature k in H2(κ) and let ' = π−1(γ ) ⊂ E.
Then, by property (b) of Theorem 3.1, the image of the Gauss map of ' lies in is the equator
E , since the normal to ' is horizontal. When |k| >

√−κ , it is the whole E ; when |k| = √−κ

(in which case ' is a horocylinder), it is a point in E or its complement (depending on the
orientation); when |k| <

√−κ , it is an open arc in E . More generally, the Gauss map of a
surface ' ⊂ E takes values in E if and only if the normal to ' is everywhere horizontal, i.e.,
if and only if π(') ⊂ H2(κ) is a curve.
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Then, using (4.18) and (4.16), we get

P = iτ
2
η2+ c2η2

2
ζ̄ + ḡ2ζ

(ḡ−cζ̄ )(1 − cζ ḡ)
− cḡη2

2
1+c2|ζ |2

(ḡ−cζ̄ )(1−cζ ḡ)
+ η

2
1−c2|ζ |2

(ḡ−cζ̄ )(1 − cζ ḡ)
ḡz

= −c − iτ
2

η2 + η

2
1 − c2|ζ |2

(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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Then, using (4.18) and (4.16), we get
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+ η

2
1−c2|ζ |2
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ḡz

= −c − iτ
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(ḡ − cζ̄ )(1 − cζ ḡ)
ḡz .

Finally we get $ = −Q(g). ⊓#

5.3 The Gauss map of the sister minimal surface in Nil3(τ̂ )

Let X : % → E3(κ, τ ) be a CMC immersion with critical mean curvature. Assume that% is
simply connected. Then, by the Lawson-type correspondence in [6], there exists a minimal
immersion X̂ : % → Nil3(τ̂ ) = E3(0, τ̂ ) where τ̂ 2 = τ 2 + c2 that is isometric to X .
Moreover, the immersions X and X̂ have the same angle function (see Sect. 2) and their
associated Abresch–Rosenberg differentials $ and $̂ are related by $ = e−2iθ $̂, where
τ + ic = eiθ τ̂ (see for instance the end of Sect. 3 in [19] and the expression of the Abresch–
Rosenberg differential given in Sect. 5.2).

A pair of such isometric surfaces are called sister surfaces. The minimal sister surface
in Nil3(τ̂ ) of a CMC surface in E3(κ, τ ) with critical mean curvature is unique up to direct
isometries of Nil3(τ̂ ).

If g : % → D is a harmonic map for the hyperbolic metric on D, we consider the form
µ(g)|dz|2 (which is independent of the choice of the conformal parameter z) where

µ(g) := 4(|gz |2 + |gz̄ |2)
(1 − |g|2)2 .

Two harmonic maps g1 and g2 are said to be associate if there exists a real constant θ such
that Q(g2)dz2 = e−2iθ Q(g1)dz2 and µ(g2)|dz|2 = µ(g1)|dz|2.

We now consider a conformal immersion X : % → E3(κ, τ ) from a simply connected
Riemann surface% into E3(κ, τ ) such that X (%) is a local graph with positive angle function.
We let X̂ : % → Nil3(τ̂ ) be its sister minimal immersion. Let g be the Gauss map of X and
ĝ the Gauss map of X̂ (which is unique only up to rotations around 0 ∈ D, see Sect. 6 in [7]).

Proposition 5.6 The Gauss maps g and ĝ are associate and Q(g) = e−2iθ Q(ĝ) with θ
defined by

τ + ic = eiθ τ̂ . (5.8)

Proof We keep for the immersion X the same notation as in the previous sections.
By Proposition 5.5 we have Q(g) = −$, and similarly we have Q(ĝ) = −$̂ where $̂ is

the Abresch-Rosenberg differential of X̂ . Since the differentials$ and $̂ satisfy$ = e−2iθ $̂,
we get Q(g) = e−2iθ Q(ĝ). We now prove that µ(g) = µ(ĝ).

Since sister surfaces have the same angle function, it follows from (4.5) and the analogous
formula in Nil3(τ̂ ) (see Definition 3.1 in [7]) that

|G| = |ĝ|. (5.9)

Denote by (ĝ, η̂) the Weierstrass data of X̂ (see Defintion 3.2 in [7]). By Eq. (10) in [7]
(or by (4.11) with (η, H, τ, c) replaced by (η̂, 0, τ̂ , 0)) we have

η̂ = 4i
τ̂

ĝĝz

(1 − |ĝ|2)2 . (5.10)
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