Around the dynamics of Painlevé's equations

Helena Reis

(joint work with A. Belloto and J. Rebelo - Univ. Toulouse)

September 7, 2017

Painlevé (classical) equations

$$(P_{I}) \ y'' = 6y^{2} + x$$

$$(P_{II}) \ y'' = 2y^{3} + xy + \alpha$$

$$(P_{III}) \ y'' = \frac{1}{y}(y')^{2} - \frac{1}{x}y' + \frac{1}{x}(\alpha y^{2} + \beta) + \gamma y^{3} + \frac{\delta}{y}$$

$$(P_{IV}) \ y'' = \frac{1}{2y}(y')^{2} + \frac{3}{2}y^{3} + 4xy^{2} + 2(x^{3} - \alpha)y + \frac{\beta}{y}$$

$$(P_{V}) \ y'' = \left(\frac{1}{2y} + \frac{1}{y-1}\right)(y')^{2} - \frac{1}{x}y' + \frac{(y-1)^{2}}{x^{2}}\left(\alpha y + \frac{\beta}{y}\right)\frac{\gamma y}{x} + \frac{\delta y(y+1)}{y-1}$$

$$(P_{VI}) \ y'' = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right) (y')^2 - \left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right) y' + \frac{y(y-1)(y-x)}{x^2(x-1)^2} \left(\alpha + \frac{\beta x}{y^2} + \frac{\gamma(x-1)}{(y-1)^2} + \frac{\delta x(x-1)}{(y-x)^2} \right)$$

$$\alpha, \beta, \gamma, \delta \in \mathbb{C}$$

Helena Reis

Painlevé (classical) equations

Purpose: To work out the dynamics associated with these equations.

Applications:

- $\left(1
 ight)$ to determine when the Galois-Malgrange pseudogroup is maximal
- (2) to obtain accurate asymptotic estimates for solutions

Galois-Malgrange pseudogroup: generalization of the differential Galois group associated with linear equations (algebraic definition whose dynamical meaning is not obvious)

- (Virtually) non-solvabe differential Galois group ⇒ the solutions cannot be "integrated by quadratures"
- Painlevé equations are not linear: problem of irreducibility of Painlevé "transcendents"

Irreducibility of Painlevé transcendents

- $\bullet~$ Umemura notion of irreducibility $\Rightarrow~$ Umemura results +~ works by the Japanese school
- Galois-Malgrange pseudogroup
 - (1) general definition implying all other forms of irreducibility
 - (2) more directly related with dynamics in that it is defined as a "closure" for holonomy groups in the spirit of dynamical interpretations of Galois theory
 - (3) coincides with the Galois group if the equation is linear (Malgrange theorem, not trivial)
 - (4) it can also be viewed as a "measure" albeit a coarse one of the dynamical complexity of the equations

How to compute Galois-Malgrange pseudogroup?

For order 2 equations, we have

Theorem (Casale)

The Galois-Malgrange pseudogroup is maximal if and only if

- (1) there is no algebraic codimension 1 (multi)foliation invariant by the equation and
- (2) there is no algebraic transverse (multi)affine structure invariant by the equation

Consider the Painlevé equation P_I

$$y''=6y^2+x\,.$$

This equation is equivalent to the vector field

$$X_{I} = \frac{\partial}{\partial x} + z\frac{\partial}{\partial y} + (6y^{2} + x)\frac{\partial}{\partial z}$$

in \mathbb{C}^3 .

The Galois-Malgrange pseudogroup is maximal if and only if

- (1) there is no algebraic codimension 1 (multi)foliation whose leaves contain the orbits of X_I
- (2) there is no algebraic transverse (multi)affine structure for \mathcal{F}_{I} , the foliation associated to P_{I}

Toy-model case: Airy equation

$$y'' = xy$$

whose associated vector field is

$$X_{A} = \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + xy \frac{\partial}{\partial z}$$

э

Some known results:

- Airy equation: the Galois-Malgrange pseudogroup is maximal ("classical" result with algebraic computations)
- P₁ equation: the Galois-Malgrange pseudogroup is maximal (Casale)
- *P*₁₁-*P*_{V1} equation: the Galois-Malgrange pseudogroup is maximal for "generic values" of the parameters (Casale, Roques, etc)
- *P_{VI}* equation: complete characterization by Cantat-Loray

Problems about "asymptotic estimates"

 P_{I} , P_{II} , P_{IV} and modified P_{III} , P_{V} equations

- they have meromorphic solutions defined on C (i.e. the solutions are holomorphic functions φ : C → CP(1))
- they have an essential singularity at " $T = \infty$ "

study of their asymptotic behavior (Nevalinna theory)
 purely dynamical problem: ergodic properties

Remark

The above mentioned questions will not be posed for P_{VI} - solutions do not have a maximal domain of definition on \mathbb{C} .

Helena Reis

September 7, 2017 10 / 22

Airy Equation

Vector field in correspondence to the Airy equation

$$X_{A} = \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + xy \frac{\partial}{\partial z}$$

Alternative (more dynamical-geometric proof) proof of the maximality of the Galois-Malgrange pseudogroup (coinciding with the differential Galois group).

Airy Equation

Theorem

Consider the (meromorphic) extension of X_A to $\mathbb{CP}(3) = \mathbb{C}^3 \cup \Delta_{\infty}$. There are two points $p, q \in \Delta_{\infty}$ such that the following holds: given two neighborhoods V_p , V_q of p, q on $\mathbb{CP}(3)$, respectively, and an integral curve ϕ for X_A , we have

$$\lim_{n \to \infty} \frac{Area(\{T \in B(r) : \phi(T) \in V_p \cup V_q\})}{Area(B(r))} = 1$$

Remark

 X_A is "very non-ergodic" - its solutions are "confined" in a probabilistic sense.

Global properties of Painlevé equations

Riemann-Hilbert picture (Okamoto compactification) for P_{VI}

Global properties of Painlevé equations

Holonomy group: generated by two independent holonomy (algebraic) maps $f = h_{\gamma_0}$ and $g = h_{\gamma_{\infty}}$

$$f: S \to S$$
$$g: S \to S$$

Let \overline{S} stands for the compactification of S. Then $f, g : \overline{S} \to \overline{S}$ are birational maps.

Dynamical study if the action of $\Gamma = < f, g >$ on \overline{S}

- If there exists codimension 1 foliation invariant by $\mathcal{F}_{P_{VI}}$, then there exists a 1-dimensional foliation on \bar{S} invariant by Γ .
- If there exists a transverse affine structure for $X_{P_{VI}}$, then there exists a (singular) affine structure on \bar{S} invariant by Γ

By studying the dynamics of Γ Cantat and Loray rule out the existence of these objects for all parameters but the case corresponding to Picard solutions.

There is no codimension 1 foliation invariant by $X_{P_{VI}}$, not even among foliations with entire coefficients.

Helena Reis

Global properties of Painlevé equations

Riemann-Hilbert picture (Okamoto compactification) for P_I/P_{II}

base simply connected \Rightarrow the holonomy maps are trivial

 \Rightarrow plenty of invariant holomorphic foliations /

transverse affine structures

Problem: How to detect if, say an invariant codimension 1 foliation, is algebraic?

- Notion of dynamics at infinity
- incidentally this "dynamics" at infinity is exactly the object that controls the asymptotic behaviour of solutions
- add a fiber over the "missing points" (if they were missing) and study the foliation in the neighbourhood of this fiber

The case of Airy equation

The Airy equation defined a 1-dimensional foliation $\mathcal F$ on $\mathbb C^3$, induced by

$$X_{A} = \frac{\partial}{\partial x} + z\frac{\partial}{\partial y} + xy\frac{\partial}{\partial z}$$

In standard coordinates for $\mathbb{CP}(3)$ around Δ_{∞}

$$x_1 = \frac{1}{x_1}$$
, $y_1 = \frac{y}{x}$, $z_1 = \frac{z}{x}$

where $\Delta_{\infty} \subseteq \{x_1 = 0\}$, we have

$$X_{A,1} = \frac{1}{x_1} \left[-x_1^3 \frac{\partial}{\partial x_1} + (x_1 z_1 + y_1 x_1^2) \frac{\partial}{\partial y_1} + (y_1 - x_1^2 z_1) \frac{\partial}{\partial z_1} \right].$$

< 17 ▶

э

The case of Airy equation

 ${\mathcal F}$ extends to a (singular) foliation on ${\mathbb C}^3\cup\Delta_\infty\simeq {\mathbb C}{\mathbb P}(3)$

$$X_{A,1}|_{\Delta_{\infty}} = y_1 \frac{\partial}{\partial z}$$

Some issues on \mathcal{F} :

- global dynamics on Δ_∞ is "simple"
- $\mathcal F$ has singular points that may "conceal" non-trivial dynamics
- ${\mathcal F}$ possesses compact leaves on Δ_∞ which may carry holonomy
- \bullet there is a foliated affine structure on the leaves of ${\cal F}$

Singularities:

In coordinates (x_1, y_1, z_1) for $\mathbb{CP}(3)$, where $\{x_1 = 0\} \subseteq \Delta_{\infty}$

Foliation:
$$X_{A,1} = -x_1^3 \frac{\partial}{\partial x_1} + (x_1 z_1 + y_1 x_1^2) \frac{\partial}{\partial y_1} + (y_1 - x_1^2 z_1) \frac{\partial}{\partial z_1}$$

1.
$$\{x_1 = 0, y_1 = 0\} = C_1 \rightarrow curve of singularities$$

2. nilpotent singularities

In coordinates (x_2, y_2, z_2) for $\mathbb{CP}(3)$, where $\{x_2 = 0\} \subseteq \Delta_{\infty}$

Foliation:
$$X_{A,2} = (y_2^2 - x_2y_2z_2)\frac{\partial}{\partial x_2} - y_2^2z_2\frac{\partial}{\partial y_2} + (x_2 - y_2z_2^2)\frac{\partial}{\partial z_2}$$

1.
$$\{x_2 = 0, y_2 = 0\} = C_2 \rightarrow curve \text{ of singularities}$$

- 2. plenty of degenerate singularities
- 3. reduction of singularities

Resolution of singularities:

- 1. 2 ramified blow-ups along C_1 and C_2 $\Delta_\infty \cup \Delta_1 \cup \Delta_2$ total divisor
- 2. the resulting foliation possesses only 3 singular points: q, p_1, p_2
- 3. $q \in \Delta_{\infty} \cap \Delta_1 \cap \Delta_2$ simple singular point
- 4. $p_1 \in \Delta_1 \cap \Delta_2$; $p_2 \in \Delta_2 \setminus (\Delta_\infty \cup \Delta_1)$ saddle-node singularities
- 5. $L_1 = \Delta_1 \cap \Delta_2$ rational invariant curve
- 6. there exists $L_2 \subseteq \Delta_2$ containing p_1 and p_2 invariant rational curve

The invariant rational curves L_1 and L_2 form a sort of "attractor" of the dynamics (every leaf intersects a neighbourhood of this curve)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Fundamental dynamical issue:

Helena Reis

To understand the dynamics of the foliation on a neighborhood of $L_1 \cup L_2$.

• one non-trivial holonomy map $h: (\mathbb{C}^2, 0)
ightarrow (\mathbb{C}^2, 0)$

• highly resonant saddle-nodes (eigenvalues: 0,1,-1)