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Overview

(I) Introduction to Black Holes and the Stability Problem

(II) The Linear Scalar Wave Equation on Black Holes

(III) The Linear Stability of the Schwarzschild spacetime

(IV) The Teukolsky equation on slowly rotating Kerr

Parts III and IV are joint work with M. Dafermos and I. Rodnianski.
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I: Introduction to Black Holes and the Stability Problem
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General relativity as an evolution problem

In the minicourse of J. Smulevici we heard that general relativity is

an evolutionary theory, i.e. it admits a Cauchy problem:

Given an initial data triple
(
Σ(3), hµν ,Kµν

)
satisfying the Einstein

constraint equations we can associate to it a 4-dimensional

Lorentzian manifold (M, g) satisfying the vacuum Einstein

equations

Rµν [g] = 0 . (1)

There is a notion of maximum Cauchy development.

General relativity is about studying the properties of this

maximum development.
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Special solutions and stability

It is clear that flat Minkowski space is a solution of the vacuum

Einstein equations. The Cauchy problem gives us a framework to

discuss the non-linear stability of this solution.

→ Stability of Minkowksi space

(Christodoulou-Klainerman 1990, Lindblad-Rodnianski 2003)
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Black Holes

More complicated explicit solutions of Rµν [g] = 0 contain

black holes. The most famous is the spherically symmetric

Schwarzschild solution, written in local coordinates on next slide.

Any spherically symmetric vacuum spacetime is locally isometric to

a member of the Schwarzschild family (Birkhoff’s theorem)!
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Schwarzschild spacetime (1916)

gM = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)

I+ (r = ∞)

I−

r
=

2M

H+

Σt

r = 0
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Geometry of the Schwarzschild family

• asymptotically flat

• static: Killing field T is timelike on the exterior;

T becomes null on the event horizon H+

• red shift effect near the event horizon H+

• trapped null geodesics (photon sphere at r = 3M)
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The Kerr family of black holes

The Schwarzschild family is contained in the two parameter family

of Kerr black hole solutions written down explicitly in 1963.

gM,a = ...

These are stationary, axisymmetric and asymptotically flat (AF).

Conjecture: Stationarity and AF make the family the unique

solution of EVE. (Hawking, Carter-Robinson, Chrusciel, Alexakis et al.)

Understanding small perturbations of the Schwarzschild and the

Kerr family is crucial to our understanding of general relativity.

This is the black hole stability problem.
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Conjecture: The maximum development of initial data

sufficiently close to sub-extremal Kerr initial data (Mi, |ai| < Mi)

possesses a complete null infinity I+ such that the metric in

J− (I+) asymptotically approaches another member of the Kerr

family (Mf , |af | < Mf ).

I+

H+

Σ
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The strategy to resolve the conjecture

1. Understand toy-problem �gΨ = 0 on black hole spacetimes.

→ interaction of dispersion with black hole geometry

2. Understand the linearisation of the Einstein equation

(including difficult gauge issues).

3. Address non-linear difficulties.

Part II of my talk: Step 1

Parts III and IV: Step 2.
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Part II: The linear scalar problem
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Theorem. [Dafermos–Rodnianski–Shlapentokh-Rothman]

Solutions of the linear wave equation

�gM,aψ = 0 (2)

for gM,a a subextremal member of the Kerr-family decay inverse

polynomially in time on the black hole exterior.

Σ0

(ψ, nΣψ)|Σ0
= (ψ0, ψ1)

ψ → 0

I+H+
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Historical remarks

• Previous work (2005-2014): Dafermos–Rodnianski, Blue–Sterbenz,

Tataru-Tohaneanu, Andersson–Blue; Kay–Wald (1987)

• Mode stability: Whiting, Shlapentokh-Rothman

• Theorem 1 fails in the extremal case a = M (Aretakis)

• Maxwell’s equations: (a�M case) Andersson–Blue, Blue,

Pasqualotto, Ma; Dirac equation Finster et al

• Generalizations to Kerr de Sitter (Bony-Haefner,

Dafermos-Rodnianski, Dyatlov, Hintz-Vasy)

and Kerr-anti de Sitter (Holzegel–Smulevici, Warnick, Gannot)
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Ingredients from PDE theory for Step 1:

Recall Minkowski space: �ηψ = 0. Two key estimates∫
Σt

(∂tψ)
2

+ |∇ψ|2 =

∫
Σ0

(∂tψ)
2

+ |∇ψ|2 energy conservation

∫ T

0

dt

∫
Σt∩{r≤R}

(∂tψ)
2

+ |∇ψ|2 ≤ CR
∫

Σ0

(∂tψ)
2

+ |∇ψ|2 ILED

Σ0

Σt

BR
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Already in the Schwarzschild case deriving analogues of these two

estimates requires

• understanding of the redshift near H+ to prove boundedness

• understanding of trapping at the photon sphere to prove decay

The Kerr case is much more complicated (some remarks later).
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The redshift in Schwarzschild

The static Killing vector field T = ∂t gives rise to∫
Σt?

|∂ψ|2
(

1− 2M

r

)
.
∫

Σ0

|∂ψ|2
(

1− 2M

r

)
with |∂ψ|2 denoting (the sum of) all derivatives of ψ.

I+

Σ0

Σt?

r
=

2M

H+

The redshift effect is about removing the degeneracy at r = 2M to

get a non-degenerate boundedness statement.
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Trapping in Schwarzschild

• Null-geodesics can orbit in the timelike hypersurface r = 3M :

This is the photon sphere.

• In the high frequency approximation, solutions to the wave

equation travel along null-geodesics!

=⇒ Non-degenerate decay estimates for Schwarzschild are

necessarily associated with a loss of derivatives. (Sbierski 2013)∫ T

0

dt?
∫

Σt?∩{r≤R}
|∂ψ|2 ≤ CR

∫
Σ0

|∂ψ|2 + |∂2ψ|2
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Remarks on the Kerr case

In the Kerr case one needs to understand the issue of superradiance.

In geometric language, T = ∂t is not timelike everywhere on the

black hole exterior and the first key estimate fails!

One solution, developed by Dafermos–Rodnianski, is to frequency

decompose the solutions exploiting a remarkable property of the

Kerr geometry: “superradiant frequencies are not trapped”.
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Part III: Linear Stability of Schwarzschild
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The linearization procedure

Consider a one-parameter family of Lorentzian metrics in double

null-coordinates

g (ε)
.
= −4Ω2 (ε) dudv+/gCD (ε)

(
dθC − bC (ε) dv

)(
dθD − bD (ε) dv

)
with g (0) being the Schwarzschild metric of mass M .

• Ω (ε) = Ω + ε
(1)

Ω +O
(
ε2
)
, etc.

• express curvature components and connection-coefficients in

associated null-frame

• write down Einstein equations to order ε
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The result is a complicated system of equations of

• linearised null-curvature components (Newman-Penrose

scalars) satisfying the Bianchi equations

• linearised connection coefficients satisfying transport equations

I won’t show this system. Evolution is well-posed.

We would like to show boundedness and decay of all linearised

quantities in terms of initial data of the linearised system.
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The system of linearised Einstein equations:

Key-observations

1. special solutions: pure gauge solutions

2. special solutions: linearised Kerr solutions

3. hierarchy of decoupled gauge invariant quantities
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Gauge invariant quantities which decouple

It has long been known that the gauge invariant null-curvature

components
(1)

α and
(1)

α satisfy decoupled wave equations: The

Teukolsky (or Bardeen-Press ’73) equation:

�g
(1)

α+

(
1− 3M

r

)
∂t

(1)

α+ V
(1)

α = 0.

Only mode stability but not even uniform boundedness was known.
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Hierarchy of gauge invariant quantities

There exists a second order differential operator which when

applied to α or α yields new quantities

P := D2 (1)

α , P := D2 (1)

α (3)

• the quantities P and P satisfy the Regge-Wheeler equation,

which does admit both a good energy estimate and an ILED!

All the theory for �gψ = 0 applies.

• the quantities P and P control α, α respectively, in particular

decay for P and P implies decay for α and α.

Simple transport equations.

These transformations appear at the level of mode solutions in the

work of Chandrasekhar.
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Corollary. (Dafermos–GH–Rodnianski 2016) Solutions to the

Teukolsky equation decay inverse polynomially in time.

Note this result holds independently of the whole system of

gravitational perturbations.

Previous and related work:

Moncrief (1975), Martel-Poisson (2005), Sarbach–Tiglio (2001)

(metric perturbations; Regge-Wheeler and Zerilli)
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From gauge invariant to all geometric quantities

• show
(1)

α =
(1)

α = 0 globally =⇒ solution is pure gauge+Kerr

• need quantitative estimates of all geometric quantities

• This can be done. Remarkably, one can only show boundedness

but not decay for some of the quantities. Why is that?

Solution decays to a pure gauge solution which is

dynamically determined and can be

quantitatively estimated from data.
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Theorem (DHR 2016; Linear Stability of Schwarzschild).

General solutions S of the system of gravitational perturbations on

Schwarzschild arising from suitably normalised characteristic initial

data

• remain uniformly bounded on the black hole exterior and in fact

• decay inverse polynomially to a linearised Kerr solution K

after adding to S a dynamically determined pure gauge

solution G which is itself uniformly bounded by initial data.
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Comments

1. Remarkably, a version of this result has recently obtained in

harmonic gauge in the context of metric perturbations

(Thomas Johnson)

2. Non-linear applications (work in progress with Martin Taylor

(Imperial), Dafermos and Rodnianski): Prove non-linear stability

of Schwarzschild for finite codimension manifold of initial data.
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Part IV: The Teukolsky equation on Kerr spacetimes
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The paper [DHR] provides a complete picture of linear stability of

the Schwarzschild metric.

At the core of the analysis were the Teukolsky equations and the

gauge invariant hierarchy.

The following two observations allow ourselves to immediately

generalise the Teukolsky-part of the result of [DHR] to slowly

roating Kerr spacetimes.

31



1. The extremal linearised curvature components still satisfy

decoupled wave equations. (Teukolsky 1973)

2. The transformation theory can be straightforwardly

generalised. Schematically

P = Dψ = D2α , ψ = Dα

now leads after a remarkable cancellation to

�RWgM,aP = a (∂φψ + ψ) + a (α+ ∂φα)

Of course for a = 0 there is complete decoupling!
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As mentioned before, proving decay for the free wave equation on

Kerr requires frequency decomposition and different multiplier

estimates for different frequency ranges.

Compared with the Schwarzschild case, the estimates for the wave

equation and the transport estimates are now coupled. The

smallness factor of a allows one to immediately close the estimates.

See independent recent work by Ma.

These observations lead directly to
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Theorem. [DHR 2017] Consider a Kerr spacetime (M, gM,a) with

|a| �M . Solutions to the Teukolsky equation are uniformly

bounded and in fact decay inverse polynomially on the black hole

exterior.
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