
Metric tensors on the space 

of invertible  quantum states

Some ideas born during an uncountable number of discussions with:

Fabio Di Cosmo

Marco Laudato

Fabio Mele

Prof. Giuseppe Marmo

Juan Manuel Pérez-Pardo

Prof. Franco Ventriglia

Prof. Patrizia Vitale

Presented by:

Florio Maria Ciaglia



The model quantum system

Remark: every finite-dimensional quantum system (without superselection 
sectors) is isomorphic to this model quantum system once a basis in the Hilbert 
space of the system is selected. This means that the isomorphism is not canonical.

Is the Hilbert space of the system

Is the C*-algebra of the system, observables 
are Hermitean matrices

Is the space of 
states of the system



The model quantum system

Invertible   quantum   states

Orbits  of  the  unitary   action:

Remark: It is a homogeneous space of the complex special linear group with 
respect to the following nonlinear action:



The model quantum system

Symmetries (if any) represent an useful tool when dealing with metric tensors. For 
instance, the Fubini-Study metric tensors on the space of pure quantum states is 

the real part of the Hemitean tensor: 

Remark: It is the unique metric tensors (up to a conformal factor) on the space of 
pure quantum states which is invariant w.r.t. the action of the unitary group.



The model quantum system

Question: Is there a metric tensor on the space of invertible quantum states 
which is invariant w.r.t. the action of the unitary group? Is it unique?

Answer: There is an infinite number of metric tensors on the space of invertible 
quantum states that are invariant with respect to the unitary group.

Remark: Actually, all these metric tensors satisfy the so-called monotonicity 
property (MP), a property which is more general than invariance w.r.t. the action of the 

unitary group.



The model quantum system

Question: How can we obtain a metric tensor satisfying the monotonicity property?

In classical Information Geometry we take a divergence function S (often it is a relative 
entropy), derive it twice and then evaluate the result on the diagonal:

We could take a quantum relative entropy and perform the same algorithm….



The model quantum system

Very often, the resulting quantum metrics satisfy the MP, however:

1) the algorithm is coordinate-based;
2) computational difficulties grow with the dimension of the Hilbert space;
3) we must prove that the resulting metric does actually satisfy the MP.

What we will see:

i) a coordinate-free algorithm of general validity which is well-suited for a generic n-level 
quantum system;
ii) when  quantum divergence functions (quantum relative entropies) satisfy the data 
processing inequality (DPI), then the resulting quantum metrics satisfy the MP.



Covariant tensors from two-point functions

We start with a differential manifold M.

A vector field on M may be thought of as a derivation of the associative algebra of 
smooth functions, or as a section of the tangent bundle.
In a local chart {qj} on M a vector field X can be written as:

Remark:  Vector fields are the coordinate-free version of the derivative operator and 
we will use them to give a coordinate-free algorithm to extract tensor fields from 
two-point functions.



Covariant tensors from two-point functions

Divergence functions are two-point functions, hence, the relevant manifold is M x M :

Remark: The left functions fl on M x M form a subalgebra of the algebra of smooth 
functions on M x M. The same is true for the right functions fr. 



Covariant tensors from two-point functions

From vector fields on M to vector fields on its double:

Left lift of a vector field on M Right lift of a vector field on M

Proposition: for every smooth function f, and for all vector fields X, Y on M, we have:



Covariant tensors from two-point functions

Question: How can we extract a covariant (0,2) tensor from a two-point function D?

To answer this question, let us consider the diagonal immersion of M into its double:

Let X and Y be arbitrary vector fields on M, D a smooth function on its double, and  define 
the following maps:



Covariant tensors from two-point functions

Without further assumptions on D, these maps do not define covariant (0,2) tensors.

Proposition:

1) glr and grl are covariant (0,2) tensors, and glr(X,Y)=grl(Y,X);

2) gll is a symmetric covariant (0,2) tensor if and only if :

3) grr is a symmetric covariant (0,2) tensor if and only if:

4) if the previous two conditions hold simultaneously for D, then:



Covariant tensors from two-point functions

Definition: A smooth function D on the double of M such that:

 
is called a potential   f unction,   and we set g =-glr for the symmetric covariant (0,2) 
tensor associated with D.

Definition: A smooth function D on the double of M such that:

 
is called a divergence   function.

Remark: Every divergence function is a potential function, and the associated tensor 
g is positive-semidefinite. The converse is not true.



Covariant tensors from two-point functions

Coordinates expression: {qj}, {xj, yj} local charts on M and M x M:

Proposition: Let D be a potential   function      on M x M, then the tensor g is 
positive-semidefinite if and only if every point on the diagonal is a local minimum for D. In 
particular, g is a metric tensor if and only if every point of the diagonal is a 
nondegenerate local minimum for D.



Covariant tensors from two-point functions

Question: What happens when we consider 
smooth maps between manifolds?

Symmetric covariant tensor on N

Potential function on NxN

extract

Symmetric covariant tensor on M

Potential function on MxM

extract

Pullback by ᶰ

Pullback by ᷈

We can prove that:

 is commutative!



Metrics on the space of invertible quantum states

Back to the quantum model, we consider the family                          of manifolds of invertible 
quantum states, where ℕ2 is the set of natural numbers without 0 and 1.

Quantum stochastic maps:

is a Quantum Stochastic map if it is a linear completely-positive trace-preserving map 
(CPTP map) such that:

Remark: Quantum Stochastic maps are the quantum analogue of the Markov maps 
in classical theory of probability. These maps are related with coarse-graining.



Metrics on the space of invertible quantum states

 is a family of metric tensors on 

Monotonicity property of metric tensors

A family of quantum metric tensors satisfies the monotonicity property (MP) if:

 for every n,m, for every vector field X, and for every quantum stochastic map:

Remark: The MP entails the fact that distances between quantum states do not 
increase under coarse-graining.



Metrics on the space of invertible quantum states

Data processing inequality for divergence functions

A family of divergence functions satisfies the data processing inequality (DPI) if:

 for every n,m,  and for every quantum stochastic map:

Remark: From an information-theoretic perspective, the DPI states that 
information can not increase after coarse-graining.

 is a family of divergence functions on 



Metrics on the space of invertible quantum states

Proposition: Given a family of quantum divergence functions satisfying the DPI,  
the family of quantum metric tensors that can be extracted from it satisfies the MP. 

proof:

 is a non-negative potential function vanishing on the diagonal. 

 is a positive semidefinite covariant (0,2) tensor. 

Q.E.D.



Metrics on the space of invertible quantum states

REMARK: some interesting limiting cases are:

When q=z=1 we recover Von Neumann’s relative entropy.
When z=1 we recover the q-Rényi relative entropies.
When z=q we recover the q-quantum Rényi divergence.
When z=1 and q=1/2 we recover the Wigner-Yanase-Dyson skew information.

This family of quantum divergence functions satisfies the DPI when z ≥ 0 and 0 ≤ q ≤1

We studied the family of q-z-Rényi relative entropies (Audenaert, Datta):



Metrics on the space of invertible quantum states

To perform coordinate-free computations we decided to work in the space:

Special unitary group

Surjective submersion:

The kernel of the differential at each point is 
given by the Hermitean matrices commuting 
with 

Open interior of the n-dimensional simplex

Unfolding of the manifold 
of invertible quantum 
states by means of the 
spectral decomposition



Metrics on the space of invertible quantum states

The family of q-z-Rényi relative entropies gives rise to a family of potential functions on 
{Mn} by means of the pullback through ᶢn: 

Remark: Being parallelizable, Mn has a basis of globally defined vector fields and 
differential one-forms, and this global differential calculus allows us to perform 
calculations in every dimension without the need to introduce coordinates:

Diagonal matrix with 1 in the j-th place Orthonormal basis in the Lie algebra of SU(n)

Left-invariant 
one-form on SU(n)

One-form on ᵂn

Left Maurer-Cartan form



Metrics on the space of invertible quantum states

Where ∑' denotes the summation over all indexes except those pertaining to the 
Cartan subalgebra of the Lie algebra of SU(n), and:

with τk a basis of the Lie algebra of SU(n), and eαβ the 
matrix with 1 in the (α,β) place, and 0 elsewhere



Metrics on the space of invertible quantum states

After a patient calculation, we obtain the symmetric covariant (0,2) tensor:

Fisher-Rao metric:“Classical-like” contribution depending 
only on the eigenvalues of the quantum states 

Purely quantum contribution depending on eigenvalues 
and phases of the quantum states, it is tangent to the 
orbit of the action of the unitary group



Final remarks

❏ We introduced a coordinate-free algorithm to extract symmetric covariant (0,2) 
tensors from two-point functions. It can be used to extract symmetric covariant 
(0,3) tensors (skewness tensors). How far can we go?

❏ In this formalism, it naturally follows that a family of quantum divergences 
satisfying the DPI gives rise to a family of metric tensors satisfying the MP.

❏ We computed the family of metric tensors associated with the family of q-z-Rényi 
relative entropies for a quantum system with arbitrary finite dimension. What 
about the family of skewness tensors?

❏ Is it possible to look at this family of quantum relative entropies as the Hamilton 
principal function of some Lagrangian function on the space of invertible 
quantum states? This would be a sort of dynamical characterization of quantum 
relative entropies.
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