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THE MODEL AVANTUM SYSTEM

Hy = 0 Is the Hilbert space of the system

) | o
B(H ) = (‘C) Is the C glgebro of The system, observables
are Hermitean matrices

Is the space of

S={p€ My(C): Tr(p) =1, pispositive } L 1 fihe e

K _: every finite-dimensional quantum system (without superselection
sectors) is isomorphic to this model quantum system once a basis in the Hilbert
space of the system is selected. This means that the isomorphism is not canonical.




THE MODEL QVANTUM SYSTEM

i) TNVERTIBLE QUANTUM STATES

‘> ORBITS OF THE UNITARY ACTION:

SUn) xS,2 (U,p)—UpU e S,

It is a homogeneous space of the complex special linear group with
respect to the following nonlinear action:

gpg
Tr(gpg’)

SL(n,C) xS, > (g,p) — e S,



THE MODEL AVANTUM SYSTEM

Symmetries (if any) represent an useful tool when dealing with metric tensors. For
instance, the Fubini-Study metric tensors on the space of pure quantum states is
the real part of the Hemitean tensor:

: (dp|dyp)  (dap|e) (¥ |de))
f = —_

(YY) (|1h)2

It is the unique metric tensors (up to a conformal factor) on the space of

pure quantum states which is invariant w.r.t. the action of the unitary group.



THE MODEL AVANTUM SYSTEM

_Is there a metric tensor on the space of invertible quantum states
which is invariant w.r.t. the action of the unitary group? Is it unique?

- There is an infinite number of metric tensors on the space of invertible

quantum states that are invariant with respect to the unitary group.

= Actually, all these metric tensors satisfy the so-called monotonicity
property (MP), a property which is more general than invariance w.r.t. the action of the
unitary group.




THE MODEL AVANTUM SYSTEM

- How can we obtain a metric tensor satisfying the monotonicity property?

In classical Information Geometry we take a divergence function S (often it is a relative
entropy), derive it twice and then evaluate the result on the diagonal:

- i =9 ! - - |
b’ e — (W) = 0jx = g = djpda’ ® dy’
: TJ= gi

We could take a quantum relative entropy and perform the same algorithm...



THE MODEL AVANTUM SYSTEM

Very often, the resulting quantum metrics satisfy the MP, however:

1) the algorithm is coordinate-based;
2) computational difficulties grow with the dimension of the Hilbert space;
3) we must prove that the resulting metric does actually satisfy the MP.

i) a coordinate-free algorithm of general validity which is well-suited for a generic n-level
quantum system;

i) when quantum divergence functions (quantum relative entropies) satisfy the data
processing inequality (DPI), then the resulting quantum metrics satisfy the MP.



COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

We start with a differential manifold M.

A vector field on M may be thought of as a derivation of the associative algebra of
smooth functions, or as a section of the tangent bundle.
In a local chart {q} on M a vector field X can be written as:

S
0q?

i Vector fields are the coordinate-free version of the derivative operator and
we will use them to give a coordinate-free algorithm to extract tensor fields from
two-point functions.




COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

Divergence functions are two-point functions, hence, the relevant manifold is M x M:

[

ETOh -;."‘* :
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/
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The left functions f, on M x M form a subalgebra of the algebra of smooth
functions on M x M. The same is true for the right functions f .



COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

From vector fields on M to vector fields on its double;

X(M)> X —X e x(Mx M): (M) 2 X —X" € X(M x M):

X' fi = (Xef)y PR X"fr=(Xf),, Xfi=0
i G f- |, SN - B, ; ek,
= J R — = S }S. — _)S.'} — X — }S." N
X X7 {”H@-J" 4 i ( {”f!‘ff-’i [ ( y)f}y-f

- for every smooth function f, and for all vector fields X, Y on M, we have:

X, Y] = (X,Y]),, [X.Y]=(X.Y],, [X, Y]=0
X=X, (X)=rX,, Lxfr=Lx/fi=0.



COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

How can we extract a covariant (0,2) tensor from a two-point function D?

To answer this question, let us consider the diagonal immersion of M into its double:

m — tg(m) = (m,m)

'E“.-ffZM—>M><M,

Let X and Y be arbitrary vector fields on M, D a smooth function on its double, and define

the following maps:
gi (X :}f) . ?::’ (L'XJL'T,‘D) y Grr (X ) Yr) S ?:’{} (LX;-LW;-D) ?
gr (X ,Y) =43 (Lx, Ly, D), gu (X ,Y) := ¢ (Lx,Ly,D) .



COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

Without further assumptions on D, these maps do not define covariant (0,2) tensors.

1) g, and g, are covariant (0,2) tensors, and g, (X,Y)=g (Y.X);

2) g, is a symmetric covariant (0,2) tensor if and only if :

iy (Lx D) =0 VX € X(M)
3) g, is a symmetric covariant (0,2) tensor if and only if:

% (Lx.D) =0 VX € X(M)
4) if the previous two conditions hold simultaneously for D, then:

qil = Grr = —Gqir = —grl



COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

A smnooth function D on the double of M such that:
i (Lx,D) =0 VX € X(M), ;(Lx.D)=0 VX € X(M)

is called a potential function, and we set g =-g,_for the symmetric covariant (0,2)
tensor associated with D.

;A smooth function D on the double of M such that:

Diimy sy =aees i 1 s ) = F&— m; = my

is called a divergence function.

Every divergence function is a potential function, and the associated tensor
g is positive-semidefinite. The converse is not true.




COVARIANT TENSORS FROM TWO-POINT FUNCTIONS
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- Let D be a potential function onMxM, then the tensor gis
positive-semidefinite if and only if every point on the diagonal is a local minimum for D. In
particular, g is a metric tensor if and only if every point of the diagonal is a
nondegenerate local minimnum for D.

{9}, X, y'} local charts on M and M x M:

- h P
d¢’ ®,dg* = ( s )

d¢’ ®,dg* =
d

Oyl Oyt
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COVARIANT TENSORS FROM TWO-POINT FUNCTIONS

“What hoppenrs when we consider o N — M
smooth maps between manifolds?

SN XN > MxM
(n1,m2) = @(ny,n2) = (P(n1), P(n2))

Symmetric covariant tensor on M == Symmetric covariant tensor on N
Potential function on MxM = Potential function on NxN

(s commvranve! »



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

Back to the quantum model, we consider the family { S, },,cx, of manifolds of invertible
quantum states, where i, is the set of natural numbers without 0 and 1.

b: M,(C) — M,,(C)

is a Quantum Stochastic map if it is a linear completely-positive trace-preserving map
(CPTP map) such that:
@(SFF) C S’FH-

Quantum Stochastic maps are the quantum analogue of the Markov maps

in classical theory of probability. These maps are related with coarse-graining.



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

{gn}neﬁ , is afamily of metric tensors on {S” }” €Ny

A family of quantum metric tensors satisfies the monotonicity property (MP) if:
gﬂ(X ! X) 2 gj*g”? (X Xj
for every n,m, for every vector field X, and for every quantum stochastic map:

b: M,(C) — M,,(C)

The MP entails the fact that distances between quantum states do not

increase under coarse-graining.



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

{D, }nen, isafamily of divergence functionson {S, X S},

A family of divergence functions satisfies the data processing inequality (OPI) if:

D'.’F(pﬁﬁ) 2 (I}*D”?(p!m - DH?(@(pj G}(@)

for every n,m, and for every quantum stochastic map:

b: M,(C) — M,,(C)

From an information-theoretic perspective, the DPI states that

information can not increase after coarse-graining.



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

Given a family of quantum divergence functions satisfying the DPI,

the family of quantum metric tensors that can be extracted from it satisfies the MP.

Du(p,5) = Du($(p) , 8(7)) = 0 == D,.(p,5) = Dul(p,7) — Dinl(0) , (7)) > 0

D? (p,p) isanon-negative potential function vanishing on the diagonall.

gff.m is a positive semidefinite covariant (0,2) tensor.

gnm(X Y)= _Zj} (LX; LT;-(DH T (I}*D'm)) E gﬂ-(X: Y)—0'gn(X,Y) >0

R0 g, X, Y) ,
( QED. D



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

We studied the family of q-z-Rényi relative entropies (Audenaert, Datta):

Dy-lp 08 = q@l_q) (1 e Ty Kp%ﬁl_?i)z]) , 9€R,z€Ry

This family of quantum divergence functions satisfies the DPl whenz=0and 0 < q <1

~ some interesting limiting cases are:

When g=z=1we recover Von Neumann'’s relative entropy.

When z=1we recover the g-Rényi relative entropies.

When z=q we recover the g-quantum Rényi divergence.

When z=1and g=1/2 we recover the Wigner-Yanase-Dyson skew information.



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

To perform coordinate-free computations we decided to work in the space:

e =g (i 7

l{wn C)>U: UUt =1, |det(U )

Ty . '/MH = (U jm =7 ﬂ_ﬂ:(U uﬁ) = Upi} UT = S‘H;“Tith dé‘{lg(lﬁ) — P0

\3 k nfolding of the manifold
The kernel of the differential at each point is 5 fofinvertible quantum
states by means of the

given by the Hermitean matrices commuting
with £y spectral decomposition




METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

The family of q-z-Rényi relative entropies gives rise to a family of potential functions on
M } by means of the pullback through 7

g(1 l— q) (1 & K(U P U (V ﬁ”w)l_?i)z])

D%*(U, po; V, po) =

Being parallelizable, M_has a basis of globally defined vector fields and

differential one-forms, and this global differential calculus allows us to perform
calculations in every dimension without the need to introduce coordinates:

dp=UdpyU' + U [U'dU, py] U' = Ue; Ul dp’ + U [r, po) U' #*

dpo = ejdp-f;——-; GT(IU — 7.6

b )



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

n nZ—1

s / - S

gui= Z Pad ITha® dinp, Z Cir 0’ @ 6"
=y q(1 —q) jk=1

Where }' denotes the sumnmation over all indexes except those pertaining to the
Cartan subalgebra of the Lie algebra of SU(n), and:

Z raf e Pa — P3)\Pa — Pg)\Pa™ — Py,
C)r ;t" — ! {'}.:jj 3% [J‘.“Il[j.‘t ;\[}EE I:| gi'\t JJ = L L
o, 5=1 ('pﬂ i pﬁ\l

B

T
1 708 with T, a basis of the Lie algebra of SU(n), and e__ the
= Y g —D k 9 ' a
Tk Z ‘Uff Cap matrix with 1in the (a,B) place, and O elsewhere

a. =1



METRICS ON THE SPACE OF INVERTIBLE QUANTUM STATES

After a patient calculation, we obtain the symmetric covariant (0,2) tensor:

n n?—1
g?: z Z -pﬂd In Pa &K dIn Pa T q l q Z C)“I QI X Q

=1 jk=1

/

@JO metric:“Classical-like” contribution depe@
only on the eigenvalues of the quantum states — . \/
Purely quantum contribution depending on eigenvalue
and phases of the quantum states, it is tangent to the
orbit of the action of the unitary group —'




FINAL REMARKS

We introduced a coordinate-free algorithm to extract symmetric covariant (0,2)
tensors from two-point functions. It can be used to extract symmetric covariant
(0,3) tensors (skewness tensors). How far can we go?

In this formalism, it naturally follows that a family of quantum divergences
satisfying the DPI gives rise to a family of metric tensors satisfying the MP.

We computed the family of metric tensors associated with the family of g-z-Rényi
relative entropies for a quantum system with arbitrary finite dimension. What
about the family of skewness tensors?

s it possible to look at this family of quantum relative entropies as the Hamilton
principal function of some Lagrangian function on the space of invertible
quantum states? This would be a sort of dynamical characterization of quantum
relative entropies.
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