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Motivation

[Geometric mechanics]: Symmetry-preserving discretizations of variational principles
lead to Numerical algorithms  that approximate trajectories of the corresponding
dynamical system with good long-term energy conservation properties.

Objective : Create an algorithm that generates discrete fields approximating solutions of

Euler-Poincaré field equations:

(g_j(q, X)) o, — i (g—i(q, X)) —0 (¢ € C*(HStr xx CP))

Unknown flat principal connection x, and y-parallel H-structure ¢ on principal G-bundle P

Mechanism : Solve discrete Euler-Poincaré field equations arising in H-reduced discrete
variational principles (solutions have conservation of discrete Noether currents).
Tasks: — Create discrete Euler-Poincaré equations by means of a covariant discretization
of Euler-Poincaré variational principle.

— Devise algorithm to generate solutions of discrete Euler-Poincarée equations.
Idea: Generalize to field theories the arguments used for reduced discrete mechanics on

Lie groups (Kobalirov,Marsden).
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Reduced discrete mechanics on Lie group G

Determination of unknown trajectory g¢(t): Ry — G
Critical for action functional: (Variational principle)

Luco(0) = [ T L 98, g®)dt, K = [tonsy tena] C Re

=tini

Dynamics is encoded by a fixed Lagrangian function L(¢,g9,g9): R x TG — R.

Particular situation:

Left-action morphisms i5,: g € G — hg € G are symmetries of the Lagrangian
L(t, Ay) = L(t,(dgln)Ay), VA, e T,G, he G

Left trivialisation A, € TG — (d.l,)"'A, € T.G = Lie G = identification TG /G ~ Lie G
Reduced Lagrangian £(t,£): R x LieG — R

£(t7A9) :g(t7 (delg)_lAQ) ﬁ(tagag) :E(tag_lg)

Unknown reduced trajectory  £(t) = (delyr)) ™ ((d/dt)g(t)) = (g(t))~'g(t) on Lie G
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Reduced discrete mechanics on Lie group G

Reduced variational principles In mechanics . [Crouch, Lewis, Munthe-Kaas, Owren, Kobilarov]
Determination of unknown reduced trajectories £(t): R, — Lie G

Critical for action functional:

t=tend

Lic(£(t)) = / Ut E@)dt, K = [tini, tena] C Ry

tini
with respect to particular variations Vare = {0,£ = a + [a, £]} parameterized by

particular curves a(t) on Lie G with compact support.

or

(t,g(t))) = (8_§(t’€<t))> o Adg(r) € (Lie G)” (1st order)

ot

uler-roincare ; ( f

* Discrete analogue?
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Reduced discrete mechanics on Lie group G

Discretisation of timeline manifold : Fix increasing sequence of temporal events (tx)xez
with time-steps hx = txr1 — te >0

Retraction mapping : Fix 7: Lie G — G to linearize elements closetoe € G
Approximate solution g(t) by discrete sequence (g« )rez On G, where gy, is considered

approximation to g(tx) = Approximate £(t) and the action functional by:

79z gkt1) o d B
i = , Li(6() 2Lk (gr)vez = > Lltk, Ex)hx

hi
[tr tkr1]CK
Criticality: Discrete Euler-Poincaré equations (sequence in (Lie G)™)

ol

ol B )
0= (a—g(tk—lygk—1)> o (dT)h;_lgk_l o Adr(n;,_,en_1) — (8_§(tk’€k)> o (dT)hklgk Vk € 7,

Can be expressed as:

0= Adi(hk—lgk—l) Hk—1 — Mk

ov —1
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Reduced discrete mechanics on Lie group G

Solving Discrete Euler-Poincare equations

0= Adi(hk—lgk—l) Hk—1 — [k

Discrete Legendre mapping Leg-¢: (k, &) € Z x LieG — (k, ur) € Z x (Lie G)*

ov -
U = (0_€(tk’§k)> © (dT)hklﬁk

Integrating discrete Euler-Poincaré equations relies in:

e From pi—1 and using Leg;é one may obtain & .

e From &1, ur—1 and using discrete E.P. one may obtain py.

lterative application of the first two steps allows to recover (ux, £k )ken from po or &o.

1, —1
v 1(9;€ gk+1)
h

e From (g, &r), and using definition &, = one may obtain gx. 1.

Iteration allows to recover (g, &k, pik ) ken from

either (go, g91), Or (go, o) Or (go, o) (Initial data)
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Euler-Poincareé in field equations

Fields : Sections y(z) e I'(Y) of bundle 7: Y — X (z”,y") fibered local coordinates
X oriented by volume element volx = dz' A ... Adz™ € Q"(X)

jm: JY — X associated jet bundle (z”,y",y%) induced local coordinates
Lagrangian function £(z”,y",y.): JY — R = Lagrangian density £ - volx =

Action functional Lk (y) = [, £ o jy - volx on compact domains K C X

Necessary condition for y € I'(Y) to minimize L (with respect to variations of y vanishing

at OK)is0=EL(y) € I'(y*V*'Y) (Euler-Lagrange equations )

EL.(y) = a—yi(jxy) -> (dx,,> 97 Uy)| dy" € V)Y

Infinitesimal symmetries have corresponding conserved currents (Noether)
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Euler-Poincareé in field equations

Particular case : Smooth proper free action A\: G x P — P of Lie group G on manifold P.
7%:pe P— Gp e P/G = X principal G-bundle

Tcau: Gau P — X bundle of GG-covariant automorphisms of P

Pz: Po > Poy ¢2(gpz) = 992(p=), Vg € G, ¢z € (GauP).
maq: AdP =V P/G — X bundle of 7¢-vertical G-invariant vector fields on P
ay € X(Py), A\gaz = ay Vg € G, Va, € (Ad P),
exp: (€,Az) ER X AdP — expeA, € Gau P (Id* V Gau P ~ Ad P)
O—>P;<<AdP—>VP—>O

(Pz; Az) = (d/de)e=o(exp €Az ) (pz)

Euler-Lagrange equations for £: JP — R:
VP~PxxAdP=p'V*'P~Ad"P= EL(p) € '(Ad" P)
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Euler-Poincareé in field equations

Existence of symmetries for a Lagrangian £: JP — R? Two particular cases:

- Subgroup of the infinite-dimensional gauge group I'(Gau P), given by Gauge
transformations ¢: P — P such that Lo j¢ = L.
- Subgroup H of the Lie group G given by group elements h € GG such that Lo jA, = L.

Reduction by closed subgroup H C GG JP/H ~ (P/H) xp,c (JP/G)
e Trstr: HStr = P/H — X bundle of H-structures
n". P — P/H principal H-bundle P*5" with HStr as base manifold

il . Ad PP = V P/H — HStr bundle of 7% -vertical H-invariant vector fields on P

0— AAdPP" s HStr x AdP — VHStr — 0
X

e 7cp: JP/G =CP — P/G = X. Its sections x € I'(JP/G) are in one-to-one
correspondence with principal connections on P. (CP bundle of principal connections)

CP is an affine bundle modelled on 7% X ® Ad P, therefore VCP ~ CP x x (T* X ® Ad P)

¢ VHStr ~ AdP/¢* Ad P75  \*VCP~T*X ® AdP
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Euler-Poincareé in field equations

Particular case: Smooth proper free action of Lie group G on manifold P.
m: P — P/G = X principal G-bundle;
Closed subgroup H C G acts as symmetries of Lagrangian £: JP — R.

Reduction of configuration bundle:

mcp: JP/G = CP — P/G = X bundle of principal connections
mHse . HStr = P/H — X bundle of H-structures
JP/H ~ HStr x x CP — X bundle of H-reduced fields.

Reduction of a field:

p e (P) = x =7%0jpe'(JP/G) =T(CP) induced principal connection
pe(P)=q=n"opec'(P/H) =T'(HStr) induced H-structure

(¢, x) generated from p € I'(P) = Flat connection, Parallel H-structure:
Curvy = 0, d*qg =0

Local reconstruction of p is possible from (¢, x) € I'(HStr x x CP) if and only if the

connection is flat and the H-structure is parallel.
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Euler-Poincareé in field equations

Reduced variational principle (Recall JP/H = HStr x x CP)

Choice of reduced Lagrangian ¢: HStr xx CP — R (or H-invariant L: JP — R)
Choice of admissible H-reduced fields (¢, x) € I'(HStr x x CP) of the particular form

Flatness: Curvy = 0, Parallelism: d*q = 0

Choice of admissible infinitesimal variations (6.q, daXx) € I'(¢"VHStr) @ I'(x"VCP) ~
I'(Ad P/q* Ad PP5") @ T(T* X ® Ad P) of the particular form

daq = Tq(a), dax = d*a, compactly supported a € I'(Ad P)

Relevant difference:

Substitution of arbitrary fields p(x) € I'(P) and variations with compact support
op € I'“(p*V P) by H-reduced field (¢(x), x(z)) € I'(HStr x x CP) with a
flatness+parallelism constraint, and a reduced family of infinitesimal variations.

The new formulation admits new global fields, not represented by global “potentials”

p € I'(P)
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Euler-Poincareé in field equations

Theorem [Castrillon,Ratiu 2003]
Fix ¢: HStr xx CP — R (H-reduced lagrangian), L =¢on?: JP - R
The following are equivalent for p € I'(P) and induced (q, x) € I'(HStr x x CP)

1. 6 [ Lo jp-volx = 0 holds for variations dp with compact support.
2. p € I'(P) satisfies Euler-Lagrange equations 0= EL(p) € I'(p*V P) assoc.to L.
3. §[Lo(g,x) - volx = 0 holds for the subset Var, , of variations with the form
0aq = mq(a) € T(Ad P/q* Ad P5") = I'(¢*V HStr),
dax = d¥a € T(T*X ® Ad P) = I'(x*CP)
with compactly supported a € I'(Ad P)
4. (q,x) satisfy Euler-Poincaré equations 0 = &P(q, x), where

£P(a.) = ( 5ea:0 ) oo — divy 5+ (a.00) € T(Ad" P

Here m,: AdP — Ad P/q* Ad PPS% ~ ¢*V HStr, dX: JAAP — T*X ® Ad P ~ x*VCP
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Discrete model of space: CFK simplicial partition of space.

Discrete model of timeline for mechanics: Totally ordered countable set V. (Abstract but
indexed by points x = k € Z of the real line R). Specific events given as monotone
sequence (tx)rez, generating a partition of smooth timeline into temporal intervals.
Discrete model of base manifold for field theories? Specific nodes as (z,)yeczn C X

Simplicial complex structure on Z™: Removing from R™ hyperplanes
' =cez, th —r?=ceZ

Taking the closure of its connected components: Partition into affine simplices

Ko ={v+eiesa)+ ...+ €nom), 1 > €1 >€>...>¢6 >0}

Ext(Ky,o) = {vo,v1,...,0n}, Vo = U, Uk = Vk—1 + €o(k)

(veZ" o€ Sym,)
Abstract Coxeter-Freudenthal-Kuhn (CFK) facet : Sequence of n + 1 points

(vo,...,vn) C Z"™ With vy, = vp—1 + e, (k) for some permutation o € Sym,,.
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Discrete model of space: CFK simplicial partition of space.

Discrete model of timeline for mechanics: Totally ordered countable set V. (Abstract but
indexed by points x = k € Z of the real line R). Specific events given as monotone
sequence (tx)rez, generating a partition of smooth timeline into temporal intervals.
Discrete model of base manifold for field theories? Specific nodes as (z,)yeczn C X

Simplicial complex structure on Z™: Removing from R™ hyperplanes
' =cez, th —r?=ceZ

Abstract Coxeter-Freudenthal-Kuhn (CFK) facet . Sequence of n + 1 points

(vo,...,vn) C Z" With v, = vp_1 + e, (1) for some permutation o € Sym,,.
O

O o O

3D and 2D CFK simplicial partitions on_a single cube/square, respectively _ .
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Discrete model of space: CFK simplicial partition of space.

Abstract Coxeter-Freudenthal-Kuhn (CFK) facet : Sequence of n + 1 points
(vo,...,vn) C Z" With vy, = vp_1 + e, (1) for some permutation o € Sym,,.

Abstract CFK k-dimensional simplex : Subsequence of k£ + 1 points (vs,,...,vi, ) C Z"
(0 <ip < ... <1ir <n)of some abstract CFK facet (vo, ..., vy)

CFK Simplicial Complex : Family V' of all abstract CFK simplices.

Set V of all abstract CFK simplices.

VE={acV: dima=k}CV (V =v°=12")
B = (vo,...,vn) € V" CV CFK facet.

a = (vo,v1) € V' C V CFK edge.

Topology arises from a natural adherence notion: o < 8 (being a subsequence)
DEFINE: V** =V x ... x V (k+1) copies OBSERVE: V¥ c V*¥
Natural projectors m;, i, : VI — V¥ (0 <ig < ... < ix <)

{m:(B8) }o<i<w adherent vertices {igi, (B) Yo<iy <i, < @dherent edges of B € V*

XXVI IFWGP Braga César Rodrigo & Ana Casimiro



Discrete variational principles on simplicial complexes

Discrete bundle on V' Projection Y; — V whose fibers Y, are smooth manifolds.
Vertical bundle VY; — Yy, with fiber (VYy)y, =T, Yo

Discrete field on Yy: Sectionyg: v € V =y, € Yy

Infinitesimal variation of y; € I'(Yy): Section of discrete bundle y;VYs — V

Any discrete bundle Y; — V induces an

Extended bundle Y,F — V* (Restriction of (Yy)** — V>** to V¥ c V*F)
Discrete jet bundle :Y;" — V",

Jet extension of discrete fields: yq € I'(Ya) = y; € T'(Y]")

B=(vo,...,vn) EVT CV*" = yZ = (Yugy---,Yon) € Yg' C (Ya)*"

Discrete Lagrangian Lg4: Y;" — R"™. Family (Lg)gevn» of smooth functions
Lg:Yg =Yy, xYy, x...xY,, =R, B=(vo,...,vn) EV"CV™"
Differential at y5 = (yo,...,yn) € Y;" of a Discrete Lagrangian L4: Y;" — R:

dygLs = (dynLs, ..., dynLs) € Ty Vo) @ .- © Ty, Yr ()
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Discrete variational principles on simplicial complexes

Action functional associated to £,4 and finite domain K C V":

Lk:ya €T(Ya) = > (Laoyi)(B)

BeK

dy,Lx: 8ya € D(yiVYa) = Y (dLa o 5y3)(B)

BeK

Criticality : For any given discrete bundle Y; — V' on the n-dimensional CFK simplicial
complex, and any given discrete Lagrangian L;: Y;" — R we say yq € I'(Yy) Is critical for
the variational principle associated to £, with fixed boundary variations, if (d, Lk, dya)

T,,Y, C I'(y;VYa) with support

vanishes for infinitesimal variations éyq € @, cin &
interior to K, for each finite domain K C V",
THEOREM: A section y4 € I'(Yy) is critical for the variational principle associated to L,
with fixed boundary variations, if and only if the discrete Euler-Lagrange tensor
ELa(ya) € T'(y;V*Yy) vanishes, where:

ELo(ya) = D dy P L €T} Y,

peStar?!
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H-reduction of discrete jet bundle

Particular case : Discrete principal G-bundle P; — V.

Difference of two elements po, p1 on P; can be computed as:

- Group element g € G such that gpo = p:1 (group difference g = pip; ).
Existence only if w(po) = w(p1). Uniqueness.
- G-covariant morphism «: P; — P, such that ¥(po) = p1 (gauge difference ).

Existence; Not unique but on the G-orbit of po determined by +(po) = (Popy " )p1.

For po € P, and p; € P, denote p; 'p: the uniquely defined G-covariant morphism
defined on the single G-orbit P, such that ¢ (po) = p1.

Use reversed notation pv instead of 4 (p), 1 o ¢ = yp

Ehresmann’s bundle End P, of fiber-to-fiber endomorphisms associated to P; — V'
End P; = {¢: P, — P; domain a single fiber, 1) o A\, = A\, o ¥} groupoid
Source+Target: (s,t): End Py — V x V Dom(v¢) = Psy), Img(v¥) = Piy)
Restrict End P; — V' x V to diagonal = Gau P; — V gauge bundle.

XXVI IFWGP Braga César Rodrigo & Ana Casimiro



H-reduction of discrete jet bundle

End P; = {¢: P, — Pz domain a single fiber, 1) o Ay = A\g o9}
Source+Target: (s,t): End Py -V x V

Fibered product (End Pd)xsk‘1 of k fiber-to-fiber endomorphisms with common source.
(s,t1,...,tk): (End Py)*=F"1 — y>*

Extension to simplices : Restrictto V* C V** = (s,t1,...,tx): End* Py — V¥, .

End™ P; — V"™ extended Ehresmann bundle on facets of the CFK simplicial complex
(Vi: Pog = Po,)i=1...n, (Vo,v1,...,0n) EV"' CV xX...xV
End' P; — V! Ehresmann bundle on edges of the CFK simplicial complex
V: Pyy = Py, (vo,v1) € VicvxV

PROPOSITION: The Gauge difference mapping (po,p1) € P; — py 'p1 € End' P, has as
fibers the orbits of G acting diagonally (po,p1) — (gpo, gp1) on P;.
7¢: P; - P} /G ~ End" P,
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H-reduction of discrete jet bundle

PROPOSITION: The projectors mo: P} — Py, and 7€ o mg;: P? — End'! P,; determine a
natural identification Py ~ P; X, s) End™ P;. Under this identification the diagonal action
Ay " on P} is identified by the action Ay x Idgna» p,.

COROLLARY: For any closed subgroup H C G

Py /H ~ HStrgy x  End" Py

(THStr»S)

Where sty : HStrqg = Py/H — V is the discrete bundle of H-structures, End™ P; — V"
Is the extended Ehresmann bundle on facets, and we consider a fibered product over the
source mapping s: End™ P; — V/, leading to a bundle on the set of facets V' x, V" = V",
Remark: s: End™ P; — V' is the analogue for discrete field theories of the bundle of
principal connections CP — X that exists in the smooth field theories on principal
G-bundles.
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H-reduction of discrete jet bundle

Calculus of variations : Introduce the discrete Lagrangian function £;: P} — R
We call trivialised form associated to L4(po, p1,- - -, pn), the function Lai(po, Y1, ..., %¥n)
determined by L4 using the natural identification Py ~ Py X (. o) End"™ Py
Discrete Lagrangian functions that are invariant for H acting diagonally on P} are in
one-to-one correspondence with smooth functions 4,(qo, %1, - . . , ¥y ) defined on the
bundle of H-reduced discrete jets

RJP; = HStry x End" P;— V"

(THStr»S)

These /,: RJP; — R are called H-reduced discrete Lagrangian functions
RECALL VP;/G = Ad P; — P;/G =V discrete adjoint bundle associated to Py
PROPOSITION: The differential of the Gauge difference mapping 7 : P; — End' P;

determines a natural identification (source trivialisation):

s*Ad P; ~ V End! P,
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H-reduction of discrete jet bundle

Calculus of variations : Introduce the discrete Lagrangian function £;: P} — R
We call trivialised form associated to L4(po, p1,- - -, pn), the function Lai(po, Y1, ..., %¥n)
determined by L4 using the natural identification Py ~ Py X (. o) End"™ Py
Discrete Lagrangian functions that are invariant for H acting diagonally on P} are in
one-to-one correspondence with smooth functions 4,(qo, %1, - . . , ¥y ) defined on the
bundle of H-reduced discrete jets

RJP; = HStry x End" Py — V"

(T HStr»S)

These /,: RJP; — R are called H-reduced discrete Lagrangian functions
RECALL VP;/G = Ad P; — P;/G =V discrete adjoint bundle associated to Py
RECALL P; — P;/H = HStrq principal H-bundle PH5
PROPOSITION: The differential of the quotient mapping = : P; — HStr, determines an
exact sequence

0 — Ad P75 5 n%q Ad Py — VHStry — 0
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H-reduction of discrete jet bundle

Calculus of variations : Introduce the discrete Lagrangian function £;: P} — R
We call trivialised form associated to L4(po, p1,- - -, pn), the function Lai(po, Y1, ..., %¥n)
determined by L4 using the natural identification Py ~ Py X (. o) End"™ Py
Discrete Lagrangian functions that are invariant for H acting diagonally on P} are in
one-to-one correspondence with smooth functions 4,(qo, %1, - . . , ¥y ) defined on the
bundle of H-reduced discrete jets

RJP; = HStry x End" P;— V"

(THStr»S)

These /,: RJP; — R are called H-reduced discrete Lagrangian functions
PROPOSITION: Source trivialisation V End' P; ~ s* Ad P; determines
Vigor.opm) [0 Pa = (Ad Py, / Ad qugStr) @ D;_; Ad Py,
and a natural immersion
Viiowr....om) I Pa © Ad" Py, © P;_; Ad™ Py, = D, Ad™ Py,

(first component vanishes on Ad P/°"™ C Ad P,,).
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H-reduction of discrete jet bundle

Calculus of variations : Introduce the discrete Lagrangian function £;: P} — R
We call trivialised form associated to L4(po, p1,- - -, pn), the function Lai(po, Y1, ..., %¥n)
determined by L4 using the natural identification Py ~ Py X (. o) End"™ Py
Discrete Lagrangian functions that are invariant for H acting diagonally on P} are in
one-to-one correspondence with smooth functions 4,(qo, %1, - . . , ¥y ) defined on the
bundle of H-reduced discrete jets

RJP; = HStry x End" P;— V"

(THStr»S)

These /,: RJP; — R are called H-reduced discrete Lagrangian functions
Vieownsny BIPs € Ad” Py & @7, Ad™ Py = @1, Ad* Py,
DEFINE: For any H-reduced discrete lagrangian function ¢/;: RJP; — R, its differential
d.;¢q at any H-reduced discrete jet rj = (qo, %1, ..., ¥n) € RJ P, determines n + 1 linear

forms on Ad P;(,;) that we denote:

Onila, Opila, .., Orila € Ad” Py(rjy

J
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Discrete Euler-Poincaré equations in  H-reduced coordinates

Theorem : If £L4: P} — R is the discrete Lagrangian function £4 = ¢4 o 7' determined
using the natural projector P} — P} /H = RJP,; and any H-reduced discrete Lagrangian
function ¢4: RJP; — R, then the discrete Euler-Lagrange tensor £EL4(p) € T'(p* V™ Py)
associated to £, and a section p € I'(P;), using the identification V P; ~ Py xy Ad P4,

takes the specific form:

Z TJBEB + Z Z 879;/6’65 - Z Z Adjpﬂm(ﬁ) 825665 = F<Ad* Pd)

7o (B)=v i=1 mo(B)=v i=1 7 (B)=v
where rjs € RJPy is the 7" -projection of p} € P} and Ad},: Ad* Py(y) — Ad* Py is
transpose to Ad;": Ad P,y — Ad Py, induced by ¢~ ": Pyyy — Pay)
DEFINE: For any q € I'(HStry) and ¢ € I'(End' P;) call Discrete Euler-Poincaré tensor
EPa(q,v) € T'(Ad™ P;) associated to (¢, v):

EPu(¢, ) = ) wzﬁz Yo Wgls = Y Ady 0.4
7o (B)=v i=1 7o (B)=v i=1m;(B)=v

B — (U07U17 S avn) =4 Tjﬁ — (qvoawvovu S 7¢UO'Un)
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Discrete Euler-Poincaré equations in  H-reduced coordinates

Any discrete field on a discrete principal G-bundle p € I'(P;) determines a discrete
principal connection ¢y € T'(End' P;) and a discrete H-structure ¢ € I'(HStry) by:
woé — 7-‘-G(ps(a)apt(a)) — ps_(la)pt(a) qv = 7-‘-H(p’v) — Hpv

DEFINE: We call H-reduced discrete field any pair (¢,v) € I'(HStry) x T'(End"' Py).
The H-reduced field (g, 1) associated to p € I'(Py) is called the projected field .
REMARK: For projected fields there holds (compatibility conditions)

- Parallelism : qu v, = qu, fOr any edge (vo,v1) € Vi

- Flatness : Yug v, Yoy ve = Yugu, TOr any 2-simplex (vo, v, v2) € V2 C VX2

Parallelism+Flatness conditions = (q, v) is called admissible
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Discrete Euler-Poincaré equations in  H-reduced coordinates

Variational principle:

Choice of discrete H-reduced Lagrangian ¢/4: RJP; — R

Choice of admissible discrete H-reduced fields (q, ) € (F(HStrd) x I'(End’ Pd))Adm

Flatness + Parallelism

Choice of subset of admissible variations d,7j = (daq, 0a%) € Var, , with the form

Sata = Gs(y) — Ady -1 ay(y,) € T(Y"V End' Py) ~ T'(s* Ad Pa),

Saqo = mq(a) € T(¢*VHStry) ~ I'(Ad Py/q* Ad PH5)

with compactly supported a € I'(Ad Py)

Seek admissible discrete H-reduced fields (g, 1) such that its H-reduced discrete jet
extension rj € I'(R.J Py) is a critical point of the discrete action ) . ¢4(rj), for admissible

discrete variations d,7j with a € ® Ad P, C I'(Ad P;), vanishing at the boundary of K.
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Discrete Euler-Poincaré equations in  H-reduced coordinates

Theorem [CasimRodr]

Fix ¢4: HStrq xs End™ P; — R (discrete H-reduced lagrangian), £q = ¢gon: JP; - R

The following are equivalent for p, € I'(P;) and associated (g, ) € I'(HStrg xs End™ Py)

1.
2.

6 [ Laopg = 0 holds for variations dpq with compact support.

pa € I'(P,) satisfies discrete Euler-Lagrange equations 0= EL4(pa) € I'(p;V Pa)
associated to L.

6 [Laorj(g,v) - volx = 0 holds for the subset Var, , of variations with the form
Sata = Gs(ye) — Ady -1 ay(y,) € T(¢" End’ Py) =~ T(s* Ad Pa),

0aqu = mq(a) € T'(¢*V HStry) ~ I'(Ad P;/q* Ad P75%)

with compactly supported a € I'(Ad Py)

(q, ) satisfy discrete Euler-Poincaré equations 0 = £P,(q, ) associated to /4
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Covariant discretization for reduced field theories

We have results concerning a smooth variational field theory and the associated
variational reduced field theory.

We have results concerning a discrete variational field theory and the associated discrete
variational reduced field theory.

Can we give methods to generate discrete formalism from smooth ones? In such a way

that symmetries are preserved?

Yes, we can [Casimiro, Rodrigo 2017] but...

Due to time constraints: Not to be treated here.

* From a single H-covariant Lagrangian L for field theories on a principal GG-bundle
P — X, possibility to generate 4 related variational principles: Classified into

smooth/discrete and unreduced/H -reduced, preserving gauge symmetries.
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Integration of discrete EP equations

Consider the H-reduced, discrete case on a discrete principal G-bundle 7: P; — X
Discrete H-reduced fields: Pair of sections (q, ) € I'(HStry) x I'(End' Py)

Admissible discrete H-reduced fields: Flatness and parallelism

o Parallelism: q,,¢v,0, = qu, for any edge (vo,v1) € V!

o Flatness: ¥y v Yoyvs = Yugus, TOr any 2-simplex (vo, v, v2) € V2 C V*2

Discrete H-reduced Lagrangian ¢,: HStry xs End™ P; — R generates a variational
principle for admissible discrete H-reduced fields.

Critical discrete H-reduced fields characterized by 0 = EP4(q, V)

e Disc.E.-PTensor EP4(q,v) € I'(Ad* P;) associated to (g, ¢):

8731, C], Z Tjﬁgﬁ—i_z Z 8S;B€B _Z Z Ad:bﬂoz'(,@) 8793@56ﬂ

w0 (B)=v 1=1 7o (B)=v 1=1 7;(8)=v

B = (anvla-ﬂavn) ceV" = rjg= (qv07¢v07}1?"'7¢v0“n) € RJPg
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Integration of discrete EP equations

Integration Problem : Recover unknown (g,) € T'(HStry) x I'(End' P;) from:

e Parallelism: q,,¢v,0, = ¢u, for any edge (vo,v1) € V*
o Flatness: ¥y v, Yoyvs = Yugu, TOr any 2-simplex (vo, v, v2) € V2 C V*2
e Criticality

_ 0 n 07 n * 02
0= z7ro(/3)=v Orjsls + D iz Zwo(ﬁ):v Orjgls — 2 iz zm(ﬁ)zv Ad@”m(ﬁ) Orjg s
for any vertex v € V

Propagate field values from an initial band : Decompose V' = Z" into slices
Se={(k1,...,kn) €Z": k1 + ...+ kn =c} (ce )

Consider a vertex v € Z" in a given slice S.4,. Assume that all values q.,, 1,,. are
known for vertices w in the region k1 + ...+ k, < c+ n.

What can be said about the values ¢, and ),,.,?
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Integration of discrete EP equations

Slices S. C Z" definedby k1 + ...+ k, = ¢
ASSUME G, Yovyw KNOWN for w € V =7Z" intheregion ki1 + ...+ k., <c+n

Can we generate q., Y., for winthe region ki +... + k, =c+n?

Take Euler-Poincaré equations atv =« — (1,...,1) (hence v € S.)
L 0 0% < 0%
0= D Ogls+d_ D, Ogle—) >, Ady ., Osls
mo(B)=v i=1 7o (B)=v =1 7;(B)=v

Expression 0 = £P,(q, ) only depends on rjz when 7;(5) = v for some 4. This implies
mo(B) € Sc—i, and rjz only depends in determined configurations q.,, ¥, With w in the

region k1 + ...+ k, < ¢+ n, plus the particular undetermined configuration Wuq (that

appears in components rjz when m(3) = v).
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Integration of discrete EP equations

Decompose Euler-Poincaré equations at v into component that depends on rjz for

mo(B) = v and another one that depends on rjs for 7;(6) = v, i =1...n:

s Memt
Z 82j665 + Z Z 879;-&65 — Z Z Adlﬁm(b’) 67(’);565
o (B)=v 1=1 mg(B)=v =1 7;(B)=v

Guw, Yvow KNOWN in the region k1 + ... + k, < ¢+ n =, Right hand side Mom,, is known.
Left hand side Leg, depends on g, and on 1, for edges a € V! with source s(a) = v. All
these components are also known, except for the particular component v, with
u=v+(1,...,1).

If dim G = m (and consequently dim Ad* P, = m, dim End' P,, = m) we have a system
of m equations with 1, as m-dimensional unknown that taking into account the

dimensions, in some regular cases, will determine a unique solution.
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Integration of discrete EP equations

DEFINE: We call space of discrete H-reduced forward configurations atv € V the
manifold Forw’ = HStr, x Hs(a):v End! P,.

DEFINE: We call discrete Legendre mapping associated to a discrete H-reduced

Lagrangian ¢4, the mapping Leg: Forw” — Ad* P, defined on each fiber by:

Leg,: (qv, (Ya)s(a)=v) € Forw.' s Z rméﬁ + Z Z 8793566 c Ad* P,
7o (B8)=v i=1 7o (8)=v

where 753 = (qv, (Ya)a<p)-

The central step in solving discrete Euler-Poincaré equations lies in the determination of a
single component ¥, for some edge Av = (v,v + (1,...,1)) € V', using the remaining
available configurations (using an underdetermined forward configuration)

DEFINE: We call space of underdetermined discrete  H-reduced forward

configurations at v € V the manifold UForw’ = HStr, x [ [stay=o End! P,.
aFAv

Forw = UForw’ xy A*End' P, (A:V = VH
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Integration of discrete EP equations

Legendre mapping is a morphism of discrete bundles
Leg: UForw’ xy A*End' P; — Ad* Py

DEFINE: We call integrator for the Legendre mapping
Leg: UForw} x A* End' P; — Ad* P,;, any mapping

®: UForw} x Ad* P, — A* End' P,
such that, for any uf, € UForw?’, 8, € Ad* P, there holds,
Leg(ufy, P(ufy,0y)) = 0,

If, moreover, Leg(uf,, ): A* End' P; — Ad* P, is injective , we say the integrator is a
strong integrator (in this case the integrator is unique).

Local existence of integrator iff the following linear morp hism is non-degenerate

OLeg,
awAv
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Integration of discrete EP equations

THEOREM

Let ® be an integrator for the Legendre mapping. Consider a locally defined admissible
H-reduced field (q, ). € I'(B., HStry) x I'(B.,End" P;), defined on vertices and
edges included in the initial condition band Be=ScnUScnt1U...UScqn-1.
Consider at each v € S. the momentum and underdetermined H-reduced forward
configuration ., € Ad* P,, uf, € UForwi' determined from (g, ).

Foru € Scynand v =u—(1,...,1), the values

You = Py (va, .U’U)7 Qu = Quhou, Yogu = ¢;v10¢vu (1)

extend (q,v)c t0 (q,v)cr1 € T'(Bet1, HStrg) x I'(Biyq1, End' P;), an admissible
H-reduced field on the following band B.11 = Scqn U Be \ Sc—n.
The discrete field so defined in B. U C.; satisfies Euler-Poincaré equations

0 = EP.(q,1) are satisfied at each vertex v € S..

(Uniqueness of solution if ® is a strong integrator)
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Integration algorithm

Diagonal slice S. C V =Z" givenby k1 +...+ k, =c(c € Z)

Initial data at B.: Admissible discrete H-reduced field (q, 1). defined on the set

B. = Uy S..x (initial band)

THEOREM: If the Legendre mapping is regular (existence of integrator ) then for any
initial data at B, there exists compatible initial data at B.1 determining an admissible
discrete field on UF="_S.. 1, for which Euler-Poincaré equations hold at any vertex v € S.

in its central slice.
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Integration algorithm

s Ve
J—)oi axis 0 c/fv/LFor eachv € S.)

1.- Extract discrete H-reduced underdetermined forward configuration w f, € UForw?
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Integration algorithm

\//q .o |
o o o' / o ke

j%)(is ] . L )
J—)oi axis 0 Q/V/I(For eachv € S.)

2.- Compute u,, € Ad™ P, using the momentum mapping. Obtention of element

(ufo, o) € UForwy x Ad* P,.

(o] (e C

// o) o o o
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Integration algorithm

jaxis |
J—)oi axis 0 Q/V/I(For eachv € S.)

3.- Compute Yy = @y (wfy, o) € End' Pa, foru = v 4 (1,...,1) using the integrator
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Integration algorithm

jaxis |
J—)oi axis 0 Q/V/I(For eachv € S.)

4.- Values q,, and 1, for w,u € UZ;fnSchHk are determined by initial data.
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Integration algorithm

o o (,/:/ ‘o) o
N

ks //
J—)oi axis 0 Q/V/I(For eachv € S.)

5.- Values ¢, and vy, foru =v + (1,...,1) and w € U}Z? S.i14+% are now determined

by parallelism and trivial holonomy, using .,
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Integration algorithm

] axis
o

o o (o]

J—)oi axis . c/‘,v

(Foreach v € S,)

6.- Collect all H-structures and fiber-to-fiber endomorphisms into new admissible discrete

field (q,%)c+1 defined on B.y1 = U}Z;ins(cﬂ)% (new initial band). Initial data at B.41
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Integration algorithm

Initial Data: Known (g, ). defined on B, = UPZ! S.. (initial condition band)

Foreachv € S.

1. Extract undetermined flat configuration w f, € UFlat

2. Compute u, € Ad™ P, using the momentum mapping. Obtention of element in
UForwi! x Ad* P,.

3. Compute Ya, = ®(ufy, ity) € End* Pa, using the integrator

4. Values g, and v, for w,u € UZ;3n5c+1+k are already determined by initial data.

5. Values g, and ¥,y foru =ov+(1,...,1), w € U}Z> S.i1+k are now determined by
parallelism and trivial holonomy.

6. Collect all H-structures and fiber-to-fiber endomorphisms into new admissible
discrete field (q,v)c+1 defined on Bey1 = UpZ" S(ci1)4s (New initial band).
New initial data at B.11

lterate.
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