Variational Integrators for Euler-Poincaré equations

César Rodrigo

Academia Militar

Joint work with: Ana Cristina Casimiro (Universidade Nova de Lisboa)

XXVI International Fall Workshop on Geometry and Physics, Braga, September 7th, 2017

This work was supported by Fundação para a Ciência e a Tecnologia by way of grant UID/MAT/04561/2013 to Centro de Matemática, Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa (CMAF-CIO)

Motivation

[Geometric mechanics]: Symmetry-preserving discretizations of variational principles lead to Numerical algorithms that approximate trajectories of the corresponding dynamical system with good long-term energy conservation properties.
Objective: Create an algorithm that generates discrete fields approximating solutions of Euler-Poincaré field equations:

$$
\left(\frac{\partial \ell}{\partial q}(q, \chi)\right) \circ \pi_{q}-\operatorname{div}_{\chi}\left(\frac{\partial \ell}{\partial \chi}(q, \chi)\right)=0 \quad\left(\ell \in \mathcal{C}^{\infty}\left(H \operatorname{Str} \times_{X} \mathrm{CP}\right)\right)
$$

Unknown flat principal connection χ, and χ-parallel H-structure q on principal G-bundle P
Mechanism: Solve discrete Euler-Poincaré field equations arising in H-reduced discrete variational principles (solutions have conservation of discrete Noether currents).
Tasks: - Create discrete Euler-Poincaré equations by means of a covariant discretization of Euler-Poincaré variational principle.

- Devise algorithm to generate solutions of discrete Euler-Poincaré equations.

Idea: Generalize to field theories the arguments used for reduced discrete mechanics on Lie groups (Kobalirov,Marsden).

Contents

Reduced discrete mechanics on Lie group G
Euler-Poincaré in field equations
Discrete model of space: CFK simplicial partition of space.
Discrete variational principles on simplicial complexes
H-reduction of discrete jet bundle
Discrete Euler-Poincaré equations in H-reduced coordinates
Covariant discretization for reduced field theories
Integration of discrete EP equations
Integration algorithm
Bibliography

Reduced discrete mechanics on Lie group G

Determination of unknown trajectory $g(t): \mathbb{R}_{t} \rightarrow G$
Critical for action functional:
(Variational principle)

Dynamics is encoded by a fixed Lagrangian function $\mathcal{L}(t, g, \dot{g}): \mathbb{R} \times T G \rightarrow \mathbb{R}$.
Particular situation:
Left-action morphisms $l_{h}: g \in G \mapsto h g \in G$ are symmetries of the Lagrangian

$$
\mathcal{L}\left(t, A_{g}\right)=\mathcal{L}\left(t,\left(d_{g} l_{h}\right) A_{g}\right), \quad \forall A_{g} \in T_{g} G, h \in G
$$

Left trivialisation $A_{g} \in T G \rightarrow\left(d_{e} l_{g}\right)^{-1} A_{g} \in T_{e} G=\operatorname{Lie} G \Rightarrow$ identification $T G / G \simeq \operatorname{Lie} G$
Reduced Lagrangian $\ell(t, \xi): \mathbb{R} \times \operatorname{Lie} G \rightarrow \mathbb{R}$

$$
\mathcal{L}\left(t, A_{g}\right)=\ell\left(t,\left(d_{e} l_{g}\right)^{-1} A_{g}\right) \quad \mathcal{L}(t, g, \dot{g})=\ell\left(t, g^{-1} \dot{g}\right)
$$

Unknown reduced trajectory $\xi(t)=\left(d_{e} l_{g(t)}\right)^{-1}((d / d t) g(t))=(g(t))^{-1} \dot{g}(t)$ on Lie G

Reduced discrete mechanics on Lie group G

Reduced variational principles in mechanics:

Determination of unknown reduced trajectories $\xi(t): \mathbb{R}_{t} \rightarrow$ Lie G
Critical for action functional:

$$
\mathbb{L}_{K}(\xi(t))=\int_{t=t_{\text {ini }}}^{t=t_{\text {end }}} \ell(t, \xi(t)) d t, \quad K=\left[t_{\text {ini }}, t_{\text {end }}\right] \subset \mathbb{R}_{t}
$$

with respect to particular variations $\operatorname{Var}_{\xi}=\left\{\delta_{a} \xi=\dot{a}+[a, \xi]\right\}$ parameterized by particular curves $a(t)$ on Lie G with compact support.

$$
\text { Euler-Poincaré } \frac{d}{d t}\left(\frac{\partial \ell}{\partial \xi}(t, \xi(t))\right)=\left(\frac{\partial \ell}{\partial \xi}(t, \xi(t))\right) \circ \operatorname{Ad}_{\xi(t)} \in(\text { Lie } G)^{*} \quad \text { (1st order) }
$$

* Discrete analogue?

Reduced discrete mechanics on Lie group G

Discretisation of timeline manifold: Fix increasing sequence of temporal events $\left(t_{k}\right)_{k \in \mathbb{Z}}$
with time-steps $h_{k}=t_{k+1}-t_{k}>0$
Retraction mapping: Fix τ : Lie $G \rightarrow G$ to linearize elements close to $e \in G$
Approximate solution $g(t)$ by discrete sequence $\left(g_{k}\right)_{k \in \mathbb{Z}}$ on G, where g_{k} is considered approximation to $g\left(t_{k}\right) \Rightarrow$ Approximate $\xi\left(t_{k}\right)$ and the action functional by:

$$
\xi_{k}=\frac{\tau^{-1}\left(g_{k}^{-1} g_{k+1}\right)}{h_{k}}, \quad \mathbb{L}_{K}(\xi(t)) \simeq \mathbb{L}_{K}^{d}\left(g_{k}\right)_{k \in \mathbb{Z}}=\sum_{\left[t_{k}, t_{k+1}\right] \subset K} \ell\left(t_{k}, \xi_{k}\right) h_{k}
$$

Criticality: Discrete Euler-Poincaré equations (sequence in $(\operatorname{Lie} G)^{*}$)
$0=\left(\frac{\partial \ell}{\partial \xi}\left(t_{k-1}, \xi_{k-1}\right)\right) \circ(d \tau)_{h_{k-1} \xi_{k-1}}^{-1} \circ \operatorname{Ad}_{\tau\left(h_{k-1} \xi_{k-1}\right)}-\left(\frac{\partial \ell}{\partial \xi}\left(t_{k}, \xi_{k}\right)\right) \circ(d \tau)_{h_{k} \xi_{k}}^{-1} \quad \forall k \in \mathbb{Z}$
Can be expressed as:

$$
\begin{aligned}
& 0=\operatorname{Ad}_{\tau\left(h_{k-1} \xi_{k-1}\right)}^{*} \mu_{k-1}-\mu_{k} \\
& \mu_{k}=\left(\frac{\partial \ell}{\partial \xi}\left(t_{k}, \xi_{k}\right)\right) \circ(d \tau)_{h_{k} \xi_{k}}^{-1}
\end{aligned}
$$

Reduced discrete mechanics on Lie group G

Solving Discrete Euler-Poincaré equations

$$
\left.0=\operatorname{Ad}_{\tau\left(h_{k-1}\right.}^{*} \xi_{k-1}\right) \mu_{k-1}-\mu_{k}
$$

Discrete Legendre mapping $\operatorname{Leg}_{\tau, \ell}:\left(k, \xi_{k}\right) \in \mathbb{Z} \times \operatorname{Lie} G \mapsto\left(k, \mu_{k}\right) \in \mathbb{Z} \times(\operatorname{Lie} G)^{*}$

$$
\mu_{k}=\left(\frac{\partial \ell}{\partial \xi}\left(t_{k}, \xi_{k}\right)\right) \circ(d \tau)_{h_{k} \xi_{k}}^{-1}
$$

Integrating discrete Euler-Poincaré equations relies in:

- From μ_{k-1} and using $L e g_{\tau, \ell}^{-1}$ one may obtain ξ_{k-1}.
- From ξ_{k-1}, μ_{k-1} and using discrete E.P. one may obtain μ_{k}.

Iterative application of the first two steps allows to recover $\left(\mu_{k}, \xi_{k}\right)_{k \in \mathbb{N}}$ from μ_{0} or ξ_{0}.

- From $\left(g_{k}, \xi_{k}\right)$, and using definition $\xi_{k}=\frac{\tau^{-1}\left(g_{k}^{-1} g_{k+1}\right)}{h_{k}}$ one may obtain g_{k+1}.

Iteration allows to recover $\left(g_{k}, \xi_{k}, \mu_{k}\right)_{k \in \mathbb{N}}$ from either $\left(g_{0}, g_{1}\right)$, or $\left(g_{0}, \xi_{0}\right)$ or $\left(g_{0}, \mu_{0}\right)$ (Initial data)

Euler-Poincaré in field equations

Fields: Sections $y(x) \in \Gamma(Y)$ of bundle $\pi: Y \rightarrow X \quad\left(x^{\nu}, y^{i}\right)$ fibered local coordinates
X oriented by volume element $\operatorname{vol}_{X}=d x^{1} \wedge \ldots \wedge d x^{n} \in \Omega^{n}(X)$
$j \pi: J Y \rightarrow X$ associated jet bundle $\quad\left(x^{\nu}, y^{i}, y_{\nu}^{i}\right)$ induced local coordinates
Lagrangian function $\mathcal{L}\left(x^{\nu}, y^{i}, y_{\nu}^{i}\right): J Y \rightarrow \mathbb{R} \Rightarrow$ Lagrangian density $\mathcal{L} \cdot \operatorname{vol}_{X} \Rightarrow$
Action functional $\mathbb{L}_{K}(y)=\int_{K} \mathcal{L} \circ j y \cdot \operatorname{vol}_{X}$ on compact domains $K \subset X$
Necessary condition for $y \in \Gamma(Y)$ to minimize \mathbb{L}_{K} (with respect to variations of y vanishing at $\partial K)$ is $0=\mathcal{E} \mathcal{L}(y) \in \Gamma\left(y^{*} V^{*} Y\right)$ (Euler-Lagrange equations)

$$
\mathcal{E} \mathcal{L}_{x}(y)=\left[\frac{\partial \mathcal{L}}{\partial y^{i}}\left(j_{x} y\right)-\sum_{\nu}\left(\frac{d}{d x^{\nu}}\right)_{x} \frac{\partial \mathcal{L}}{\partial y_{\nu}^{i}}(j y)\right] d y^{i} \in V_{y(x)}^{*} Y
$$

Infinitesimal symmetries have corresponding conserved currents (Noether)

Euler-Poincaré in field equations

Particular case: Smooth proper free action $\lambda: G \times P \rightarrow P$ of Lie group G on manifold P.
$\pi^{G}: p \in P \mapsto G p \in P / G=X$ principal G-bundle
$\pi_{\text {Gau }}:$ Gau $P \rightarrow X$ bundle of G-covariant automorphisms of P

$$
\phi_{x}: P_{x} \leftrightarrow P_{x}, \quad \phi_{x}\left(g p_{x}\right)=g \phi_{x}\left(p_{x}\right), \quad \forall g \in G, \phi_{x} \in(\operatorname{Gau} P)_{x}
$$

$\pi_{\mathrm{Ad}}: \operatorname{Ad} P=V P / G \rightarrow X$ bundle of π^{G}-vertical G-invariant vector fields on P

$$
a_{x} \in \mathfrak{X}\left(P_{x}\right), \lambda_{g} a_{x}=a_{x} \forall g \in G, \forall a_{x} \in(\operatorname{Ad} P)_{x}
$$

$\exp :\left(\epsilon, A_{x}\right) \in \mathbb{R} \times \operatorname{Ad} P \rightarrow \exp \epsilon A_{x} \in$ Gau P
$\left(\mathrm{Id}^{*} V\right.$ Gau $\left.P \simeq \operatorname{Ad} P\right)$

$$
\begin{aligned}
& 0 \rightarrow P \underset{X}{\times} \operatorname{Ad} P \rightarrow V P \rightarrow 0 \\
& \left(p_{x}, A_{x}\right) \mapsto(d / d \epsilon)_{\epsilon=0}\left(\exp \epsilon A_{x}\right)\left(p_{x}\right)
\end{aligned}
$$

Euler-Lagrange equations for $\mathcal{L}: J P \rightarrow \mathbb{R}$:
$V P \simeq P \times_{X} \operatorname{Ad} P \Rightarrow p^{*} V^{*} P \simeq \operatorname{Ad}^{*} P \Rightarrow \mathcal{E} \mathcal{L}(p) \in \Gamma\left(\operatorname{Ad}^{*} P\right)$

Euler-Poincaré in field equations

Existence of symmetries for a Lagrangian $\mathcal{L}: J P \rightarrow \mathbb{R}$? Two particular cases:

- Subgroup of the infinite-dimensional gauge group $\Gamma($ Gau $P)$, given by Gauge transformations $\phi: P \rightarrow P$ such that $\mathcal{L} \circ j \phi=\mathcal{L}$.
- Subgroup H of the Lie group G given by group elements $h \in G$ such that $\mathcal{L} \circ j \lambda_{h}=\mathcal{L}$.

Reduction by closed subgroup $H \subseteq G$

$$
J P / H \simeq(P / H) \times_{P / G}(J P / G)
$$

- $\pi_{H \mathrm{Str}}: H \mathrm{Str}=P / H \rightarrow X$ bundle of H-structures
$\pi^{H}: P \rightarrow P / H$ principal H-bundle $P^{H \text { Str }}$ with H Str as base manifold
$\pi_{\mathrm{Ad}}^{H}: \operatorname{Ad} P^{H S t r}=V P / H \rightarrow H$ Str bundle of π^{H}-vertical H-invariant vector fields on P

$$
0 \rightarrow \operatorname{Ad} P^{H \operatorname{Str}} \rightarrow H \operatorname{Str} \underset{X}{\times} \operatorname{Ad} P \rightarrow V H \operatorname{Str} \rightarrow 0
$$

- $\pi_{\mathrm{CP}}: J P / G=\mathrm{CP} \rightarrow P / G=X$. Its sections $\chi \in \Gamma(J P / G)$ are in one-to-one correspondence with principal connections on P. (CP bundle of principal connections)
CP is an affine bundle modelled on $T^{*} X \otimes \operatorname{Ad} P$, therefore $V \mathrm{CP} \simeq \mathrm{CP} \times{ }_{X}\left(T^{*} X \otimes \operatorname{Ad} P\right)$

$$
q^{*} V H \mathrm{Str} \simeq \operatorname{Ad} P / q^{*} \operatorname{Ad} P^{H \operatorname{Str}} \quad \chi^{*} V \mathrm{CP} \simeq T^{*} X \otimes \operatorname{Ad} P
$$

Euler-Poincaré in field equations

Particular case: Smooth proper free action of Lie group G on manifold P.
$\pi: P \rightarrow P / G=X$ principal G-bundle;
Closed subgroup $H \subset G$ acts as symmetries of Lagrangian $\mathcal{L}: J P \rightarrow \mathbb{R}$.
Reduction of configuration bundle:
$\pi_{\mathrm{CP}}: J P / G=\mathrm{CP} \rightarrow P / G=X$ bundle of principal connections
$\pi_{H \text { Str }}: H \operatorname{Str}=P / H \rightarrow X$ bundle of H-structures
$J P / H \simeq H \operatorname{Str} \times_{X} \mathrm{CP} \rightarrow X$ bundle of H-reduced fields.
Reduction of a field:
$p \in \Gamma(P) \Rightarrow \chi=\pi^{G} \circ j p \in \Gamma(J P / G)=\Gamma(\mathrm{CP})$ induced principal connection
$p \in \Gamma(P) \Rightarrow q=\pi^{H} \circ p \in \Gamma(P / H)=\Gamma(H S t r)$ induced H-structure
(q, χ) generated from $p \in \Gamma(P) \Rightarrow$ Flat connection, Parallel H-structure:

$$
\operatorname{Curv} \chi=0, \quad d^{\chi} q=0
$$

Local reconstruction of p is possible from $(q, \chi) \in \Gamma\left(H \operatorname{Str} \times_{X} \mathrm{CP}\right)$ if and only if the connection is flat and the H-structure is parallel.

Euler-Poincaré in field equations

Reduced variational principle (Recall $J P / H=H S t r \times_{X} \mathrm{CP}$)
Choice of reduced Lagrangian $\ell: H \operatorname{Str} \times_{X} \mathrm{CP} \rightarrow \mathbb{R} \quad$ (or H-invariant $\mathcal{L}: J P \rightarrow \mathbb{R}$)
Choice of admissible H-reduced fields $(q, \chi) \in \Gamma\left(H S \operatorname{tr} \times_{X} \mathrm{CP}\right)$ of the particular form
Flatness: $\operatorname{Curv} \chi=0$, Parallelism: $d^{\chi} q=0$
Choice of admissible infinitesimal variations $\left(\delta_{a} q, \delta_{a} \chi\right) \in \Gamma\left(q^{*} V H S t r\right) \oplus \Gamma\left(\chi^{*} V \mathrm{CP}\right) \simeq$ $\Gamma\left(\operatorname{Ad} P / q^{*} \operatorname{Ad} P^{H S t r}\right) \oplus \Gamma\left(T^{*} X \otimes \operatorname{Ad} P\right)$ of the particular form

$$
\delta_{a} q=\pi_{q}(a), \quad \delta_{a} \chi=d^{\chi} a, \text { compactly supported } a \in \Gamma(\operatorname{Ad} P)
$$

Relevant difference:

Substitution of arbitrary fields $p(x) \in \Gamma(P)$ and variations with compact support $\delta p \in \Gamma^{c}\left(p^{*} V P\right)$ by H-reduced field $(q(x), \chi(x)) \in \Gamma\left(H S \operatorname{tr} \times_{x} \mathrm{CP}\right)$ with a flatness+parallelism constraint, and a reduced family of infinitesimal variations.

The new formulation admits new global fields, not represented by global "potentials"
$p \in \Gamma(P)$

Euler-Poincaré in field equations

Theorem [Castrillon,Ratiu 2003]

Fix $\ell: H \operatorname{Str} \times_{X} \mathrm{CP} \rightarrow \mathbb{R}$ (H-reduced lagrangian), $\mathcal{L}=\ell \circ \pi^{H}: J P \rightarrow \mathbb{R}$
The following are equivalent for $p \in \Gamma(P)$ and induced $(q, \chi) \in \Gamma\left(H S \operatorname{tr} \times_{X} \mathrm{CP}\right)$

1. $\delta \int \mathcal{L} \circ j p \cdot \operatorname{vol}_{X}=0$ holds for variations δp with compact support.
2. $\quad p \in \Gamma(P)$ satisfies Euler-Lagrange equations $0=\mathcal{E} \mathcal{L}(p) \in \Gamma\left(p^{*} V P\right)$ assoc.to \mathcal{L}.
3. $\delta \int \ell \circ(q, \chi) \cdot \operatorname{vol}_{X}=0$ holds for the subset $\operatorname{Var}_{q, \chi}$ of variations with the form $\delta_{a} q=\pi_{q}(a) \in \Gamma\left(\operatorname{Ad} P / q^{*} \operatorname{Ad} P^{H S t r}\right)=\Gamma\left(q^{*} V H S t r\right)$, $\delta_{a} \chi=d^{\chi} a \in \Gamma\left(T^{*} X \otimes \operatorname{Ad} P\right)=\Gamma\left(\chi^{*} \mathrm{CP}\right)$
with compactly supported $a \in \Gamma(\operatorname{Ad} P)$
4. (q, χ) satisfy Euler-Poincaré equations $0=\mathcal{E P}(q, \chi)$, where

$$
\mathcal{E P}(q, \chi)=\left(\frac{\partial \ell}{\partial q}(q, \chi)\right) \circ \pi_{q}-\operatorname{div}_{\chi}\left(\frac{\partial \ell}{\partial \chi}(q, \chi)\right) \in \Gamma\left(\operatorname{Ad}^{*} P\right)
$$

Here $\pi_{q}: \operatorname{Ad} P \rightarrow \operatorname{Ad} P / q^{*} \operatorname{Ad} P^{H \operatorname{Str}} \simeq q^{*} V H \operatorname{Str}, d^{\chi}: J \operatorname{Ad} P \rightarrow T^{*} X \otimes \operatorname{Ad} P \simeq \chi^{*} V \mathrm{CP}$

Discrete model of space: CFK simplicial partition of space.

Discrete model of timeline for mechanics: Totally ordered countable set V. (Abstract but indexed by points $x=k \in \mathbb{Z}$ of the real line \mathbb{R}). Specific events given as monotone sequence $\left(t_{k}\right)_{k \in \mathbb{Z}}$, generating a partition of smooth timeline into temporal intervals.

Discrete model of base manifold for field theories? Specific nodes as $\left(x_{v}\right)_{v \in \mathbb{Z}^{n}} \subset X$
Simplicial complex structure on \mathbb{Z}^{n} : Removing from \mathbb{R}^{n} hyperplanes

$$
x^{i}=c \in \mathbb{Z}, \quad x^{i_{1}}-x^{i_{2}}=c \in \mathbb{Z}
$$

Taking the closure of its connected components: Partition into affine simplices

$$
\begin{aligned}
& \bar{K}_{v, \sigma}=\left\{v+\epsilon_{1} e_{\sigma(1)}+\ldots+\epsilon_{n} e_{\sigma(n)}, 1 \geq \epsilon_{1} \geq \epsilon_{2} \geq \ldots \geq \epsilon_{n} \geq 0\right\} \\
& \operatorname{Ext}\left(\bar{K}_{v, \sigma}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}, \quad v_{0}=v, v_{k}=v_{k-1}+e_{\sigma(k)} \\
& \quad\left(v \in \mathbb{Z}^{n}, \sigma \in \operatorname{Sym}_{n}\right)
\end{aligned}
$$

Abstract Coxeter-Freudenthal-Kuhn (CFK) facet: Sequence of $n+1$ points $\left(v_{0}, \ldots, v_{n}\right) \subset \mathbb{Z}^{n}$ with $v_{k}=v_{k-1}+e_{\sigma(k)}$ for some permutation $\sigma \in \operatorname{Sym}_{n}$.

Discrete model of space: CFK simplicial partition of space.

Discrete model of timeline for mechanics: Totally ordered countable set V. (Abstract but indexed by points $x=k \in \mathbb{Z}$ of the real line \mathbb{R}). Specific events given as monotone sequence $\left(t_{k}\right)_{k \in \mathbb{Z}}$, generating a partition of smooth timeline into temporal intervals.

Discrete model of base manifold for field theories? Specific nodes as $\left(x_{v}\right)_{v \in \mathbb{Z}^{n}} \subset X$
Simplicial complex structure on \mathbb{Z}^{n} : Removing from \mathbb{R}^{n} hyperplanes

$$
x^{i}=c \in \mathbb{Z}, \quad x^{i_{1}}-x^{i_{2}}=c \in \mathbb{Z}
$$

Abstract Coxeter-Freudenthal-Kuhn (CFK) facet: Sequence of $n+1$ points $\left(v_{0}, \ldots, v_{n}\right) \subset \mathbb{Z}^{n}$ with $v_{k}=v_{k-1}+e_{\sigma(k)}$ for some permutation $\sigma \in \operatorname{Sym}_{n}$.

Discrete model of space: CFK simplicial partition of space.

Abstract Coxeter-Freudenthal-Kuhn (CFK) facet: Sequence of $n+1$ points
$\left(v_{0}, \ldots, v_{n}\right) \subset \mathbb{Z}^{n}$ with $v_{k}=v_{k-1}+e_{\sigma(k)}$ for some permutation $\sigma \in \operatorname{Sym}_{n}$.
Abstract CFK k-dimensional simplex: Subsequence of $k+1$ points $\left(v_{i_{0}}, \ldots, v_{i_{k}}\right) \subset \mathbb{Z}^{n}$
$\left(0 \leq i_{0}<\ldots<i_{k} \leq n\right)$ of some abstract CFK facet $\left(v_{0}, \ldots, v_{n}\right)$
CFK Simplicial Complex: Family \mathcal{V} of all abstract CFK simplices.
Set \mathcal{V} of all abstract CFK simplices.
$V^{k}=\{\alpha \in \mathcal{V}: \operatorname{dim} \alpha=k\} \subset \mathcal{V} \quad\left(V=V^{0}=\mathbb{Z}^{n}\right)$
$\beta=\left(v_{0}, \ldots, v_{n}\right) \in V^{n} \subset \mathcal{V}$ CFK facet.
$\alpha=\left(v_{0}, v_{1}\right) \in V^{1} \subset \mathcal{V}$ CFK edge.
Topology arises from a natural adherence notion: $\alpha \prec \beta$ (being a subsequence)
DEFINE: $V^{\times k}=V \times \ldots \times V(\mathrm{k}+1)$ copies
Natural projectors $\pi_{i_{0} \ldots i_{k}}: V^{j} \rightarrow V^{k}\left(0 \leq i_{0}<\ldots<i_{k} \leq j\right)$
$\left\{\pi_{i}(\beta)\right\}_{0 \leq i \leq k}$ adherent vertices
$\left\{\pi_{i_{0} i_{1}}(\beta)\right\}_{0 \leq i_{0}<i_{1} \leq k}$ adherent edges of $\beta \in V^{k}$

Discrete variational principles on simplicial complexes

Discrete bundle on V : Projection $Y_{d} \rightarrow V$ whose fibers Y_{v} are smooth manifolds.
Vertical bundle $V Y_{d} \rightarrow Y_{d}$, with fiber $\left(V Y_{d}\right)_{y_{v}}=T_{y_{v}} Y_{v}$
Discrete field on Y_{d} : Section $y_{d}: v \in V \mapsto y_{v} \in Y_{d}$
Infinitesimal variation of $y_{d} \in \Gamma\left(Y_{d}\right)$: Section of discrete bundle $y_{d}^{*} V Y_{d} \rightarrow V$
Any discrete bundle $Y_{d} \rightarrow V$ induces an
Extended bundle $Y_{d}^{k} \rightarrow V^{k} \quad$ (Restriction of $\left(Y_{d}\right)^{\times k} \rightarrow V^{\times k}$ to $V^{k} \subset V^{\times k}$)
Discrete jet bundle: $Y_{d}^{n} \rightarrow V^{n}$.
Jet extension of discrete fields: $y_{d} \in \Gamma\left(Y_{d}\right) \Rightarrow y_{d}^{n} \in \Gamma\left(Y_{d}^{n}\right)$
$\beta=\left(v_{0}, \ldots, v_{n}\right) \in V^{n} \subset V^{\times n} \Rightarrow y_{\beta}^{n}=\left(y_{v_{0}}, \ldots, y_{v_{n}}\right) \in Y_{d}^{n} \subset\left(Y_{d}\right)^{\times n}$
Discrete Lagrangian $\mathcal{L}_{d}: Y_{d}^{n} \rightarrow \mathbb{R}^{n}$. Family $\left(\mathcal{L}_{\beta}\right)_{\beta \in V^{n}}$ of smooth functions

$$
\mathcal{L}_{\beta}: Y_{\beta}^{n}=Y_{v_{0}} \times Y_{v_{1}} \times \ldots \times Y_{v_{n}} \rightarrow \mathbb{R}, \quad \beta=\left(v_{0}, \ldots, v_{n}\right) \in V^{n} \subset V^{\times n}
$$

Differential at $y_{\beta}^{n}=\left(y_{0}, \ldots, y_{n}\right) \in Y_{d}^{n}$ of a Discrete Lagrangian $\mathcal{L}_{d}: Y_{d}^{n} \rightarrow \mathbb{R}:$

$$
d_{y_{\beta}^{n}} \mathcal{L}_{\beta}=\left(d_{y_{\beta}^{n}}^{0} \mathcal{L}_{\beta}, \ldots, d_{y_{\beta}^{n}}^{n} \mathcal{L}_{\beta}\right) \in T_{y_{0}}^{*} Y_{\pi_{0}(\beta)} \oplus \ldots \oplus T_{y_{n}}^{*} Y_{\pi_{n}(\beta)}
$$

Discrete variational principles on simplicial complexes

Action functional associated to \mathcal{L}_{d} and finite domain $K \subset V^{n}$:

$$
\begin{gathered}
\mathbb{L}_{K}: y_{d} \in \Gamma\left(Y_{d}\right) \mapsto \sum_{\beta \in K}\left(\mathcal{L}_{d} \circ y_{d}^{n}\right)(\beta) \\
d_{y_{d}} \mathbb{L}_{K}: \delta y_{d} \in \Gamma\left(y_{d}^{*} V Y_{d}\right) \mapsto \sum_{\beta \in K}\left(d \mathcal{L}_{d} \circ \delta y_{d}^{n}\right)(\beta)
\end{gathered}
$$

Criticality: For any given discrete bundle $Y_{d} \rightarrow V$ on the n-dimensional CFK simplicial complex, and any given discrete Lagrangian $\mathcal{L}_{d}: Y_{d}^{n} \rightarrow \mathbb{R}$ we say $y_{d} \in \Gamma\left(Y_{d}\right)$ is critical for the variational principle associated to \mathcal{L}_{d}, with fixed boundary variations, if $\left\langle d_{y_{d}} \mathbb{L}_{K}, \delta y_{d}\right\rangle$ vanishes for infinitesimal variations $\delta y_{d} \in \bigoplus_{v \in \operatorname{int} K} T_{y_{v}} Y_{v} \subset \Gamma\left(y_{d}^{*} V Y_{d}\right)$ with support interior to K, for each finite domain $K \subset V^{n}$.
THEOREM: A section $y_{d} \in \Gamma\left(Y_{d}\right)$ is critical for the variational principle associated to \mathcal{L}_{d}, with fixed boundary variations, if and only if the discrete Euler-Lagrange tensor $\mathcal{E} \mathcal{L}_{d}\left(y_{d}\right) \in \Gamma\left(y_{d}^{*} V^{*} Y_{d}\right)$ vanishes, where:

$$
\mathcal{E} \mathcal{L}_{v}\left(y_{d}\right)=\sum_{\beta \in \operatorname{Star}_{v}^{n}} d_{y_{\beta}^{n}}^{I(v, \beta)} \mathcal{L}_{\beta} \in T_{y_{v}}^{*} Y_{v}
$$

H-reduction of discrete jet bundle

Particular case: Discrete principal G-bundle $P_{d} \rightarrow V$.
Difference of two elements p_{0}, p_{1} on P_{d} can be computed as:

- Group element $g \in G$ such that $g p_{0}=p_{1}$ (group difference $g=p_{1} p_{0}^{-1}$).

Existence only if $\pi\left(p_{0}\right)=\pi\left(p_{1}\right)$. Uniqueness.

- G-covariant morphism $\psi: P_{d} \rightarrow P_{d}$ such that $\psi\left(p_{0}\right)=p_{1}$ (gauge difference).

Existence; Not unique but on the G-orbit of p_{0} determined by $\psi\left(\bar{p}_{0}\right)=\left(\bar{p}_{0} p_{0}^{-1}\right) p_{1}$.
For $p_{0} \in P_{v}$ and $p_{1} \in P_{d}$ denote $p_{0}^{-1} p_{1}$ the uniquely defined G-covariant morphism defined on the single G-orbit P_{v} such that $\psi\left(p_{0}\right)=p_{1}$.

Use reversed notation $\bar{p} \psi$ instead of $\psi(\bar{p}), \psi \circ \bar{\psi}=\bar{\psi} \psi$
Ehresmann's bundle End P_{d} of fiber-to-fiber endomorphisms associated to $P_{d} \rightarrow V$:
End $P_{d}=\left\{\psi: P_{v} \rightarrow P_{d}\right.$ domain a single fiber, $\left.\psi \circ \lambda_{g}=\lambda_{g} \circ \psi\right\} \quad$ groupoid
Source+Target: $(s, t):$ End $P_{d} \rightarrow V \times V \quad \operatorname{Dom}(\psi)=P_{s(\psi)}, \quad \operatorname{Img}(\psi)=P_{t(\psi)}$
Restrict End $P_{d} \rightarrow V \times V$ to diagonal \Rightarrow Gau $P_{d} \rightarrow V$ gauge bundle.

H-reduction of discrete jet bundle

End $P_{d}=\left\{\psi: P_{v} \rightarrow P_{d}\right.$ domain a single fiber, $\left.\psi \circ \lambda_{g}=\lambda_{g} \circ \psi\right\}$
Source+Target: $(s, t):$ End $P_{d} \rightarrow V \times V$
Fibered product (End $\left.P_{d}\right)^{\times_{s} k-1}$ of k fiber-to-fiber endomorphisms with common source.

$$
\left(s, t_{1}, \ldots, t_{k}\right):\left(\operatorname{End} P_{d}\right)^{\times_{s} k-1} \rightarrow V^{\times k}
$$

Extension to simplices: Restrict to $V^{k} \subseteq V^{\times k} \Rightarrow\left(s, t_{1}, \ldots, t_{k}\right): \operatorname{End}^{k} P_{d} \rightarrow V^{k}$, .
End $^{n} P_{d} \rightarrow V^{n}$ extended Ehresmann bundle on facets of the CFK simplicial complex

$$
\left(\psi_{i}: P_{v_{0}} \rightarrow P_{v_{i}}\right)_{i=1 \ldots n},\left(v_{0}, v_{1}, \ldots, v_{n}\right) \in V^{n} \subset V \times \ldots \times V
$$

End ${ }^{1} P_{d} \rightarrow V^{1}$ Ehresmann bundle on edges of the CFK simplicial complex

$$
\psi: P_{v_{0}} \rightarrow P_{v_{1}}, \quad\left(v_{0}, v_{1}\right) \in V^{1} \subset V \times V
$$

PROPOSITION: The Gauge difference mapping $\left(p_{0}, p_{1}\right) \in P_{d}^{1} \rightarrow p_{0}^{-1} p_{1} \in \operatorname{End}^{1} P_{d}$ has as fibers the orbits of G acting diagonally $\left(p_{0}, p_{1}\right) \mapsto\left(g p_{0}, g p_{1}\right)$ on P_{d}^{1}.
$\pi^{G}: P_{d}^{1} \rightarrow P_{d}^{1} / G \simeq \operatorname{End}^{1} P_{d}$

H-reduction of discrete jet bundle

PROPOSITION: The projectors $\pi_{0}: P_{d}^{n} \rightarrow P_{d}$, and $\pi^{G} \circ \pi_{0 i}: P_{d}^{n} \rightarrow$ End $^{1} P_{d}$ determine a natural identification $P_{d}^{n} \simeq P_{d} \times_{(\pi, s)}$ End $^{n} P_{d}$. Under this identification the diagonal action $\lambda_{g}^{\times n}$ on P_{d}^{n} is identified by the action $\lambda_{g} \times \operatorname{Id}_{E n d^{n} P_{d}}$.
COROLLARY: For any closed subgroup $H \subseteq G$

$$
P_{d}^{n} / H \simeq H \operatorname{Str}_{d} \underset{\left(\pi_{H} \mathrm{Str}, s\right)}{\times} \operatorname{End}^{n} P_{d}
$$

Where $\pi_{H S t r}: H \operatorname{Str}_{d}=P_{d} / H \rightarrow V$ is the discrete bundle of H-structures, $\operatorname{End}^{n} P_{d} \rightarrow V^{n}$ is the extended Ehresmann bundle on facets, and we consider a fibered product over the source mapping $s: \operatorname{End}^{n} P_{d} \rightarrow V$, leading to a bundle on the set of facets $V \times{ }_{s} V^{n}=V^{n}$. Remark: $s: \mathrm{End}^{n} P_{d} \rightarrow V$ is the analogue for discrete field theories of the bundle of principal connections $\mathrm{CP} \rightarrow X$ that exists in the smooth field theories on principal G-bundles.

Calculus of variations: Introduce the discrete Lagrangian function $\mathcal{L}_{d}: P_{d}^{n} \rightarrow \mathbb{R}$ We call trivialised form associated to $\mathcal{L}_{d}\left(p_{0}, p_{1}, \ldots, p_{n}\right)$, the function $\mathcal{L}_{d}\left(p_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ determined by \mathcal{L}_{d} using the natural identification $P_{d}^{n} \simeq P_{d} \times_{(\pi, s)} \operatorname{End}^{n} P_{d}$ Discrete Lagrangian functions that are invariant for H acting diagonally on P_{d}^{n} are in one-to-one correspondence with smooth functions $\ell_{d}\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ defined on the bundle of H-reduced discrete jets

$$
R J P_{d}=H \operatorname{Str}_{d} \underset{\left(\pi_{H} \mathrm{Str}, s\right)}{\times} \operatorname{End}^{n} P_{d} \rightarrow V^{n}
$$

These $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$ are called H-reduced discrete Lagrangian functions RECALL $V P_{d} / G=\operatorname{Ad} P_{d} \rightarrow P_{d} / G=V$ discrete adjoint bundle associated to P_{d} PROPOSITION: The differential of the Gauge difference mapping $\pi^{G}: P_{d}^{1} \rightarrow \operatorname{End}^{1} P_{d}$ determines a natural identification (source trivialisation):

$$
s^{*} \operatorname{Ad} P_{d} \simeq V \operatorname{End}^{1} P_{d}
$$

Calculus of variations: Introduce the discrete Lagrangian function $\mathcal{L}_{d}: P_{d}^{n} \rightarrow \mathbb{R}$
We call trivialised form associated to $\mathcal{L}_{d}\left(p_{0}, p_{1}, \ldots, p_{n}\right)$, the function $\mathcal{L}_{d}\left(p_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ determined by \mathcal{L}_{d} using the natural identification $P_{d}^{n} \simeq P_{d} \times_{(\pi, s)} \operatorname{End}^{n} P_{d}$ Discrete Lagrangian functions that are invariant for H acting diagonally on P_{d}^{n} are in one-to-one correspondence with smooth functions $\ell_{d}\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ defined on the bundle of H-reduced discrete jets

$$
R J P_{d}=H \operatorname{Str}_{d} \underset{\left(\pi_{H} \mathrm{Str}, s\right)}{\times} \operatorname{End}^{n} P_{d} \rightarrow V^{n}
$$

These $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$ are called H-reduced discrete Lagrangian functions
RECALL $V P_{d} / G=\operatorname{Ad} P_{d} \rightarrow P_{d} / G=V$ discrete adjoint bundle associated to P_{d}
RECALL $P_{d} \rightarrow P_{d} / H=H$ Str $_{d}$ principal H-bundle $P^{H S t r}$
PROPOSITION: The differential of the quotient mapping $\pi^{H}: P_{d} \rightarrow H \operatorname{Str}_{d}$ determines an
exact sequence

$$
0 \rightarrow \operatorname{Ad} P^{H S \operatorname{tr}} \rightarrow \pi_{H S t r}^{*} \operatorname{Ad}^{2} P_{d} \rightarrow V H \operatorname{Str}_{d} \rightarrow 0
$$

Calculus of variations: Introduce the discrete Lagrangian function $\mathcal{L}_{d}: P_{d}^{n} \rightarrow \mathbb{R}$
We call trivialised form associated to $\mathcal{L}_{d}\left(p_{0}, p_{1}, \ldots, p_{n}\right)$, the function $\mathcal{L}_{d}\left(p_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ determined by \mathcal{L}_{d} using the natural identification $P_{d}^{n} \simeq P_{d} \times_{(\pi, s)} \operatorname{End}^{n} P_{d}$ Discrete Lagrangian functions that are invariant for H acting diagonally on P_{d}^{n} are in one-to-one correspondence with smooth functions $\ell_{d}\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ defined on the bundle of H-reduced discrete jets

$$
R J P_{d}=H \operatorname{Str}_{d} \underset{\left(\pi_{H} \mathrm{Str}, s\right)}{\times} \operatorname{End}^{n} P_{d} \rightarrow V^{n}
$$

These $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$ are called H-reduced discrete Lagrangian functions PROPOSITION: Source trivialisation V End $^{1} P_{d} \simeq s^{*} \operatorname{Ad} P_{d}$ determines
$V_{\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)} R J P_{d}=\left(\operatorname{Ad} P_{v_{0}} / \operatorname{Ad} P_{q_{0}}^{H S t r}\right) \oplus \bigoplus_{i=1}^{n} \operatorname{Ad} P_{v_{0}}$
and a natural immersion
$V_{\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)}^{*} R J P_{d} \subseteq \operatorname{Ad}^{*} P_{v_{0}} \oplus \bigoplus_{i=1}^{n} \mathrm{Ad}^{*} P_{v_{0}}=\bigoplus_{i=0}^{n} \operatorname{Ad}^{*} P_{v_{0}}$ (first component vanishes on $\operatorname{Ad} P_{q_{0}}^{H S t r} \subset \operatorname{Ad} P_{v_{0}}$).

H-reduction of discrete jet bundle

Calculus of variations: Introduce the discrete Lagrangian function $\mathcal{L}_{d}: P_{d}^{n} \rightarrow \mathbb{R}$
We call trivialised form associated to $\mathcal{L}_{d}\left(p_{0}, p_{1}, \ldots, p_{n}\right)$, the function $\mathcal{L}_{d}\left(p_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ determined by \mathcal{L}_{d} using the natural identification $P_{d}^{n} \simeq P_{d} \times_{(\pi, s)} \operatorname{End}^{n} P_{d}$

Discrete Lagrangian functions that are invariant for H acting diagonally on P_{d}^{n} are in one-to-one correspondence with smooth functions $\ell_{d}\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)$ defined on the bundle of H-reduced discrete jets

$$
R J P_{d}=H \operatorname{Str}_{d} \underset{\left(\pi_{H S t r}, s\right)}{\times} \operatorname{End}^{n} P_{d} \rightarrow V^{n}
$$

These $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$ are called H-reduced discrete Lagrangian functions $V_{\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right)}^{*} R J P_{d} \subseteq \operatorname{Ad}^{*} P_{v_{0}} \oplus \bigoplus_{i=1}^{n} \operatorname{Ad}^{*} P_{v_{0}}=\bigoplus_{i=0}^{n} \operatorname{Ad}^{*} P_{v_{0}}$ DEFINE: For any H-reduced discrete lagrangian function $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$, its differential $d_{r j} \ell_{d}$ at any H-reduced discrete jet $r j=\left(q_{0}, \psi_{1}, \ldots, \psi_{n}\right) \in R J P_{d}$ determines $n+1$ linear forms on $\operatorname{Ad} P_{s(r j)}$ that we denote:

$$
\partial_{r j}^{0} \ell_{d}, \partial_{r j}^{01} \ell_{d}, \ldots, \partial_{r j}^{0 n} \ell_{d} \in \mathrm{Ad}^{*} P_{s(r j)}
$$

Discrete Euler-Poincaré equations in H-reduced coordinates

Theorem: If $\mathcal{L}_{d}: P_{d}^{n} \rightarrow \mathbb{R}$ is the discrete Lagrangian function $\mathcal{L}_{d}=\ell_{d} \circ \pi^{H}$ determined using the natural projector $P_{d}^{n} \rightarrow P_{d}^{n} / H=R J P_{d}$ and any H-reduced discrete Lagrangian function $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$, then the discrete Euler-Lagrange tensor $\mathcal{E} \mathcal{L}_{d}(p) \in \Gamma\left(p^{*} V^{*} P_{d}\right)$ associated to \mathcal{L}_{d} and a section $p \in \Gamma\left(P_{d}\right)$, using the identification $V P_{d} \simeq P_{d} \times_{V} \operatorname{Ad} P_{d}$, takes the specific form:

$$
\mathcal{E} \mathcal{L}_{v}(p)=\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}-\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta} \in \Gamma\left(\operatorname{Ad}^{*} P_{d}\right)
$$

where $r j_{\beta} \in R J P_{d}$ is the π^{H}-projection of $p_{\beta}^{n} \in P_{d}^{n}$ and $\mathrm{Ad}_{\psi}^{*}: \mathrm{Ad}^{*} P_{s(\psi)} \rightarrow \mathrm{Ad}^{*} P_{t(\psi)}$ is transpose to $\operatorname{Ad}_{\psi}^{-1}: \operatorname{Ad} P_{t(\psi)} \rightarrow \operatorname{Ad} P_{s(\psi)}$, induced by $\psi^{-1}: P_{t(\psi)} \rightarrow P_{s(\psi)}$ DEFINE: For any $q \in \Gamma\left(H \operatorname{Str}_{d}\right)$ and $\psi \in \Gamma\left(E n d^{1} P_{d}\right)$ call Discrete Euler-Poincaré tensor $\mathcal{E} \mathcal{P}_{d}(q, \psi) \in \Gamma\left(\operatorname{Ad}^{*} P_{d}\right)$ associated to (q, ψ) :

$$
\mathcal{E} \mathcal{P}_{v}(q, \psi)=\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}-\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}^{*}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}
$$

$$
\beta=\left(v_{0}, v_{1}, \ldots, v_{n}\right) \Rightarrow r j_{\beta}=\left(q_{v_{0}}, \psi_{v_{0} v_{1}}, \ldots, \psi_{v_{0} v_{n}}\right)
$$

Discrete Euler-Poincaré equations in H-reduced coordinates

Any discrete field on a discrete principal G-bundle $p \in \Gamma\left(P_{d}\right)$ determines a discrete principal connection $\psi \in \Gamma\left(\operatorname{End}^{1} P_{d}\right)$ and a discrete H-structure $q \in \Gamma\left(H \operatorname{Str}_{d}\right)$ by:

$$
\psi_{\alpha}=\pi^{G}\left(p_{s(\alpha)}, p_{t(\alpha)}\right)=p_{s(\alpha)}^{-1} p_{t(\alpha)} \quad q_{v}=\pi^{H}\left(p_{v}\right)=H p_{v}
$$

DEFINE: We call H-reduced discrete field any pair $(q, \psi) \in \Gamma\left(H \operatorname{Str}_{d}\right) \times \Gamma\left(\operatorname{End}^{1} P_{d}\right)$. The H-reduced field (q, ψ) associated to $p \in \Gamma\left(P_{d}\right)$ is called the projected field. REMARK: For projected fields there holds (compatibility conditions)

- Parallelism: $q_{v_{0}} \psi_{v_{0} v_{1}}=q_{v_{1}}$ for any edge $\left(v_{0}, v_{1}\right) \in V^{1}$
- Flatness: $\psi_{v_{0} v_{1}} \psi_{v_{1} v_{2}}=\psi_{v_{0} v_{2}}$ for any 2-simplex $\left(v_{0}, v_{1}, v_{2}\right) \in V^{2} \subset V^{\times 2}$

Parallelism+Flatness conditions $\Rightarrow(q, \psi)$ is called admissible

Discrete Euler-Poincaré equations in H-reduced coordinates

Variational principle:
Choice of discrete H-reduced Lagrangian $\ell_{d}: R J P_{d} \rightarrow \mathbb{R}$
Choice of admissible discrete H-reduced fields $(q, \psi) \in\left(\Gamma\left(H \operatorname{Str}_{d}\right) \times \Gamma\left(\operatorname{End}^{1} P_{d}\right)\right)_{A d m}$
Flatness + Parallelism

Choice of subset of admissible variations $\delta_{a} r j=\left(\delta_{a} q, \delta_{a} \psi\right) \in \operatorname{Var}_{q, \chi}$ with the form $\delta_{a} \psi_{\alpha}=a_{s\left(\psi_{\alpha}\right)}-\operatorname{Ad}_{\psi_{\alpha}^{-1}} a_{t\left(\psi_{\alpha}\right)} \in \Gamma\left(\psi^{*} V \operatorname{End}^{1} P_{d}\right) \simeq \Gamma\left(s^{*} \operatorname{Ad} P_{d}\right)$,
$\delta_{a} q_{v}=\pi_{q}(a) \in \Gamma\left(q^{*} V H \operatorname{Str}_{d}\right) \simeq \Gamma\left(\operatorname{Ad} P_{d} / q^{*} \operatorname{Ad} P^{H S t r}\right)$
with compactly supported $a \in \Gamma\left(\operatorname{Ad} P_{d}\right)$
Seek admissible discrete H-reduced fields (q, ψ) such that its H-reduced discrete jet extension $r j \in \Gamma\left(R J P_{d}\right)$ is a critical point of the discrete action $\sum_{K} \ell_{d}(r j)$, for admissible discrete variations $\delta_{a} r j$ with $a \in \oplus \operatorname{Ad} P_{v} \subset \Gamma\left(\operatorname{Ad} P_{d}\right)$, vanishing at the boundary of K.

Discrete Euler-Poincaré equations in H-reduced coordinates

Theorem [CasimRodr]

Fix $\ell_{d}: H \operatorname{Str}_{d} \times_{s}$ End $^{n} P_{d} \rightarrow \mathbb{R}$ (discrete H-reduced lagrangian), $\mathcal{L}_{d}=\ell_{d} \circ \pi^{H}: J P_{d} \rightarrow \mathbb{R}$
The following are equivalent for $p_{d} \in \Gamma\left(P_{d}\right)$ and associated $(q, \psi) \in \Gamma\left(H \operatorname{Str}_{d} \times{ }_{s} \operatorname{End}^{n} P_{d}\right)$

1. $\delta \int \mathcal{L}_{d} \circ p_{d}^{n}=0$ holds for variations δp_{d} with compact support.
2. $p_{d} \in \Gamma\left(P_{d}\right)$ satisfies discrete Euler-Lagrange equations $0=\mathcal{E} \mathcal{L}_{d}\left(p_{d}\right) \in \Gamma\left(p_{d}^{*} V P_{d}\right)$ associated to \mathcal{L}_{d}.
3. $\delta \int \ell_{d} \circ r j(q, \psi) \cdot \operatorname{vol}_{X}=0$ holds for the subset $\operatorname{Var}_{q, \chi}$ of variations with the form $\delta_{a} \psi_{\alpha}=a_{s\left(\psi_{\alpha}\right)}-\operatorname{Ad}_{\psi_{\alpha}^{-1}} a_{t\left(\psi_{\alpha}\right)} \in \Gamma\left(\psi^{*} \operatorname{End}^{1} P_{d}\right) \simeq \Gamma\left(s^{*} \operatorname{Ad} P_{d}\right)$, $\delta_{a} q_{v}=\pi_{q}(a) \in \Gamma\left(q^{*} V H \operatorname{Str}_{d}\right) \simeq \Gamma\left(\operatorname{Ad} P_{d} / q^{*} \operatorname{Ad} P^{H S t r}\right)$ with compactly supported $a \in \Gamma\left(\operatorname{Ad} P_{d}\right)$
4. (q, ψ) satisfy discrete Euler-Poincaré equations $0=\mathcal{E} \mathcal{P}_{d}(q, \psi)$ associated to ℓ_{d}

Covariant discretization for reduced field theories

We have results concerning a smooth variational field theory and the associated variational reduced field theory.

We have results concerning a discrete variational field theory and the associated discrete variational reduced field theory.

Can we give methods to generate discrete formalism from smooth ones? In such a way that symmetries are preserved?

Yes, we can [Casimiro, Rodrigo 2017] but...
Due to time constraints: Not to be treated here.
\star From a single H-covariant Lagrangian \mathcal{L} for field theories on a principal G-bundle
$P \rightarrow X$, possibility to generate 4 related variational principles: Classified into smooth/discrete and unreduced/ H-reduced, preserving gauge symmetries.

Integration of discrete EP equations

Consider the H-reduced, discrete case on a discrete principal G-bundle $\pi: P_{d} \rightarrow X$
Discrete H-reduced fields: Pair of sections $(q, \psi) \in \Gamma\left(H \operatorname{Str}_{d}\right) \times \Gamma\left(\operatorname{End}^{1} P_{d}\right)$
Admissible discrete H-reduced fields: Flatness and parallelism

- Parallelism: $q_{v_{0}} \psi_{v_{0} v_{1}}=q_{v_{1}}$ for any edge $\left(v_{0}, v_{1}\right) \in V^{1}$
- Flatness: $\psi_{v_{0} v_{1}} \psi_{v_{1} v_{2}}=\psi_{v_{0} v_{2}}$ for any 2-simplex $\left(v_{0}, v_{1}, v_{2}\right) \in V^{2} \subset V^{\times 2}$

Discrete H-reduced Lagrangian $\ell_{d}: H \operatorname{Str}_{d} \times{ }_{s} \operatorname{End}^{n} P_{d} \rightarrow \mathbb{R}$ generates a variational principle for admissible discrete H-reduced fields.
Critical discrete H-reduced fields characterized by $0=\mathcal{E} \mathcal{P}_{d}(q, \psi)$

- Disc.E.-P.Tensor $\mathcal{E} \mathcal{P}_{d}(q, \psi) \in \Gamma\left(\operatorname{Ad}^{*} P_{d}\right)$ associated to (q, ψ) :

$$
\begin{aligned}
& \quad \mathcal{E} \mathcal{P}_{v}(q, \psi)=\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{00} \ell_{\beta}-\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta} \\
& \beta=\left(v_{0}, v_{1}, \ldots, v_{n}\right) \in V^{n} \Rightarrow r j_{\beta}=\left(q_{v_{0}}, \psi_{v_{0} v_{1}}, \ldots, \psi_{v_{0} v_{n}}\right) \in R J P_{\beta}
\end{aligned}
$$

Integration of discrete EP equations

Integration Problem: Recover unknown $(q, \psi) \in \Gamma\left(H \operatorname{Str}_{d}\right) \times \Gamma\left(\operatorname{End}^{1} P_{d}\right)$ from:

- Parallelism: $q_{v_{0}} \psi_{v_{0} v_{1}}=q_{v_{1}}$ for any edge $\left(v_{0}, v_{1}\right) \in V^{1}$
- Flatness: $\psi_{v_{0} v_{1}} \psi_{v_{1} v_{2}}=\psi_{v_{0} v_{2}}$ for any 2-simplex $\left(v_{0}, v_{1}, v_{2}\right) \in V^{2} \subset V^{\times 2}$
- Criticality

$$
0=\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}-\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}^{*}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}
$$

for any vertex $v \in V$
Propagate field values from an initial band: Decompose $V=\mathbb{Z}^{n}$ into slices

$$
S_{c}=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}: k_{1}+\ldots+k_{n}=c\right\} \quad(c \in \mathbb{Z})
$$

Consider a vertex $u \in \mathbb{Z}^{n}$ in a given slice S_{c+n}. Assume that all values $q_{w}, \psi_{v_{0} w}$ are known for vertices w in the region $k_{1}+\ldots+k_{n}<c+n$.
What can be said about the values q_{u} and $\psi_{v_{0} u}$?

Integration of discrete EP equations

Slices $S_{c} \subset \mathbb{Z}^{n}$ defined by $k_{1}+\ldots+k_{n}=c$
Assume $q_{w}, \psi_{v_{0} w}$ known for $w \in V=\mathbb{Z}^{n}$ in the region $k_{1}+\ldots+k_{n}<c+n$
Can we generate $q_{u}, \psi_{v_{0} u}$ for u in the region $k_{1}+\ldots+k_{n}=c+n$?

Take Euler-Poincaré equations at $v=u-(1, \ldots, 1)$ (hence $v \in S_{c}$)

$$
0=\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}-\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}^{*}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}
$$

Expression $0=\mathcal{E} \mathcal{P}_{v}(q, \psi)$ only depends on $r j_{\beta}$ when $\pi_{i}(\beta)=v$ for some i. This implies $\pi_{0}(\beta) \in S_{c-i}$, and $r j_{\beta}$ only depends in determined configurations $q_{w}, \psi_{v_{0} w}$ with w in the region $k_{1}+\ldots+k_{n}<c+n$, plus the particular undetermined configuration $\psi_{v u}$ (that appears in components $r j_{\beta}$ when $\pi_{0}(\beta)=v$).

Integration of discrete EP equations

Decompose Euler-Poincaré equations at v into component that depends on $r j_{\beta}$ for $\pi_{0}(\beta)=v$ and another one that depends on $r j_{\beta}$ for $\pi_{i}(\beta)=v, i=1 \ldots n$:

$$
\overbrace{\sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}}^{\text {Leg }_{v}}=\overbrace{\sum_{i=1}^{n} \sum_{\pi_{i}(\beta)=v} \operatorname{Ad}_{\psi_{\pi_{0 i}(\beta)}}^{*} \partial_{r j_{\beta}}^{0 i} \ell_{\beta}}^{\text {Mom }_{v}}
$$

$q_{w}, \psi_{v_{0} w}$ known in the region $k_{1}+\ldots+k_{n}<c+n \Rightarrow$, Right hand side Mom_{v} is known. Left hand side Leg_{v} depends on q_{v} and on ψ_{α} for edges $\alpha \in V^{1}$ with source $s(\alpha)=v$. All these components are also known, except for the particular component $\psi_{v u}$ with $u=v+(1, \ldots, 1)$.
If $\operatorname{dim} G=m$ (and consequently $\operatorname{dim} \mathrm{Ad}^{*} P_{v}=m, \operatorname{dim} \operatorname{End}^{1} P_{u v}=m$) we have a system of m equations with $\psi_{v u}$ as m-dimensional unknown that taking into account the dimensions, in some regular cases, will determine a unique solution.

Integration of discrete EP equations

DEFINE: We call space of discrete H-reduced forward configurations at $v \in V$ the manifold $\operatorname{Forw}_{v}^{H}=H \operatorname{Str}_{v} \times \prod_{s(\alpha)=v} \operatorname{End}^{1} P_{\alpha}$.
DEFINE: We call discrete Legendre mapping associated to a discrete H-reduced Lagrangian ℓ_{d}, the mapping Leg: $\operatorname{Forw}_{d}^{H} \rightarrow \mathrm{Ad}^{*} P_{d}$ defined on each fiber by:

$$
\operatorname{Leg}_{v}:\left(q_{v},\left(\psi_{\alpha}\right)_{s(\alpha)=v}\right) \in \operatorname{Forw}_{v}^{H} \mapsto \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0} \ell_{\beta}+\sum_{i=1}^{n} \sum_{\pi_{0}(\beta)=v} \partial_{r j_{\beta}}^{0 i} \ell_{\beta} \in \operatorname{Ad}^{*} P_{v}
$$

where $r j_{\beta}=\left(q_{v},\left(\psi_{\alpha}\right)_{\alpha \prec \beta}\right)$.
The central step in solving discrete Euler-Poincaré equations lies in the determination of a single component $\psi_{\Delta v}$, for some edge $\Delta v=(v, v+(1, \ldots, 1)) \in V^{1}$, using the remaining available configurations (using an underdetermined forward configuration)
DEFINE: We call space of underdetermined discrete H-reduced forward configurations at $v \in V$ the manifold $\mathrm{UForw}_{v}^{H}=H \operatorname{Str}_{v} \times \prod_{\substack{s(\alpha)=v \\ \alpha \neq \Delta v}} \operatorname{End}^{1} P_{\alpha}$.

$$
\operatorname{Forw}_{d}^{H}=\mathrm{UForw}_{d}^{H} \times_{V} \Delta^{*} \operatorname{End}^{1} P_{d} \quad\left(\Delta: V \rightarrow V^{1}\right)
$$

Integration of discrete EP equations

Legendre mapping is a morphism of discrete bundles

$$
\text { Leg: UForw }{ }_{d}^{H} \times_{V} \Delta^{*} \operatorname{End}^{1} P_{d} \rightarrow \operatorname{Ad}^{*} P_{d}
$$

DEFINE: We call integrator for the Legendre mapping
Leg: UForw ${ }_{d}^{H} \times \Delta^{*} \operatorname{End}^{1} P_{d} \rightarrow \operatorname{Ad}^{*} P_{d}$, any mapping

$$
\Phi: \mathrm{UForw}_{d}^{H} \times \operatorname{Ad}^{*} P_{d} \rightarrow \Delta^{*} \operatorname{End}^{1} P_{d}
$$

such that, for any $u f_{v} \in \operatorname{UForm}_{d}^{H}, \theta_{v} \in \operatorname{Ad}^{*} P_{v}$ there holds,

$$
\operatorname{Leg}\left(u f_{v}, \Phi\left(u f_{v}, \theta_{v}\right)\right)=\theta_{v}
$$

If, moreover, $\operatorname{Leg}\left(u f_{v}, \cdot\right): \Delta^{*} \operatorname{End}^{1} P_{d} \rightarrow \operatorname{Ad}^{*} P_{d}$ is injective, we say the integrator is a strong integrator (in this case the integrator is unique).
Local existence of integrator iff the following linear morphism is non-degenerate

$$
\frac{\partial \mathrm{Leg}_{v}}{\partial \psi_{\Delta v}}: \operatorname{Ad} P_{v} \rightarrow \operatorname{Ad}^{*} P_{v}
$$

Integration of discrete EP equations

THEOREM

Let Φ be an integrator for the Legendre mapping. Consider a locally defined admissible H-reduced field $(q, \psi)_{c} \in \Gamma\left(B_{c}, H \operatorname{Str}_{d}\right) \times \Gamma\left(B_{c}^{1}, \operatorname{End}^{1} P_{d}\right)$, defined on vertices and edges included in the initial condition band $B_{c}=S_{c-n} \cup S_{c-n+1} \cup \ldots \cup S_{c+n-1}$. Consider at each $v \in S_{c}$ the momentum and underdetermined H-reduced forward configuration $\mu_{v} \in \operatorname{Ad}^{*} P_{v}, u f_{v} \in \operatorname{UForw}_{v}^{H}$ determined from $(q, \psi)_{c}$ For $u \in S_{c+n}$ and $v=u-(1, \ldots, 1)$, the values

$$
\begin{equation*}
\psi_{v u}=\Phi_{v}\left(u f_{v}, \mu_{v}\right), \quad q_{u}=q_{v} \psi_{v u}, \quad \psi_{v_{0} u}=\psi_{v v_{0}}^{-1} \psi_{v u} \tag{1}
\end{equation*}
$$

extend $(q, \psi)_{c}$ to $(q, \psi)_{c+1} \in \Gamma\left(B_{c+1}, H \operatorname{Str}_{d}\right) \times \Gamma\left(B_{c+1}^{1}, \operatorname{End}^{1} P_{d}\right)$, an admissible H-reduced field on the following band $B_{c+1}=S_{c+n} \sqcup B_{c} \backslash S_{c-n}$.
The discrete field so defined in $B_{c} \cup C_{c+1}$ satisfies Euler-Poincaré equations $0=\mathcal{E} \mathcal{P}_{v}(q, \psi)$ are satisfied at each vertex $v \in S_{c}$.
(Uniqueness of solution if Φ is a strong integrator)

Integration algorithm

Diagonal slice $S_{c} \subset V=\mathbb{Z}^{n}$ given by $k_{1}+\ldots+k_{n}=c(c \in \mathbb{Z})$
Initial data at B_{c} : Admissible discrete H-reduced field $(q, \psi)_{c}$ defined on the set
$B_{c}=\cup_{k=-n}^{n-1} S_{c+k}$ (initial band)
THEOREM: If the Legendre mapping is regular (existence of integrator Φ) then for any initial data at B_{c} there exists compatible initial data at B_{c+1} determining an admissible discrete field on $\cup_{k=-n}^{k=n} S_{c+k}$, for which Euler-Poincaré equations hold at any vertex $v \in S_{c}$ in its central slice.

Integration algorithm

1.- Extract discrete H-reduced underdetermined forward configuration $u f_{v} \in$ UForw $_{v}^{H}$

Integration algorithm

2.- Compute $\mu_{v} \in \operatorname{Ad}^{*} P_{v}$ using the momentum mapping. Obtention of element $\left(u f_{v}, \mu_{v}\right) \in \operatorname{UForw}_{v}^{H} \times \operatorname{Ad}^{*} P_{v}$.

Integration algorithm

3.- Compute $\psi_{v u}=\Phi_{v}\left(u f_{v}, \mu_{v}\right) \in \operatorname{End}^{1} P_{\Delta v}$ for $u=v+(1, \ldots, 1)$ using the integrator

Integration algorithm

4.- Values q_{u} and $\psi_{w u}$ for $w, u \in \cup_{k=-n}^{n-2} S_{c+1+k}$ are determined by initial data.

Integration algorithm

5.- Values q_{u} and $\psi_{w u}$ for $u=v+(1, \ldots, 1)$ and $w \in \cup_{k=-n}^{n-2} S_{c+1+k}$ are now determined by parallelism and trivial holonomy, using $\psi_{v u}$.

Integration algorithm

6.- Collect all H-structures and fiber-to-fiber endomorphisms into new admissible discrete field $(q, \psi)_{c+1}$ defined on $B_{c+1}=\cup_{k=-n}^{n-1} S_{(c+1)+k}$ (new initial band). Initial data at B_{c+1}

Integration algorithm

Initial Data: Known $(q, \psi)_{c}$ defined on $B_{c}=\cup_{k=-n}^{n-1} S_{c+k}$ (initial condition band)
For each $v \in S_{c}$

1. Extract undetermined flat configuration $u f_{v} \in$ UFlat $_{v}^{H}$
2. Compute $\mu_{v} \in \operatorname{Ad}^{*} P_{v}$ using the momentum mapping. Obtention of element in $\mathrm{UForw}_{v}^{H} \times \mathrm{Ad}^{*} P_{v}$.
3. Compute $\psi_{\Delta v}=\Phi\left(u f_{v}, \mu_{v}\right) \in \operatorname{End}^{1} P_{\Delta v}$ using the integrator
4. Values q_{u} and $\psi_{w u}$ for $w, u \in \cup_{k=-n}^{n-2} S_{c+1+k}$ are already determined by initial data.
5. Values q_{u} and $\psi_{w u}$ for $u=v+(1, \ldots, 1), w \in \cup_{k=-n}^{n-2} S_{c+1+k}$ are now determined by parallelism and trivial holonomy.
6. Collect all H-structures and fiber-to-fiber endomorphisms into new admissible discrete field $(q, \psi)_{c+1}$ defined on $B_{c+1}=\cup_{k=-n}^{n-1} S_{(c+1)+k}$ (new initial band). New initial data at B_{c+1}

Iterate.

Some selected relevant bibliography:

- A discrete theory of connections on principal bundles. M. Leok, J.E. Marsden, and A.D. Weinstein, 2005
- Euler-Poincaré reduction for discrete field theories. J. Vankerschaver, 2007
- Discrete geometric optimal control on Lie groups M. B. Kobilarov, J. E. Marsden 2011
- Lagrange-Poincaré field equations,D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, T.S. Ratiu, 2011
- First variation formula and conservation laws in several independent discrete variables.
A.C. Casimiro, C. Rodrigo, 2012
- Euler-Poincaré reduction in principal bundles by a subgroup of the structure group.
M. Castrillón López, P.L. García,C. Rodrigo 2013
- Discrete variational Lie group formulation of geometrically exact beam dynamics. F. Demoures, F. Gay-Balmaz, et alt. 2015
- A geometric approach to discrete connections on principal bundles. J. Fernández, M. Zuccalli, 2013
- Symmetry-preserving discretization of variational field theories. A.C. Casimiro, C. Rodrigo, 2015 (preprint).
- Reduction of Forward Difference operators in Principal G-bundles A.C. Casimiro, C. Rodrigo 2017 (submitted).
- Variational Integrators for reduced field equations A.C. Casimiro, C. Rodrigo 2017 (submitted).

Variational Integrators for Euler-Poincaré equations

César Rodrigo

Academia Militar

Joint work with: Ana Cristina Casimiro (Universidade Nova de Lisboa)

XXVI International Fall Workshop on Geometry and Physics, Braga, September 7th, 2017

This work was supported by Fundação para a Ciência e a Tecnologia by way of grant UID/MAT/04561/2013 to Centro de Matemática, Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa (CMAF-CIO)

