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Classical information geometry.

Basic ideas

Parametric probability distributions
Fisher information

Divergences

Differential geometry

©000O0CO0

Duality
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@ Introduction to noncommutative information geometry
© Preparations for Petz theorem

O Means

Q Petz theorem

© Operator monotone functions

O Computing monotone metrics
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Advanced topics

O Relative entropy
@ Duality
© About volume of the state space

@ Uncertainty relations
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PR
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Basic ideas

Information Geometry

Statistical model ~ Parametric probability distribution

Information geometry ~ Riemannian metric on statistical model
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Statistical model

Definition
Statistical model: S = (X, B(X),S,=)
@ X # () set, B(X) o algebra on X,
@ the elements of S are probability measures on B(X),

© there exists a bijection i : = — S ¥+ uy

=: Parameter space

(This setting is too general.)
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Parametric probability distributions
Statistical model

We make more assumptions.
O Jn e NT: = CR", moreover = connected open set.
(n-dimensional statistical model)
Q If X is finite, then B(X) = P(X).
Q If X is infinite, then X C R™, X connected open set, B(X)
contains Borel sets and for every ¢ € = the probability

distribution py € S has density function py (with respect to
the Lebesgue measure).

Q@ We refer to the elements of S as density functions and denote
it by p(x,J) = pg(x).
© Every function py € S has 1., 2., and 3. moment.
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Parametric probability distributions
Statistical model

O For every x € X the function
=R 9= p(x,0)

is smooth. We use the notation

8;p(x,19):w i=1,...,m.

@ We assume that

/8,-1...8,-kp(x,19)dx:8;1...8;k/p(x,29)dX:O.
X X

Q VY € =and Vx € X: p(x,9) >0
The statistical model is denoted by (X, S, =).
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Statistical model
Example (Discrete distribution)

X ={0,1,...,n}

19,‘>0, i§k<1}

S= {(191,...,’[9,,) eR"
k=1

. if 1<x<n,
PG =3 1-S 9, if x=o.
k=1

The space of distributions:

Pn = {(P07P17~~-,Pn) E]O,l[n+1‘ Zp, — ]_} X

i=0
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Parametric probability distributions
Statistical model

Example (Normal distribution)
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Fisher information matrix
Fisher information matrix

For an n-dimensional statistical model (X, S, =) the Fisher
information is an n X n matrix for every parameter 9 € =.

Definition

Assume that (X, S,Z) is an n dimensional statistical model. For
every point ¥ € = the Fisher information matrix is given by

1
£O(9); = /X e Oiplx ) Deplx. D) .

The Fisher matrix denoted by g(®)(¥).
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Fisher information

Fisher information matrix

We will use the following representations for Fisher matrix.

g™ = | plx,9)(0:log plx. 1))(Bklog p(x. ) dx
X

g®) () = 4 /)'(<a,-\/p(x, )0k v/p(x, 8)) dx
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Fisher information

Fisher information matrix

Theorem

Assume that (X, S,Z) is an n dimensional statistical model. If the
functions (0;p(-,V))i=1,...,n are linearly independent at a point
¥ € = then the Fisher matrix g{F)(19) positive definite.

Proof.
For every c € R”

<(c1,...,cn),g(F)(ﬁ)(cl,...,c,,)>
n 2
= /X p(x, ) <Ec;8;(|ogp(x,19))> dx > 0.
i=1
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Induced statistical models GG
Assume that (X, B(X), S, =) is a statistical model and
f:X—=Y xmf(x)
is a surjective map.

i
Let us define B(Y) = {A CY|f(A)e B(X)}.

For every ¥ € =, uy is probability measure on X, with density
function py.

Now define jiy as

oo () = oy (f1<A)) VA € B(Y)

and denote its density function with py.
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Fisher information
Induced statistical models

Define $ as {jig|d € =}.

After these steps, we have an induced statistical model

(Y,B(Y),S,=).
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Fisher information
Monotonicity of Fisher matrix

Monotonicity o

If we measure less precisely we can have less information.
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Monotonicity of Fisher matrix

Monotonicity of Fisher matrix
If we measure less precisely we can have less information.
Definition

Assume that (X, S, =) is a statistical model and f : X — Y is a
measurable surjective map. Let us define

r(,): X x= >R (Xaﬁ)Hr(X’ﬁ):/m.

f sufficient statistic of S, if for every x € X the function
r(x,)): = =R ¥ r(x,9)

is constant.
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Fisher information
Monotonicity of Fisher matrix

Monotonicity o

Theorem

Assume that (X, S, =) is a statistical model, f : X — Y is a
measurable surjective map and (Y, Q,=) is the induced statistical
model. For every ¥} € = the Fisher information matrix in S is
géF)(b‘) and in Q is g((?F)(ﬁ). For every ¥ € =

g5)(0) < g (v). *)
Information loss: Ag(9) = géF)(g) _ éF)w)

0 log r(x,v) 0 log r(x,v)
0V; 0V

Agu(9) = | plx.?) dx

Equality holds in () iff f sufficient statistic of S.
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Monotonicity under Markov kernel
Monotonicity under Markov keriiel

Assume that X € R” and Y C R™ are connect open sets. The
map

K:XXY =R (x,y)— k(ylx)

is Markov kernel or transition probability if Vx € X and Vy € Y:
k(y|x) >0, and ¥x € X:

/Y/{(y’X) dy = 1.
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Monotonicity under Markov kernel

Assume that (X, S, =) is a statistical model and
K:XxY—=R (x,y) — k(y|x)

is a Markov kernel. Define p(y,9) = [y k(y|x)p(x,?) dx, and
denote the set of these dlstrlbut/ons by (Y, Q,=). Then for every
¥ € = we have

g ) < g ().

The information loss Ag(Y) = géF)(ﬁ) géF)(ﬁ) is

0 log r(x,v9) 0 log r(x,v)
0v; 0V

Ag,-k(ﬁ):/xp(x,ﬁ) dx.
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C

ramer-Rao inequality

We consider the problem of estimating unknown parameter.

Assume that a data is randomly generated subject to a probability
distribution which is unknown but is assumed to be in an n
dimensional statistical model.

Assume that (X, S, =) is a statistical model. The measurement is
amap X: X - R™ (m=1is the real valued measurement)

After k measurements we estimate the parameter ¢ with an
estimator

9:(R™ME 5= (xg,. .., %) — O(xi, . .., xk).
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Fisher information

Cramer-Rao inequality

Assume that we have independent measurements. The expected
value of 9 with respect to p(¥)(x,) is

Ey(f) = /X P00, ) dx.

The estimator J is unbiased if for every ¥ € =
Ey(D) = 0.

The variance of the estimator is
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C

ramer-Rao inequality

Theorem (Cramer-Rao)

Assume that (X,S,=) is a statistical model, k € NT, g(F) is the
Fisher information of (X*, S(), =), ) is an unbiased estimator of ¥
and V()(V) its variance. For every ¥ € = we have

Vo(9) > (g7 (9)) .
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Cramer-Rao inequality
Example (Cramer-Rao inequality)
Define X = {0,1}, ==1]0,1[ and S a set of functions

1—9 if x=0,
p: Xx=Z=R (x,9)
0 if x=1.
Then (X, S, =) is a statistical model. Assume that we have
independent measurements xi, ..., xx. Consider the estimator for ¢

VXK= (xa,. ., xk

»\l—‘

4 is unbiased

Ey(F) = ij <k> gh=i(1 — gy & - 9.
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Cramer-Rao inequality

Example (Cramer-Rao inequality (cont.))

The variance of 9 is

Vy(9) = Zk: (l;)ﬁk"(l —9) (k ; / —q9>2 = M.

i=0

1
The Fisher information is gs(¥) = m for k measurements is
g'(9) = kes(9).
The Cramer—Rao inequality in this setting is
(1 —9) < 91 —9)
k - k

So 4 has the least variance.
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Entropy and Fisher information

Consider a density function f : R” — R and the shift as a
parameter

fRPXxR" R (x,y)— f(x,y) = f(x+y).
The Fisher information of f is

1 8F(X,y) 8f(x,y)

= d x.
re F(x,y) OYi Yk

gik(y) =

It does not depend on y, reasonable to define

1 9p() dp(x)
8ik = /n p(x) aX,' OXk dx

as Fisher information of f.
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Entropy and Fisher information
Entropy _

The entropy of a density function f : X — R
S(f) = / f(x)log f(x) dx.
X

(Olog0 =0)
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Entropy and Fisher information

O Fisher information is for family of distributions and for single
distributions. Entropy is for single distributions.
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Entropy and Fisher information

O Fisher information is for family of distributions and for single
distributions. Entropy is for single distributions.

@ Fisher information is strictly positive, entropy could be any
real number.
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Entropy and Fisher information

O Fisher information is for family of distributions and for single
distributions. Entropy is for single distributions.

@ Fisher information is strictly positive, entropy could be any
real number.

© There is maximum entropy principle and minimum Fisher
information principle.
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E

ntropy and Fisher information

@ The Fisher information of the density function p with single

variable is )
d
g:4/ ('D(X)> dx.
R dX

Fisher defined the probability amplitude q(x) = \/p(x).
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Fisher information

Entropy and Fisher information

@ The Fisher information of the density function p with single

variable is )
d
g:4/ ('D(X)> dx.
R dX

Fisher defined the probability amplitude q(x) = \/p(x).
He also studied the Lagrange density

L= 4(q(><)’)2

and gave information theoretical background of potential
energy. Fisher studied complex probability amplitudes too and
examined the Lagrange function with kinetic energy term in
the form of

Ly = CVy x V™.
(This was written down half year later in 1926 by Schrodinger
for function 1).)
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Di

istance of coins

Distance of coins

What is the distance between coins (p1,1 — p1) and (p2,1 — p2)?
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Fisher information

Distance of coins

Distance of coins

What is the distance between coins (p1,1 — p1) and (p2,1 — p2)?
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Fisher information

Distance of coins

Distance of coins

What is the distance between coins (p1,1 — p1) and (p2,1 — p2)?

N

In 1925 Fisher suggested the angle between vectors

(v/P1,v/1—p1) and (y/P2,+/1 — p2) by theoretical arguments.
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Fisher information

Distance of coins

Distance of coins

What is the distance between coins (p1,1 — p1) and (p2,1 — p2)?

0 1 0 1
In 1925 Fisher suggested the angle between vectors

(v/P1,v1—p1) and (y/P2,+/1 — p2) by theoretical arguments.
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Di

istance of coins

The measurement based consideration is the following.
Assume that p; < po. If we can have n measurements then the
uncertainty of measurements is the typical fluctuation

p(L—p)

Ap =

The distributions (p1,1 — p1) and (p2,1 — p2) are said to be
distinguishable in n measurements if

lp1 — p2| = Ap1 + Apy.
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Fisher information
Distance of coins

Define k(n, p1, p2) as the number of those probability distributions
(pi, 1 — p;) for which py < p; < p2, pi < pi+1 and (p;, 1 — p;)
distinguishable in n measurements from (p;+1,1 — pi+1). Let the
distance be between (p1,1 — p1) and (p2,1 — p2)

. k(n, p1,

This gives us for distance d(p1, p2)

P2
1
Zm d p = arccos (\/@—F \/(1 —p1)(1— P2)> .
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General contrast function
General contrast function

Definition
Let (X, S, =) be a statistical model. A general contrast function is

a function
D:SxS5—=R (p,q)~ D(p,q)

if YVp,g € S: D(p,q) >0 and D(p,q) =0iff p=gq.
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General contrast function
General contrast function

Let (X, S, =) be a statistical model. A general contrast function is
a function

D:SxS5—=R (p,q)~ D(p,q)
if YVp,g € S: D(p,q) >0 and D(p,q) =0iff p=gq.

The dual divergence is given as D*(p, q) = D(q, p).
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General contrast function
General contrast function

Definition
Let (X, S, =) be a statistical model. A general contrast function is

a function
D:SxS5—=R (p,q)~ D(p,q)

if YVp,g € S: D(p,q) >0 and D(p,q) =0iff p=gq.

The dual divergence is given as D*(p, q) = D(q, p).

Let us consider some examples.
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General contrast function

Kullback-Liebler Di1(p,q / p(x) log PX) 4,
X q(x)

Hellinger /X (W q(x)) : d x

. 0= [ (263 - ]

OéG]—l,l[ Da(pvq)_ : [ /Xp Eadxj|
Harmonic Dua(p,g) =1 — /X p2(I>J<()X—|)—qc§E(>2)

X x))?
Triangle Da(p, q) = /X de

Attila Andai Information Geometry



Information Geometry
General contrast function

These distance like functions used in many areas of mathematics
and applications.

For example Dxr.(p, q):
* is often called the information gain achieved if P is used
instead of @ in the context of machine learning,
* can be constructed as measuring the expected number of

extra bits required to code samples from P using a code
optimized for Q rather than the code optimized for P, in the

context of coding theory.
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C

siszar divergence
Concir dvergence

These quantities can be handled as a special cases of Csiszar
divergence

Definition

Assume that f : RT — R is a strictly convex function and
f(1) = 0. The Csiszar divergence is

Dr(p, q)z/Xp(X)f (ZEX) dx

For the function f\(u) = uf(u~') we have

Dr(p,q) = D\ (q; p).
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C

siszar divergence

If « € R and

e (1-xF) i aztl
fo t R=>R x— x log x if a=1
— log x if a=-1

then Dr | = Dk1,, Dgy = 2Dy and in the oo # +1 case D¢, = D,,.
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siszar divergence

The Csiszar divergence Df is monotone and jointly convex.

Theorem

For probability functions p, g : X — R and Markov kernel
/<; X xY =R def/ne B(y) = [x (y|x)p(x) dx and
fX k(y|x)g(x) dx. For the Csiszar d/vergences we have

Df(ﬁa d) < Df(pv q)
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Csiszar divergence
The Csiszar divergence Df is monotone and jointly convex.

For probability functions p,q : X — R and Markov kernel
kX x Y — R define p(y) = [ x(y|x)p(x) dx and
G(y) = [x k(yIx)a(x) dx. For the Csiszar divergences we have

Df(ﬁa d) < Df(pv q)

For density functions p1, p2,q1,q2 : X — R and parameter
0< <1, H=1—)X

Dr(A1p1 + A2p2, A1q1 + A2G2) S A1Df(p1, g1) + A2 Dr(p2, 92)

holds.
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Contrast function

A general contrast function D (in some cases) has series
expansion. From now assume that for every ¢ € = the function
y — D(p(x,9 4 y), p(x,?)) has series expansion with respect to y.

n
(D }’l)/k (D) YiYiYk
D(p(x, 9+y), p(x,9)) =S g (p +§ e 2 to(ly 1)
i7k 1 I,Jk 1

Definition

We call D to divergence or contrast function if for every 9 € = the
function D(p(x, 9 + y), p(x,?)) has series expansion with respect

to y and second order term g, "’ is positive definite.
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Contrast function

We have the following equalities for the series expansion of

divergences.
1
g(DKL) _ g(F) g(DH) _ Eg(F) g(DX2) _ 2g(F)
(Da) — (F) (0s) _ L _(p) (Dua) — L (P
g =g g =8 g =58
1
g(DJ) _ 2g(F) g(DA) _ g(F) g(DLW) _ Zg(F)
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Riemannian metric
Differential geometry, Riemannian mecicHmM

(M, A) is an n dimensional manifold if

@ M is a Hausdorff topological space with countable base,

@ A is countable and its elements are homeomorphisms
¢; : Ui — V;, where U; C M and V; C R” are open sets,

© for every pair of functions ¢;, ¢; € A the map
¢io ¢t $i(Ui N Uj) — ¢i(U; N U))

is in C*°,

@ every x € M point is contained in some U;.
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Differential geometry

Riemannian metric

Assume that M is an n dimensional manifold and p € M.

Denote by F, the set of smooth functions defined in a
neighbourhood of p.

A derivation is a map
D:F,—R

such that for every a, b € R and functions f,g € F
D(af + bg) = aD(f) + bD(g) ~ D(fg) = f(p)D(g) + D(f)g(p)

holds.
The set of derivations denoted by T,M and called tangent space.
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Differential geometry

Riemannian metric

The tangent bundle is TM = U {p} x T,M.

pEM
A vector field is a map

X:M= | ToM p X(p)
peEM

if
O for every p € M: X(p) € TpM,
Q for every p € M and f € F, the function

Xf : Dom(X) N Dom(f) =R p+— X(p)f

is smooth.
The set of vector fields is denoted by X'(M).
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Differential geometry
Riemannian metric
Definition

A map
g: M- | Lin(T,M x T,M,R)
peEM
is Riemannian metric if

Q forevery pc M the map gp : T,M x T,M — R is a scalar
product,

@ for every vector field X € X(M) the function
gX,X): M =R p— gp(Xp, Xp)

is smooth.

The pair (M, g) is called Riemannian geometry or Riemannian
manifold.
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Differential geometry
R

iemannian metric

Assume that p € M and ¢ : U — R" is a local coordinate system
around p. For every f € F, define (i=1,...,n)

o o=
o = A2 o),

We consider (01, ...,0p) as a basis of T,M. The Riemannian
metric in this coordinate system can be described with the

gij = g(0:,0;).

matrix.
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Covariant derivative

The map
V:XM)x X(M)— X(M) (X,Y)— VxY

is a covariant derivative if
Q for every vector field X, Y,Z € X(M)

VxivyZ =VxZ+VyZ, Vx(Y+Z)=VxY +VxZ
Q for every vector field X, Y € X(M) and function f € F(M)

VixY =fVxY,  Vx(fY)=(Xf)Y + fVxY.
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Differential geometry
C

ovariant derivative

Assume that p € M and ¢ : U — R" is a local coordinate system
around p. The covariant derivative can be described by Christoffel
symbol of the first kind

Cik = &(Va,05,0k)
and by Christoffel symbol of the second kind

r',-jk@k = Vaiaj.
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Differential geometry
L

evi-Civita covariant derivative

The pair (M, V) is called to be an affine manifold.

The affine manifold (M, V) called torsion free if F;-J:k = Fj'-;k holds in
every local coordinate system.

The covariant derivative V on a (M, g) Riemannian manifold
called Riemannian covariant derivative if for every vector field

X,Y,Z € X(M)

The covariant derivative V on a (M, g) Riemannian manifold
called Levi-Civita covariant derivative if torsion free Riemannian
covariant derivative.
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Differential geometry
Levi-Civita covariant derivative

Theorem

For every (M, g) Riemannian manifold there exists a unique
Levi—Civita covariant derivative V, which can be expressed as

1
= gk"’i(@,-gjk + 0jgik — Ok&ij)-

in local coordinate systems.
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Curvature
Cuvarore

For an affine manifold (M, V) define the curvature as
R:X(M)x X(M)x X(M) = X(M) (X,Y,Z)— R(X,Y)Z
R(X,Y)Z =VxVyZ —VyVxZ —Vx y|Z.

The affine manifold (M, V) is flat if R = 0.
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Differential geometry
C

urvature

In a local coordinate system the curvature tensor can be handled
by the
R(@,-,c‘)j)(?k = R;jj(la/,

g(R(0i,0))0k, 01) = Riju

quantities.

The curvature tensor has symmetries

Rijxt = —Rjiki,  Rijwt = —Rijik,  Rijir = Ruaij-

One can compute the curvature tensor as

Riil = 0T — 0T + T3 Tim, — Tl i
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Differential geometry
C

urvature

Definition

For an (M, V) affine manifold with curvature R the function
Ric: X(M) x X(M) = F(M) (X,Y) Tr(Z = R(Z,X)Y)
is called Ricci curvature.
In local coordinate system the matrix
Ricj; = Ric(0;, 0))

can be computed as
RiCjk = Rukl
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Length and volume
Length and volume

Assume that (M, g) is a Riemannian manifold and v : ]a, b[ = M
is a smooth curve. The length of the curve defined as

b
I (a,b) = / VaG0:5() dt.

The volume of the set U C Dom(¢)

V(U) = / o=
4()
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Geodesic line

A smooth curve 7y : ]a, b| — M is called to be a geodesic line if in
local coordinate systems

2y Ay dy
d t2 +UZI( y 07)dt dt

holds.
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Information geometry basics
Information geometry basics GGG

Consider a statistical model (X, S, =).
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Information geometry basics
Information geometry basics GGG

Consider a statistical model (X, S, =).

The manifold M = =, open connected subset of R".
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Information geometry basics
Information geometry basics GGG

Consider a statistical model (X, S, =).
The manifold M = =, open connected subset of R".

The Riemannian metric g = g(F) is the Fisher information.
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Information geometry basics
Information geometry basics GGG

Consider a statistical model (X, S, =).
The manifold M = =, open connected subset of R".
The Riemannian metric g = g(F) is the Fisher information.

We can compute the Levi—Civita covariant derivative or define new
ones.
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Differential geometry
|

nformation geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.
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Differential geometry
|

nformation geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.
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Differential geometry
|

nformation geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.

In 1979, Ruppeiner claimed that thermodynamic systems can be
represented by Riemannian geometry, and that statistical
properties can be derived from the model. (For example he found
connection between the behaviour of correlation functions and
curvature at second order phase transitions.)
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Differential geometry
|

nformation geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.

In 1979, Ruppeiner claimed that thermodynamic systems can be
represented by Riemannian geometry, and that statistical
properties can be derived from the model. (For example he found
connection between the behaviour of correlation functions and
curvature at second order phase transitions.)

In 1999, Brody and Ritz studied the curvature of statistical model
of Ising chains.
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Alpha covariant derivatives
Alpha covariant derivatives

Consider the P, set. For every —1 < o < 1 define

= Zp (1,9) (aa(logp(/ 9))

+ 22 (@110 p(1,1))(9) g p(1, 1)) Ok g p(1,1)) ).

which is called a-covariant derivative.

The 0-covariant derivative is Levi-Civita covariant derivative.
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Differential geometry
Examples

Example (Geodesic line in P;)

In the space (Pi, V) v is geodesic line iff

Ea(t) _(1-29() (dw)>2_o

de2 29(t)(1—~(1) \ dt

The solution (with initial values v(0) = a and 4(0) = b) is

v(t) = cos? <2\/5\b/t1: + arccos \/5> .
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Differential geometry
E:

xamples

Example (Normal distribution)

Let us define the base set X = R, the parameter space
= =R x R" and the elements of S as

p(x, 1, 0) = \/j»m exp <—(X—M)2> ,  (mo)e

o2

Using the coordinate system (i, o) the Fisher information of the
statistical model (X, S,=Z) is

2 90
&= (5 2)
52

The pair (E,g(F)) is special Riemannian geometry, called
hyperbolic plane.
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Differential geometry
E:

xamples

Example (Normal distribution cont.)

The geodesic curves are those semicircles whose centre lies on the
axis p and the y = constant half lines.

. N
4 \
4 \}
/] 1
g I |
T I e d_
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Differential geometry
E:

xamples

Example (Normal distribution cont.)

Consider the distributions given by parameters (11, 01) and
(12,02) (p1 < p2), where pg < po. If pg < po then define the

parameters
2
_ U2 — 1 2 a%—l—og a%—o%
R = + + 5
2 2 2(p2 — 1)
c- M + p2 o5 — o}
2 2(p2 — p1)

The geodesic curve connecting the points (u1,01) and (u2,02) is
the (1 — C)? + 02 = R? semicircle (o > 0).
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Differential geometry
Examples
Example

Normal distribution cont. The geodesic distance between the
points is the following.

Q If (u1 — p2)? < |03 — 0| then

R
arch — — arch —| .
o1 02

d((ul, o1), (2, 02)) =2

Q If (i1 — p2)? > |0F — 03] then

d((ML 01), (M2702)> =2 (arch L + arch :;)

01
log —|.

© If ju1 = iy then d((ul,al),(uz,g2)> — V2 log 2
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Pull-back metric

Assume that ¢ : M — N is a smooth map between differentiable
manifolds.
For every p € M we have maps

p1: Fpy = Fp frfogp

and
Px - TPM — TL,O(P)N Vi= Voup].

If (N, g) is a Riemannian manifold then we can define the
pull-back metric on M as

8 (%, ¥) = glp)(0x(x), p:(¥)).
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Differential geometry

Pull-back metric

Theorem

The pull back metric of the euclidean metric by the map

P, — R (p1s---ypn) —

n
1_Zpk7\/p>1a"'7\/pn
k=1

is the Fisher metric.

The volume of the space P, equals to the surface of the n+ 1
dimensional ball divided by 20+l that is

r(n+1)/2

ey
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Uniqueness of Fisher metric.

Theorem

Let us define X, = {0,1,...,n} (n € Nt). Assume than for every
n a Riemannian metric g, is given on P,. For a k : X; X X;p — R
transition probability denote by & : P, — Pn,. If for every
transition probability k : X, X Xy, — R for every point p € P, for
every tangent vector X € TPy

gn(p)(’%*(x)’ E*(X)) < gP(Xv X)

holds then there exists a unique positive number ¢ such that for

every n € Nt g, = cg,(,F).
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Duality on Rlem_

For an (M, g) Riemannian geometry the covariant derivatives V
and V* are called dual covariant derivatives if for every vector field

X,Y,Z € X(M)
Zg(X,Y)=g(VzX,Y) +g(X,VzY)

holds. We call (M, g, V,V*) dual Riemannian geometry.
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EDuality on Riemannian manifolds

Consider a statistical model (X, S, =) with Fisher metric g. For all
o € [~1,1] the covariant derivatives V(®) and V(=) are torsion
free and dual.

Assume that (M, g,V ,V*) torsion free dual geometry with
curvatures R and R*. In this case R = 0 iff R* = 0.

In this case we call (M, g, V,V*) flat dual Riemannian geometry.
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EFrom divergence to duality
From divergence to duality M

Assume that M is an n dimensional manifold, D: M x M — R is a
divergence, ¥ € M, ¢ is a local coordinate system in a
neighbourhood of p. Consider the function

D@9 RN SRy D, ¢ L (B(9) + y))

and its series expansion

D)y Z g y,yk+ Z B (9)yiyiye+ oy [P)-
Ik 1 ij,k=1

At every point ¥ € M the matrix g(P)(¥9) is positive definite, so
(M, g(P)) is Riemannian geometry. From the third order term
define

M) =nd) —ogl” i ke{l,2,....n}.
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EFrom divergence to duality

Theorem (From divergence to duality)

Assume that M is an n dimensional manifold, D is a divergence on
M and we have the induced quantities g(P), F,(.jf) and Fl(jf*). In this
gjli*) can be considered as a Christoffel symbols of
the first kind of torsion free covariant derivatives V(P) and V(P").

Moreover (M, g, v(D), V(D*)) is a torsion free dual geometry.

If (M, g,V,V*) is a torsion free dual geometry then there exists a
D divergence which induces the same duality.

case F,(-jf) and
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EFrom duality to divergence
From duality to divergence GG

Definition
If (M, V) is an affine manifold, x € M and ¢ and ¥ are local

coordinate systems of a neighbourhood of x. We call ¢ to affine
coordinate system if for all 1 < /,j < dim M

Vo,0; =0
holds and we call ¢ and 9 dual coordinate systems if

g(x)(0", ") = 6.
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EFrom duality to divergence

Theorem (From duality to divergence)

Assume that (M, g,V ,V*) is a flat dual n dimensional geometry.
Then every point x € M has a neighbourhood U C M with dual
coordinate systems ¥ and 1. Assume that U = M.

© In this case there exists a function v : M — R such that for
everyl <i<n

oy = ;.
@ For the function

n

$: MR x5 p(x) =Y Di(x)ni(x) — ¥(x)

i=1

we have
oMp=09;, 1<i<n
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EFrom duality to divergence

Theorem (From duality to divergence cont.)

© Foreveryindices1 <i,j<n
500,07 — o9y 5o, o) = oo,

@ The functions 1, ¢ has extrema for every x € M
= 9i(
6(x) = max (Z (y)>
= 9i(x)n; .
= max (Z ()nily) — ély ))
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EFrom duality to divergence

Theorem (From duality to divergence cont.)

© The functions ¢ and i are strictly convex functions of
(m,...,mn) and (91, ...,0,) respectively.

@ We have a canonical divergence D : M x M — R

D&V (p, q) = w(p) + &) — >_ ¥ (P ().
i=1
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EExample for duality

Example (Duality for discrete distribution)

Base space is X = {0,1,...,n} and the parameter space is
=={(p1,---,pn) € (RT)"| X 7_1 Pk < 1}. The Fisher metric is
g.

The covariant derivatives V(=1 and V(1) are torsion free and
(Z,g, VD), V(1) is flat dual geometry.

Let us define the following coordinate systems
n:=—=R"  pep)=(p1,---:Pn)
9:=Z = R" p'—>19(p):<|ogpl,...,logpn>,
Po Po

n
where pg =1 — Zpk.
k=1
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EExample for duality

Example (Duality for discrete distribution cont.)

The coordinate systems 7 and © are affine for (=, V(-1)) and
(=, v,

(V) called exponential covariant derivative and V(1) called
mixture covariant derivative.)

If we use the potential function

Pp:=Z—=>R p — — log po

then we have

o y(p) = m;
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EExample for duality

Example (Duality for discrete distribution cont.)

The function ¢ is the following
¢(p) = _ pilog pi = —S(p).
i=0

The canonical divergence of the (=, g, VY, V(=1) flat dual
geometry is

D&Y (p, q) = v(p) + &) — >_ Vi(p)ni(q)
i=1

n
0
= gilog = = Dki(q, p).
i=0 !
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EPythagorean theorem

Assume that (M, g,V ,V*) is a flat dual geometry, a,b,c € M, v
is a V geodesic curve connecting a and b, v, is a V* geodesic
curve connecting b and c such that g(b)(#1(b),¥2(b)) = 0. Then

D& Y)(a,c) = D&Y)(a, b) + DE&V)(b, c).
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Pythagorean theorem

geodesic

€ geodesic
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Projection theorem

Assume that (M, g,V ,V*) is a flat dual geometry, N is a
submanifold of M and x € M\ N. The pointy € N is a critical
point of the function

N — R y = D&V)(x,y)

iff the geodesic line between x and y is perpendicular to N.
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Introduction to noncommutative information geometry
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Quantum mechanical setting

In quantum setting we use n dimensional Hilbert space.

A self-adjoint, positive semidefinite trace one operator: state.
The set of states is called to be state space.

The interior of the state space is denoted by M.

The extremal points of the state space: pure states.

A self-adjoint operator is called observable.

The expected value of an observable A in a state D is Tr(DA).
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Introduction to noncommutative information geometry
Quantum mechanical setting

Example (2 dimensional Hilbert space (qubit))

Every state D € M5 can be uniquely written in the form of

1 /1+z x+iy
D_2<X—iy 1_2). (%*)

For states we have

*4+y?+2<1
and for parameters (x, y, z) € R3 equation (xx) defines a state iff
x2+y?+22<1.
Therefore the state space of a two dimensional quantum system
can be identified with the closed unit ball in R3.
(x,y,z) are called to be Stokes parameters.
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Introduction to noncommutative information geometry
Ei

ntropy

The entropy of a state D can be defined as in the classical case
S(D)=—-TrDlogD,

called Neumann entropy.
The entropy is a concave function.

For every state Dy, D, € M} and parameter )\ € [0, 1]

AS(D1) + (1 — A)S(D2) < S(AD1 + (1 — A)Da).
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Introduction to noncommutative information geometry
R

iemannian metric on state space

Riemannian metric on state space

We will refer to M as open convex subset of R¥ with its
canonical coordinate system. At a given point Dy € M we

identify the tangent space with n x n self-adjoint trace zero
operators M,,. For a given smooth function f : M} — R at a
state Dy € M the effect of the tangent vector X € M, is

(xe)(op) = L)

We denote by TpM;" the tangent space of M at a point
D e M.
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Introduction to noncommutative information geometry
R

iemannian metric on state space

We can define Riemannian metrics on M, for example
Kp(X,Y) = Tr DXY De M X, YeTyM:

is a Riemannian metric.
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Introduction to noncommutative information geometry

Riemannian metric on state space

We can define Riemannian metrics on /\/lf,r for example
Kp(X,Y) = Tr DXY De M X, YeTyM:
is a Riemannian metric.

Problems with Fisher metric:
How to generalise equations like below?

g ()i :/ p(x, 9)(0; log p(x, ¥))(0k log p(x, 1)) dx
X

g®) () = 4 / (@1v/p(%, 9)) Bk /P, B)) dx
X
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Introduction to noncommutative information geometry
R

iemannian metric on state space

There was the concepts of left and right logarithmic derivative

d Dy d Dy
— — Dy x L, ——Y% _ [, 5 x Dj.
19 9 X Lry a9 1,9 X Dy
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Introduction to noncommutative information geometry
R

iemannian metric on state space

There was the concepts of left and right logarithmic derivative

d Dy d Dy
— — Dy x L, ——Y% _ [, 5 x Dj.
19 9 X Lry a9 1,9 X Dy

The second derivative of the entropy generates a Riemannian
metric too.
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Introduction to noncommutative information geometry
R

iemannian metric on state space

There was the concepts of left and right logarithmic derivative

dDﬁ dDﬁ
e =DyxLy  ——=LyxDy.

The second derivative of the entropy generates a Riemannian
metric too.

The pull back of the euclidean metric by
MR D VD

defines Riemannian metric too.
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Extending some classical concept to quantum settin,

Extending some classical concepEtaIGUENEER

Let us denote by M,, the space of n x n matrices and by M,,(M,,)
those m X m matrices whose elements are n X n matrices.

A linear map T : M, — M,, is called positive if maps every
positive operator to a positive operator.

A linear map T : M,, — M,, is called completely positive if for
every k € N the operator

T M(Mn) = Mi(Mm) — [Ag] = T ([Az]) = [T(A)]
is positive.

We call a linear map T : M,, — M,, is called to be a stochastic
map if completely positive and trace preserving.
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Preparations for Petz theorem
Extending some classical concept to quantum setting

A linear map T : M,, — M, is completely positive iff there exist
operators V; : M,, — M, such that

N
T(A) =) VA  VAeM,
i=1

N
The map T is trace preserving iffz ViVi=1
i=1
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Preparations for Petz theorem
Extending some classical concept to quantum setting

Definition

Consider the family of Riemannian manifolds (M, K(M)cn. If
for every n,m € N, stochastic map T : M, — M,,, state D € Mj,'
and tangent vector X € M,

K7D (T(X). T(X)) < K§ (X, X)

holds then we call (M5, K("),cx a family of monotone metrics.
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Extending some classical concept to quantum setting
Consider a function f : R — R and a self-adjoint matrix X.

How to compute f(X):
— X € M} can be diagonalized by some unitary matrix U, that is

X = UDU".
f(X) := UF(D)U*
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Extending some classical concept to quantum setting
Consider a function f : R — R and a self-adjoint matrix X.

How to compute f(X):
— X € M} can be diagonalized by some unitary matrix U, that is

X = UDU".
f(X) := UF(D)U*

n

— X can be written as X = Z)\;E;, where (\j)i=1,.. n are the
i=1

eigenvalues and (E;j)i=1,..n are the corresponding projections

F(X) = Z F(A)E;.
i=1
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Extending some classical concept to quantum setting
Consider a function f : R — R and a self-adjoint matrix X.
How to compute f(X):

— X € M} can be diagonalized by some unitary matrix U, that is

X = UDU".
f(X) := UF(D)U*

n
— X can be written as X = Z)\;E;, where (\j)i=1,.. n are the

i=1
eigenvalues and (E;),-:ly._,v,, are the corresponding projections

F(X) = Z F(A)E;.
i=1

Definition

A function f : R — R called operator monotone if for every n € N
and self-adjoint matrices A, B € M,, from A < B follows

f(A) < f(B).
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Preparations for Petz theorem

Extending some classical concept to quantum setting

Denote by Lin(M,) the set of linear A: M,, — M, maps and
define the Hilbert-Schmidt scalar product

(+,+) : Lin(M,) x Lin(M,) — C (A, B) — Tr A*B.
For D € M, define the left and the right multiplication operators
Lnp(A) = DA Rn.p(A) = AD.
If D € M} then L, p and R, p are self-adjoint operator.
(Ln,pA, B) = (DA, B) = Tr(DA)*B = Tr A*D*B =
=TrA*"DB = (A,DB) = (A, L, pB)
(RnpA, B) = (AD,B) = Tr(AD)*B = Tr D*A*B =

= Tr A*BD = (A, BD) = (A, R, pB)
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

Attila Andai Information Geometry



Information Geometry

EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x

M(x,y) = M(y,x)
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x
M(x,y) = M(y. x)

x<y = x<M(x,y)<y
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x
M(x,y) = M(y,x)
x<y = x<M(x,y)<y

x < X0,y < yo = M(x,y) < M(xo, yo)
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Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x

M(x,y) = M(y,x)

x<y = x<M(x,y)<y

X < X0,y < yo = M(x,y) < M(x0, ¥0)

M(x, y) is continuous
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x

M(x,y) = M(y,x)

x<y = x<M(x,y)<y

x < x0,y < yo = M(x,y) < M(xo, o)
M(x, y) is continuous

M(tx, ty) = tM(x, y)
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EBasic property of means
Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x,x) = x

M(x,y) = M(y,x)

x<y = x<M(x,y)<y

x < x0,y < yo = M(x,y) < M(x0, yo)
M(x, y) is continuous

M(tx, ty) = tM(x, y)

M(x,y) = xf (%)
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I —

Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x, x) = x f(1)=1
M(x,y) = M(y,x)

x<y = x<M(x,y)<y

x < x0,y < yo = M(x,y) < M(x0, yo)

M(x, y) is continuous

M(tx, ty) = tM(x, y)

M(x,y) = xf (%)
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Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x, x) = x f(1)=1
M(x,y) = M(y,x) F(t) = tf(t?)
x<y = x<M(x,y)<y

x < x0,y < yo = M(x,y) < M(xo, o)

M(x, y) is continuous

M(tx, ty) = tM(x, y)

M(x,y) = xf (%)

Attila Andai Information Geometry



Information Geometry

I —

Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x, x) = x f(1)=1
M(x,y) = M(y,x) F(t) = tf(t?)
x<y = x<Mkxy)<yf(>1)>1 f0<-<1)<1
x < x0,y < yo = M(x,y) < M(xo, o)

M(x, y) is continuous

M(tx, ty) = tM(x, y)

M(x,y) = xf (%)
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I —

Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x, x) = x f(1)=1
M(x,y) = M(y,x) F(t) = tf(t?)
x<y = x<Mkxy)<yf(>1)>1f0<-<1)<1
x < x0,y < yo = M(x,y) < M(x0,y0) f increasing
M(x, y) is continuous

M(tx, ty) = tM(x, y)

M(x,y) = xf (%)
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I —

Basic property of means

What is a mean?
A function M : RT x RT™ — R* is a mean if (Vx,y, x0, y0,t € RT)

M(x, x) = x f(1)=1
M(x,y) = M(y,x) F(t) = tf(t™)
x<y = x<Mkxy)<yf(>1)>1f0<-<1)<1
x < x0,y < yo = M(x,y) < M(x0,y0) f increasing
M(x, y) is continuous f continuous
M(tx, ty) = tM(x, y)

M(x,y) = xf (%)
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I —

Basic property of means

We have

f increasing
means = ¢ f € C(RT,R") ‘ f(1) =1
vVt € RT : f(t) = tf(t71)

M(x,y) = xf (%)

Attila Andai Information Geometry



Information Geometry

I —

Basic property of means

We have

f increasing
means = ¢ f € C(RT,R") ‘ f(1) =1
vVt € RT : f(t) = tf(t71)

M(x,y) = xf (%)

14+t
arithmetic mean: f(t) = %
geometric mean: f(t) =/t
t—1
logarithmic mean: f(t) =
log t
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EMeans of matrices
Means of matrices

Define means on n x n, positive definite matrices M,T:

XeM: e x=x, X >0weC\ {0}
n every eigenvalue of X is positive
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EMeans of matrices
Means of matrices

Define means on n x n, positive definite matrices M,T:

XeM: e x=x, X >0weC\ {0}
n every eigenvalue of X is positive

We write X < Y if Y — X € M.
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EMeans of matrices

M is a mean of matrices if for every X, Y € M}
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EMeans of matrices

M is a mean of matrices if for every X, Y € M}
-X < Xo, Y < YO . /W()(7 Y) < M(Xo, Yo)
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EMeans of matrices

M is a mean of matrices if for every X, Y € M}

-X < Xo, Y < YO . /W()(7 Y) < M(Xo, Yo)

— (Xn)nen and (Yy)nen are decreasing sequences (Xp+1 < X,,
Yn+1 < Yy) in ME with limits X and Y then M(X,, Y,) is

decreasing and
lim M(X,, Yn) = M(X,Y)

n—oo
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EMeans of matrices

M is a mean of matrices if for every X, Y € M}

-X < Xo, Y < YO . /W()(7 Y) < M(Xo, Yo)

— (Xn)nen and (Yy)nen are decreasing sequences (Xp+1 < X,,
Yn+1 < Yy) in ME with limits X and Y then M(X,, Y,) is

decreasing and
lim M(X,, Yn) = M(X,Y)

n—oo

~ T*M(X,Y)T < M(T*XT, T*YT) forall T
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EMeans of matrices

M is a mean of matrices if for every X, Y € M}

-X < Xo, Y < YO . /W()(7 Y) < M(Xo, Yo)

— (Xn)nen and (Yy)nen are decreasing sequences (Xp+1 < X,,
Yn+1 < Yy) in ME with limits X and Y then M(X,, Y,) is

decreasing and
lim M(X,, Yn) = M(X,Y)

n—o00
~ T*M(X,Y)T < M(T*XT, T*YT) forall T
- M(X,X) =X
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Means of matrices

M is a mean of matrices if for every X, Y € M}
-X < Xo, Y < YO . /W()(7 Y) < M(Xo, Yo)
— (Xn)nen and (Yy)nen are decreasing sequences (Xp+1 < X,,
Yn+1 < Yy) in ME with limits X and Y then M(X,, Y,) is
decreasing and

lim M(X,, Yn) = M(X,Y)

n—o00

~ T*M(X,Y)T < M(T*XT, T*YT) forall T
- M(X,X) =X

Theorem (Kubo-Ando)

If M is a matrix mean, then there exists an operator monotone
function f with properties f(t) = tf(t~') and f(1) = 1 such that
for every X, Y € M}

M(X,Y) = XY2F(X12yx—1/2)x1/2,
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Petz theorem
L

ooking for monotone metrics

Looking for monotone metrics:

Attila Andai Information Geometry



Information Geometry

Petz theorem
L

ooking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X,X) VD € M,,,¥X € T,M, ,
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X,X) VD € M,,,¥X € T,M, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp : Mat(n, C) — Mat(n, C) linear map.
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X,X) VD € M,,,¥X € T,M, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp : Mat(n, C) — Mat(n, C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X, X) VD € M, VX € TyM, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp: Mat( C) — Mat(n,C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))

gr(o)(T(X), T(X)) = (X, 37t T(X))
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X, X) VD € M, VX € TyM, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp: Mat( C) — Mat(n,C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))

gr(o)(T(X), T(X)) = (X, 37t T(X))

gpo(X, X) = (X, I51(X)) = (X, T*I;' T(X))
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X, X) VD € M, VX € TyM, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp: Mat( C) — Mat(n,C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))

gr(o)(T(X), T(X)) = (X, 37t T(X))

gpo(X, X) = (X, I51(X)) = (X, T*I;' T(X))

monotonicity:
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X, X) VD € M, VX € TyM, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp: Mat( C) — Mat(n,C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))

gr(o)(T(X), T(X)) = (X, 37t T(X))

go(X, X) = (X, Jp1(X)) = (X, T IS T(X))
monotonicity: T*J}%D) T < JBl
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Petz theorem

Looking for monotone metrics

Looking for monotone metrics:
monotonicity:

gr(p)(T(X), T(X)) < gp(X, X) VD € M, VX € TyM, ,

go(X,Y) = (X, J51(Y)) = Te(XJIH(Y)), where
Jp: Mat( C) — Mat(n,C) linear map.

gro)(T(X), T(X)) = { T(X), I7{p,(T(X)))

gr(o)(T(X), T(X)) = (X, 37t T(X))

go(X, X) = (X, Jp1(X)) = (X, T IS T(X))
monotonicity: T*J}%D) T < JBl

TIpT* < Jr(p)
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Petz theorem
L

ooking for monotone metrics

What can Jp(X) be?

Attila Andai Information Geometry



Information Geometry

Petz theorem
L

ooking for monotone metrics

What can Jp(X) be?
"D can act on left p1(D)X and on the right Xp1(D)"
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Petz theorem

Looking for monotone metrics

What can Jp(X) be?
"D can act on left p1(D)X and on the right Xp1(D)"
in general p1(D)X2(D) gives the idea:

Jp(X) = M(Lp, Rp)(X).

Where Lp(X) = DX and Rp(X) = XD.
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Petz theorem

Looking for monotone metrics

What can Jp(X) be?
"D can act on left p1(D)X and on the right Xp1(D)"
in general p1(D)X2(D) gives the idea:

Jp(X) = M(Lp, Rp)(X).

Where Lp(X) = DX and Rp(X) = XD.
We have M(LD, RD) = M(RD, LD)
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Petz theorem
Looking for monotone metrics

What can Jp(X) be?
"D can act on left p1(D)X and on the right Xp1(D)"
in general p1(D)X2(D) gives the idea:

Jp(X) = M(Lp, Rp)(X).

Where Lp(X) = DX and Rp(X) = XD.
We have M(LD, RD) = M(RD, LD)
and the monotonicity

TIpT* < Jrp)

gives
TM(Lp,Rp)T* < M(TLpT*, TRpT™).
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Petz theorem
Looking for monotone metrics

What can Jp(X) be?
"D can act on left p1(D)X and on the right Xp1(D)"
in general p1(D)X2(D) gives the idea:

Jp(X) = M(Lp, Rp)(X).

Where Lp(X) = DX and Rp(X) = XD.
We have M(LD, RD) = M(RD, LD)
and the monotonicity

TIpT* < Jrp)

gives
TM(Lp,Rp)T* < M(TLpT*, TRpT™).

M is a mean!
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Petz theorem
A variant of Petz theorem

Theorem (Petz)

Assume that for every n € N the pair (M, gn) is a
Riemannian-manifold. If for every stochastic map T the
monotonicity

gr(p)(T(X), T(X)) < gp(X,X) VD € M,,VX € TyM,,

holds then there exists an operator monotone function f : R™ — R
with the property f(x) = xf(x~1), such that

1

1 1
gn(X,Y) = Tr<X(R§7Df(LnVDRm}D)Rj’D) 1(Y)>.
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Petz theorem
A variant of Petz theorem

Classical case:

Pn = {(pla"'vpn)

n
0<pi<1,zp,’:1}.

i=1

Theorem (Cencov) Assume that for every n € N
(Pn, gn) is a Riemannian manifold. If for every
transition probability x : X; x X, = R

8r(p) (K" (X), k(X)) < gp(X, X) Vpe Ap_1,VX € TpAp1,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.
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Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Theorem (Cencov) Assume that for every n € N
(Pn, gn) is a Riemannian manifold. If for every
transition probability x : X, x X, = R

gg(p)(lﬁ*(X), H*(X)) < gp(X,X) \V/,D = An,l,VX € TpA,,,l ,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.

Attila Andai Information Geometry



Information Geometry
Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Assume that for every n € N
(Pn, gn) is a Riemannian manifold. If for every
transition probability x : X, x X, = R

8r(p) (K" (X), k(X)) < gp(X, X) Vpe Ap_1,VX € TpAp1,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.
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Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Assume that for every n € N
(M, gn) is a Riemannian manifold. If for every
transition probability x : X, x X, = R

8r(p) (K" (X), k(X)) < gp(X, X) Vpe Ap_1,VX € TpAp1,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.
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Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Assume that for every n € N
(M, gn) is a Riemannian manifold. If for every
stochastic map T : M7 — M}

8r(p) (K" (X), k(X)) < gp(X, X) Vpe Ap_1,VX € TpAp1,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.
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Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Assume that for every n € N
(M, gn) is a Riemannian manifold. If for every
stochastic map T : M7 — M}

gr(o)(T(X), T(X)) < gb(X, X) VD € M, ¥X € TpM,

(monotonicity) holds, then the family of metrics (g,)nen unique
up to a positive factor.
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Petz theorem
A variant of Petz theorem

Quantum case:

M, = {D € Mat(n,C)

D:D*,D>0,TrD:1}.

Theorem (Petz) Assume that for every n € N
(M, gn) is a Riemannian manifold. If for every
stochastic map T : M} — M

gro)(T(X), T(X)) < (X, X) VD € M,,¥X € TpM,

(monotonicity) holds, then the family of metrics (g,)nen given by
the equation ) )

0%, ) = (X(RLpf(LnoRsb)RES) (1))

where f : RT™ — R™T is an operator monotone function such that
f(x) = xf(x71) (Vx € RT).
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Petz theorem
A variant of Petz theorem

Definition

Consider the Riemannian manifold (M, K("). The metric K(") is
called monotone metric if there exists an operator monotone
function f : RT — R such that for every positive number x

f(x) = xf(x~) and K(") is generated by f.

1 1\t
go(X,Y)="Tr <x <R§,Df(Ln,DR,LE)R,iD> (Y)>
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Properties of operator monotone functions

Properties of op

Assume that f : Rg — R is an operator monotone function.
f\(x) = xf(x~1) is called to transpose of f,

f+(x) = ﬁ is called to dual of f.

f is symmetric if f = f\

f is normalized if f(1) = 1.

If f: Rar — R is symmetric operator monotone, then its dual is
symmetric and operator monotone too.
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Operator monotone functions
R

epresentation theorems for operator monotone functions

Representations of

Denote by ]-"Rar the set of operator monotone functions defined on

R{ and by .Fﬂ(g’n) the symmetric normalized ones.
0

Denote by G, the set of positive Radon-measures on the interval
I CR.

A measure p € G is said to be normalized if p(l) = 1.

Denote by g,(“) the set of normalized measures.
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Operator monotone functions
Representation theorems for operator monotone functions

Theorem (Léwner)

There is a bijective correspondence

)= [ due),

X+t
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Operator monotone functions
Representation theorems for operator monotone functions

There is a bijective correspondence

¢ : 9[071] — .FROJr W= f'u

. X
fu(X):/o T—Dx+t dp(t).

The function f,, is symmetric iff u([0,s]) = p([1 — s, 1]) holds for
every 0 < s < 1.
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Cencov-Morozova function

. 2 ; .
The function ¢ : (Ra“) — R is called Cencov—Morozova function
if there exists an f € ng such that for every positive x, y

!
c(x,y) = T <§>
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Computing monotone metrics
Cencov-Morozova function

If f: Rt — R* is operator monotone then it is smooth, moreover
it can be extended to a horizontal in the complex plane around the
positive real axes.

So if f is operator monotone then for every p € R we have

f(p) = 74 FE)E—p) " de

_27T1 r

by Cauchy integral formula, where I is a smooth closed curve
around p with counter-clockwise orientation.
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Computing monotone metrics
R

iesz—Dunford operator calculus

The Riesz—Dunford operator calculus states that this can be done
for operators too. If A is a self-adjoint operator then

1 _
) = 5 FAOET-A) e
™1 Jr
where the interior of [ contains all the eigenvalues of A.

Im

N
N
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Computing monotone metrics
Petz theorem with Cencov-Morozova functions

We have seen that for a state D € M, the multiplications L, p
and R, p are self-adjoint operators, so we have

(L) = 5 ;{ FE)ET-Lnp) ! de
F(Ru) = 5= § FENET—Ro0) " d

This leads us to

F(Ln0)(X) = 5 f FOET-D) X a
(Roo)(X) = 5= § FOX(ET-D) ! de.
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Computing monotone metrics
Petz theorem with Cencov-Morozova functions

These expressions can be extended to multivariate case, such as

(Lo, Rup)= (2;)2#:(5 D€ T—Lno) YT —Rop) L dn,

which effect can be computed as

&(Lnp. Rn,D)<X)—(2ji)274fc(s,n)(§I—D>IX(nI—D)ldsdn.
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Computing monotone metrics
Petz theorem with Cencov-Morozova functions

Theorem

If K js a monotone metric on M generated by an operator
monotone function f then for every state D € M} and tangent
vector X, Y € TpM} we have

KU(X,Y) = Tr(zwli)#{jg:(f, MX(€I-D)™1Y (n I-D)* d¢ dn.
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Computing monotone metrics

Examples for monotone metrics

Examples for functions in .7-"

1+ x 2x x—1
foni(x) = fia(x) = f
sm(x) > LA (X) T x KM(x) = og x
2on+1/2
fp1(x) = T2 0<a<1/2

B(1—B)(x — 1)°
fPQ(X) = (X/j — 1)(X17ﬁ — 1) B € [_1)2] \ {07 1}7

1—a? (x — 1)
lta

fA-xT)(1-xE)
vy (x) = %(\/}+ 1)°

fos(x) = (1 +2X> velL?]
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Computing monotone metrics
Explicit expression for operator monotone metrics

Consider the matrix units Ej; ((Ejj),, = diadjp) and matrices
Fij = Ejj + Ejj and Hj =i Ejj — i Ejj. (These form a basis of the
tangent space.)

Theorem

If the monotone metric K(M-f on M} is generated by f then at a
n

state D € M} in the form of D = Z McExk we have

k=1

GD(H,'j, Hk/) = 5;k6j/2c()\,~, )\J')
1<i<j<n 1<k<I<n: GD(F,'J' Fk/) = (5,';((5]'/2C()\,',)\j)

Gp(Hjj, Fi) =0,
1§i<j§n,1§k§n: GD(Hij,Fkk):G(Fiijk):O,
1<i<n 1<k<n: Gp(Fii; Frk) = dikdc(Ais Ai).-
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Computing monotone metrics
Examples

Example (Smallest metric)

The metric Kéﬁ generated by the function foy(x) = HTX is called
smallest metric since fgyi(x) is maximal among functions in fﬂ(g’n)
0

with respect to the pointwise order

foyg8 < f(x)<g(x) Vxel01].

The corresponding Chencov-Morozova function is

2
x+y

csm(x,y) =
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Examples
Example (Smallest metric cont.)

The inner product of vectors X, Y can be written in the form of
KU (X, Y) = Tr XZ,
where Z is the solution of the equation

DZ + ZD =2Y.

The geodesic distance between states D; and D, according to this
metric is

dsni(Dy, Do) = \/2(1 - Tr(D11/2D2D11/2)1/2).
(1992 Uhlmann, studying Berry phase)
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Computing monotone metrics
E:

xamples

Example (Largest metric)

The metric KIE'X generated by the function fa(x) = ﬁ is called
largest metric since fg\i(x) is maximal among functions in f(S m,

In this case the metric can be written in a simple form

K7 (X, Y) =Te XD LY.
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Computing monotone metrics
E:

xamples

Example (Kubo-Mori metric)

-1
The metric generated by the function fixam(x) = T
ogx
Its Cencov—Morozova function is
logx — lo
cxm(x,y) = 22— 8Y
X=Yy

Using the integral representation

CKM(X,y) = /Ooo(t+X)_1(t+y)_1 dt

we have for the metric

Ko (X, Y) = / X(t+ D) Y(t+D) ! dt.
(Linear response theory Fick, Sailer.)
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Computing monotone metrics
A simple consequences of orderin,
A simple conse_

For every f € FlEm

RY we have

> >
fsmo f oy fL4-

Assume that f € Fﬂg’n). For every state D € M and tangent
0

vector X € TpM;" we have

n n),f n
K (X, X) = KST (X, X) 2 K& (X, X).
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Computing monotone metrics
A

simple consequences of ordering

We have a continuous path in .Fu(g’n) from smallest to largest.
0

_ =) s (1<02) 5 (v=2)
fsm = fP3 [0,1] fPB 0,11 'P3 = fwy
_ f(a=0) 5 (0<a<3) 5 (a=3) _
fwy = fWYD [0,1] fWYD [0,1] fWYD = fLa
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Computing monotone metrics
M

onotone metric from entropy

Consider the integral representation of the log function

IogX:/ A+t)yt—(x+t)7t dt.
0

We have for the entropy
S(D) = TrD/ (D+6) —(I+)" d.
0

The first derivative of the entropy is d S(D)(A) = — Tr Alog D.
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Computing monotone metrics

Monotone metric from entropy

The second derivative is

d2s: Mf— Lin(TMn,Lin(T/\/l,,,]R)>
d?> S(D)(A)(B) = —Tr/ (D+t)*AD+t)7!B dt,
J0

which is (—1) times the Kubo-Mori metric.
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Monotone metric from euclidean metric

2 0 .
For the complex state space M; denote by S; ~1 the unit ball in
the euclidean space R"*" and consider the map

¢: MF—S™1 D VD.
Using derivative of ¢
(Ao o)(A) = (L4 + RE2) " (4)
we can deduce that the pull back metric in this case is
(¢"g)(A, B) = ((dp¢)(A), (dp¢)(B))

= Tr A(LY? + RY?)2(B)
1
= Z TI' ACWY(LD7 RD)(B)
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Computing monotone metrics
M

onotone metric from euclidean metric

So in this case easy to compute the geodesic distance between
states D7 and D>

dwy (D1, D2) = 2 arccos Tr D11/2D§/2.
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Relative entropy
R

elative entropy from operator convex functions

First relative entrop

The first version of relative entropy in quantum setting was given

by Umegaki in 1962. He defined the relative entropy of states
Dy, Dy € M} as

S(Dl, D2) =Tr Dl(log D1 — Iog Dg).

This relative entropy is called to Umegaki relative entropy.
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Relative entropy from operator convex functions
Relative entropy from operator ConVeXiUNCHONSINNN

A continuous function f : R — R is called operator convex if for

every n € N and n X n self-adjoint operator A, B and parameter
A €0,1]

f(AM+ (1= X)B) < Mf(A)+ (1 - N)f(B)
holds.

The set of operator convex functions g with property g(1) =0
defined on the interval / C R is denoted by /C;.
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Relative entropy
R

elative entropy from operator convex functions

Representation theorem for operaton coneRNINCHBININ

If g : RT™ — R is an operator convex function then there exist
parameters a € R, b, c € Rar and a positive finite measure [z on
the interval RSF such that

X

8 = abx- 612+ [Tl T )
0 b%s

For every parameter a € R, b, c € Rar and finite measure
equation above defines an operator convex function.
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Relative entropy
R

elative entropy from operator convex functions

Definition (Petz)

If g € Kg+ then the function Hg(-,-) : M} x M} = R
Hy (D1, D2) = Tr (D *g (Lo, 51D} %)

is called to g-relative entropy.

Attila Andai Information Geometry



Information Geometry

Relative entropy
Properties of the relative entropy

Theorem (Properties of g-relative entropy)

Assume that H is a g-relative entropy.

@ Then for every state Dy, Dy: H(Dy, D;) > 0, and
H(D1, Ds) = 0 iff Dy = Ds.

@ H is jointly convex, that is for every state D1, Do, D3, Dy and
parameter \ € [0, 1] we have

H(ADy + (1 — A)Da, ADs + (1 — A\)Da)
< )\H(Dl, D3) + (]. = )\)H(Dz, D4).
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Relative entropy
Properties of the relative entropy

Theorem (Properties of g-relative entropy cont.)

© H is monotone: for every stochastic map T : M} — M
H(T(D:1), T(D2)) < H(Dy,D;)  VDi,D; € M.

Q H is differentiable: for every state Dy, D, € M and tangent
vectors A € Tp, M}, B € Tp, M} the mapR xR — R

(x,y) = H(D1 + xA, D> + yB)

is differentiable at the origin.
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Relative entropy
P

roperties of the relative entropy

The quantity Hg (D1, D>) depends mainly on Dy — D».

If g € Kr+ then for every state Dy, D, € M}"

Hg(D1, D2) = TT((Dl — D2)Rp} (g(L02R511)(Dl - D2))>-
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Relative entropy
Properties of the relative entropy

For an operator convex function g define its transpose as
X

g\(x) = xg(x~1), and dual as g (x) = 209"
g is said to be symmetric if g\ = g.
g is said to be normalised if g”(1) = 1.

The effect of transpose is changing the arguments

Hg(D1, D2) = H,\ (D2, Dy).
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Relative entropy
Riemannian metric from relative entropy

Theorem (Riemannian metric from relative entropy)

Assume that g € /CRSF. Then
K& - M 5 Lin(TM, x TM,,R)

2

K5 V) =~

Hg(D + tX, D + sY)

t=s=0
is a Riemannian metric on M.
Define an equivalence relation on Kr+ as

frvg — f+f\:g+g\.

The functions g1, g» € KCr+ generates the same metric iff g1 ~ g».
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Relative entropy
Relative entropy and monotone metrics

Relative entrop

The map ¢ : IC§+ — fgg

(x —1)° :
20) + e D) if x>0, x#1,
£~ 600 = { Zy i x=1,
- 1 — if x=0
lim g(x) +xg(x™")

is well-defined and

KEO (X, ¥) = KPE(X, ) VD eMf VXY e TM,
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Relative entropy and monotone metrics
Relative entropy and monotone mettica

. (S (9)
The map € : ng — Kg+

F(x) > e(F)(x) = (2 f_(j))

is well-defined and K(M:f = K<(f).(n) polds.
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Relative entropy and monotone metrics
Relative entropy and monotone mettica

Combining these we have the following theorem.

Theorem

There is a simple bijective correspondence between
@ the set of monotone metrics,
S)
o 79,
Ry
S
o k.
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Relative entropy
E:

xamples

Example (Smallest metric)

The corresponding operator monotone function is f(x) = H'TX and

the generated operator convex function is

(x —1)?

g(x) = T x

and the relative entropy
Hsy - M x M =R (Dy, D2) — Hsm(Dy, Dy)
Hsni (D1, Do) = Tr(Dy — Do) (Lp, + Rp,) (D1 — D2).

Bures relative entropy
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Relative entropy
E:

xamples

Example (Largest metric)

The corresponding operator monotone function is f(x) = 2 and

1+x
the generated operator convex function is

21+ x

g(x) = (x—1P=C

and the relative entropy is
1 _
Hg, (D1, Do) = 5 Te(Dy — D) Dy YDy - D).

Quadratic relative entropy
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Relative entropy
E:

xamples

Example (Kubo-Mori metric)

The corresponding operator monotone function is f(x) = I);;)l(

the generated operator convex function is

and

~1
g(x) == 5 logx

and the generated relative entropy is
Hg, (D1, D3) = Tr Dy (log Dy — log D2>.

Umegaki relative entropy
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EBasic definitions

Assume that f € .7-"(3 and h € K,. We use the term h is
compatible with f if for the function

(x—= 1)2
g(X)*T(X)

h ~ g holds.
For a monotone metric K(":f and a compatible function h we
define a covariant derivative V/" : TM, x TM, = TM, as

3
0 Hp(D + sX +tY,D + uZ)

(n),f f,h .
Ko™ (VX' 2) = = 5oatau 0
s,t,u=

where X,Y,Z € TpM}.
(Giblisco, Isola, Uhlmann, Dabrowksi, Jadczyk, Hiibner)

Attila Andai Information Geometry



Information Geometry

EMain theorem of duality
Main theorem of duality

For a function f € fﬂg’") and a compatible function h € IC]%"JF) the
0

quadruplet (M, KN fh, Vf’h\) is torsion free dual geometry.
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EA characterization of the Kubo-Mori metric

A characterization of the Kubo-Mori eticHNNNN

Theorem

If (M}, g,V VD) s a dual geometry for some Riemannian
metric then g equals to Kubo-Mori metric g'5™) up to a positive
multiplicative factor.
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Pythagorean theorem

Consider states D1, D>, D3 € Mf,r and V() geodesic curve y;
connecting D1 and D> and v(=1) geodesic curve v, connecting D,
and Ds3. If

Kio b, (1(D2),42(D2)) = 0,

holds then

Hiog(D1, D3) = Hiog(D1, D2) + Hiog(Do2, D3).
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Pythagorean theorem

geodesic

€ geodesic
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Hilbert-Schmidt measure

The Hilbert-Schmidt measure on M is defined by the Euclidean
metric

d(D1, D) = \/Tr(Dy — D5)?
We can consider M} as a manifold with metric
go(X,Y)=Tr(XY) DeM} X,YeTpM/.

Induces the flat, Euclidean geometry on the set of states.
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About volume of the state space
Hilbert-Schmidt measure

The invariant volume measure is

p(D) = +/detgp =1.

(Which is the most simple prior on M)
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About volume of the state space
Hilbert-Schmidt measure

The invariant volume measure is

p(D) = +/detgp =1.
(Which is the most simple prior on M;'".) The volume of the state
space is
Volume = / 1dD,
My

where
dD:dalldalz...dazgdagg,...dan,l’,, .
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About volume of the state space
A decomposition of the state space
Some notations:

d11  d12 di13  adi4

*

A, = dip @22 a3 dx
aj3 a3 a3 axu

* * *
d14 24 93 M
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About volume of the state space
A decomposition of the state space
Some notations:

| [EPEREE

*

a a a a

_ 12 422 a3 ax

Ay = " . Aq
d13 dp3 4933 a3

* *

*
d14 24 93 a4
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About volume of the state space
A decomposition of the state space

Some notations:

413  di4

a3  dz4
Ay = * * Ao
diz dpz d33 434

* * *
d14 24 93 a4
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About volume of the state space

A decomposition of the state space

Some notations:

ai4

ara
A3
a34

daa

Ay =
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About volume of the state space

A decomposition of the state space

Some notations:

di4
. ara
A4 = 34 A3
daa
T, = det(A,) x (A,) 1 det T, = (det A,)" !
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About volume of the state space

A decomposition of the state space

Some notations:

ai4
a
A4 = 24 A3
a34
a4 am
T, = det(A,) x (A,) 1 det T, = (det A,)" !
a1 | 12
aj, a
Ay = 2 o= X3
d13 923

* *
14 A4 934 344
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About volume of the state space

A decomposition of the state space

Some notations:

d14
d24
Ay = A
4 d34 ’
Ay By g
T, = det(A,) x (A,) 1 det T, = (det A,)" !

a1l | 412 a3
A, — aj, ax  axn »
4= at, a%, a 3

13 23 33

* * *

14 A4 934 344

Lemma: detA, = apn(det Ap_1) — (x,_1, Tn-1Xp_1)-
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

| elements

diagonﬂ

Y
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

| elements

diagonﬂ

0.125
25
0 0.625

Y
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

| elements

diagonﬂ

0.125
25
0 0.625

Y
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

| elements

diagonﬂ

.25
. 0.5

Y

0.25
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

| elements

diagonﬂ

.25
. 0.5
0.25
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 3 x 3 real case:

di xgonal clements
ia
.25 .
i 0.05
0.25
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About volume of the state space
A decomposition of the state space

Decomposition of the state space: 4 x 4 real case:

al (?1(31118Iltb

diagoﬁ
a4
.24 a4
0 0.04
024 a34
S 0.03
a24 as34
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About volume of the state space
The volume

For every n € N the volume of the state space M} is

dn(n—1)/4 n—1 id
V(M) = — r < + 1)
r (a2 + n) 1;[1 2

and the integral of the function det® with respect to the
normalized Hilbert—=Schmidt measure is

r dn(n 1)+ n i1
/deta: ( n) H d2 +1+OJ)
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About volume of the state space
The qubit case

In the space of qubits we use the Stokes parametrization

1 .
D_<1—|—X y+1z>.

S 2\y+iz 1-x

My can be identified with the unit ball in R3 and R?.
The Riemannian metric g() in this coordinate system is

1
wn 00
1
gf(xvyvz): E Alf(%) 1
0 0
)
1
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The qubit case
The volume is an integral on the unit ball, which can be expressed

as
F1-\? 1
©) _ -
v (mS >—2w/<1+t> T
0

V(MgR)>:ﬁﬂ/ll_t 1
0

W

The volume of the state space with monotone metric is unknown.
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About volume of the state space
The qubit case

Some operator monotone functions and the corresponding volumes.

C R

f(x): % (Mg )): % (Mg )) ;
1

;LX 72 27

2x

0 0

1+ x
x—1 D2 ~ 8.208
log x

Vx 00 4
(Vx+1)?/4 | 4r(r—2) | 4n(2 — V2)

2 ~1
yoes— 1) = ~ 10.986

(14 x) log x
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Uncertainty relations

Brief history of uncertainty relations

Brief history of uncertainty relations

1927, Heisenberg: not possible to measure the position and
moment at a same time. (Idea, not a theorem.)

Heisenberg studied Gauss distributions (f(q)), where "uncertainty”
was the width of Dy.

2y

If F(f) denotes the Fourier transform of f then the first equation
for uncertainty was

DfDz(fy = constant.
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Uncertainty relations

Brief history of uncertainty relations

1927, Kennard: For observables A, B if [A, B] = —1i then

Varp(A) Varp(B) >

)

B

where Varp(A) = Tr(DA?) — (Tr(DA)).
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Uncertainty relations

Brief history of uncertainty relations

1927, Kennard: For observables A, B if [A, B] = —1i then

Varp(A) Varp(B) >

)

B

where Varp(A) = Tr(DA?) — (Tr(DA)).
1929, Robertson: For all observables A, B

Varp(A) Varp(B) > % ITr(D[A, B])]?.
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Uncertainty relations

Brief history of uncertainty relations

1930, Schrodinger: For all observables A, B

Varp(A) Varp(B) — Covp(A, B)?> > = |Tr(D[A, B])?,

F

where

Covp(A, B) = %(Tr(DAB) + Tr(DBA)) — Tr(DA) Tx(DB).
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Uncertainty relations

Brief history of uncertainty relations

1930, Schrodinger: For all observables A, B

Varp(A) Varp(B) — Covp(A, B)?> > = |Tr(D[A, B])?,

F

where

Covp(A, B) = %(Tr(DAB) + Tr(DBA)) — Tr(DA) Tx(DB).

Or in a bit different form:

d Covp(A,A) Covp(A, B) .
Covp(B,A) Covp(B,B)) =
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Uncertainty relations
B

rief history of uncertainty relations

1934, Robertson: For finite set of observables (A;)ic/

det ([COVD(A,,, Aj)]hd.e,> > det q—; Te(D [As, AJ-])] hd_e) .
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Uncertainty relations
B

rief history of uncertainty relations

1934, Robertson: For finite set of observables (A;)ic/

det ([COVD(A/,, Aj)]hd.e,> > det q—; Te(D [As, Aj])] hd_e) .

~2000-, Furuichi, Gibilisco, Hansen, Imparato, Isola, Kosaki,
Kuriyama, Luo, Petz, Yanagi, Q. Zhang, Z. Zhang

Attila Andai Information Geometry



Information Geometry
Covariances
New concepts

For observables A, B, state D € M; and operator monotone

function f:
Covp(A, B) = % (Tx(DAB) + Tr(DBA)) — Tr(DA) Tr(DB)
Covh(A,B) = (A, B)p; (2002, Petz)
aCovg (4. 8) = ") (i[D.A) i[D. B])
aCovh, (4. 8) = " (D, A} (D.BY),,

where [.,.] is the commutator and {.,.} is the anticommutator.
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Covariances
New concepts

For observables A, B, state D € M; and operator monotone

function f:
Covp(A, B) = % (Tx(DAB) + Tr(DBA)) — Tr(DA) Tr(DB)
Covh(A,B) = (A, B)p; (2002, Petz)
aCovg (4. 8) = ") (i[D.A) i[D. B])
aCovh, (4. 8) = " (D, A} (D.BY),,

where [.,.] is the commutator and {.,.} is the anticommutator.

For an observable A and state D define Ag = A — Tr(DA)/, then
Tr DAO =0.
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Uncertainty relations

Covariances

For observables (A(k))kzl n with zero mean at a state D define

[Covp]; = Covp (A1), AU))
o], o0, a1

[qCOVaDS,f] i = qCOVES,f(A(i)v A(J))

[qCov ¢] = quva(A("), AUy,
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Uncertainty relations

Covariances

For observables (A(k))kzl n with zero mean at a state D define

[Covp]; = Covp (A1), AU))
o], o0, a1

[qCOVaDS,f] i = qCOVES,f(A(i)v A(J))

[qCov ¢] = quva(A("), AUy,

2006, Gibilisco: Conjecture: det(Covp) > det(qCovy 7).
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Uncertainty relations

Covariances

For observables (A(k))kzl n with zero mean at a state D define

[Covp]; = Covp (A1), AU))
o], o0, a1

[qCOVaDS,f] i = qCOVES,f(A(i)v A(J))

[qCov ¢] = quva(A("), AUy,

2006, Gibilisco: Conjecture: det(Covp) > det(qCovy 7).

2008, Andai: The conjecture is true.
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Up to date results
Up to date resul_

Theorem (2016, Lovas, Andai)

det(Covp) > det(qCovp ¢) > det(qCovy ).
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Up to date results
Up to date resul_

Theorem (2016, Lovas, Andai)

det(Covp) > det(qCovp ¢) > det(qCovy ).

2£(0) Covi®o(Ag, By)
< qCovp ¢(Ao, Bo) — aCovp ¢(Ao, Bo)
< COV’CDRLD (Ao, Bo)
det(qCov$, ;) — det(qCovis ;) > (2f(0))" det(Covii?)
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Up to date results
Up to date resul_

Theorem (2016, Lovas, Andai)

det(Covp) > det(qCovp ¢) > det(qCovy ).

2£(0) Covi®o(Ag, By)
< qCovp ¢(Ao, Bo) — qCov ¢(Ao, Bo)
< COV’CDRLD (Ao, Bo)
det(qCov$, ;) — det(qCovis ;) > (2f(0))" det(Covii?)
2017, Lovas, Andai: Further extensions of symmetric and
antisymmetric covariant derivatives and simplified proof for the

original Robertson inequality
2018: 777
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