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Classical information geometry
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Basic ideas

Information Geometry

Statistical model ≈ Parametric probability distribution

Information geometry ≈ Riemannian metric on statistical model
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Parametric probability distributions

Statistical model

Statistical model

Definition

Statistical model: S = (X ,B(X ), S ,Ξ)

1 X 6= ∅ set, B(X ) σ algebra on X ,

2 the elements of S are probability measures on B(X ),

3 there exists a bijection i : Ξ→ S ϑ 7→ µϑ

Ξ: Parameter space

(This setting is too general.)
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Parametric probability distributions

Statistical model

We make more assumptions.

1 ∃n ∈ N+: Ξ ⊆ Rn, moreover Ξ connected open set.
(n-dimensional statistical model)

2 If X is finite, then B(X ) = P(X ).

3 If X is infinite, then X ⊆ Rm, X connected open set, B(X )
contains Borel sets and for every ϑ ∈ Ξ the probability
distribution µϑ ∈ S has density function pϑ (with respect to
the Lebesgue measure).

4 We refer to the elements of S as density functions and denote
it by p(x , ϑ) = pϑ(x).

5 Every function pϑ ∈ S has 1., 2., and 3. moment.

Attila Andai Information Geometry



Information Geometry

Parametric probability distributions

Statistical model

6 For every x ∈ X the function

Ξ→ R ϑ 7→ p(x , ϑ)

is smooth. We use the notation

∂ip(x , ϑ) =
∂p(x , ϑ)

∂ϑi
i = 1, . . . ,m.

7 We assume that
∫

X

∂i1 . . . ∂ikp(x , ϑ)d x = ∂i1 . . . ∂ik

∫

X

p(x , ϑ) d x = 0.

8 ∀ϑ ∈ Ξ and ∀x ∈ X : p(x , ϑ) > 0

The statistical model is denoted by (X ,S ,Ξ).
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Parametric probability distributions

Statistical model

Example (Discrete distribution)

X = {0, 1, . . . , n}

Ξ =

{
(ϑ1, . . . , ϑn) ∈ Rn

∣∣∣ ϑi > 0,
n∑

k=1

ϑk < 1

}

p(x , ϑ) =





ϑx if 1 ≤ x ≤ n,

1−
n∑

k=1

ϑk if x = 0.

The space of distributions:

Pn =

{
(p0, p1, . . . , pn) ∈ ]0, 1[n+1 |

n∑

i=0

pi = 1

}
.
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Parametric probability distributions

Statistical model

Example (Normal distribution)

X = R

Ξ = R× R+

p(x , µ, σ) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
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Fisher information

Fisher information matrix

Fisher information matrix

For an n-dimensional statistical model (X , S ,Ξ) the Fisher
information is an n × n matrix for every parameter ϑ ∈ Ξ.

Definition

Assume that (X ,S ,Ξ) is an n dimensional statistical model. For
every point ϑ ∈ Ξ the Fisher information matrix is given by

g (F)(ϑ)ik =

∫

X

1

p(x , ϑ)
(∂ip(x , ϑ))(∂kp(x , ϑ))d x .

The Fisher matrix denoted by g (F)(ϑ).
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Fisher information

Fisher information matrix

We will use the following representations for Fisher matrix.

g (F)(ϑ)ik =

∫

X
p(x , ϑ)(∂i log p(x , ϑ))(∂k log p(x , ϑ))d x

g (F)(ϑ)ik = 4

∫

X
(∂i
√
p(x , ϑ))(∂k

√
p(x , ϑ))d x
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Fisher information

Fisher information matrix

Theorem

Assume that (X ,S ,Ξ) is an n dimensional statistical model. If the
functions (∂ip(·, ϑ))i=1,...,n are linearly independent at a point
ϑ ∈ Ξ then the Fisher matrix g (F)(ϑ) positive definite.

Proof.

For every c ∈ Rn

〈
(c1, . . . , cn), g (F)(ϑ)(c1, . . . , cn)

〉

=

∫

X
p(x , ϑ)

(
n∑

i=1

ci∂i (log p(x , ϑ))

)2

d x ≥ 0.
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Fisher information

Induced statistical models

Induced statistical models

Assume that (X ,B(X ), S ,Ξ) is a statistical model and

f : X → Y x 7→ f (x)

is a surjective map.

Let us define B(Y ) =

{
A ⊆ Y |

−1
f (A) ∈ B(X )

}
.

For every ϑ ∈ Ξ, µϑ is probability measure on X , with density
function pϑ.

Now define µ̃ϑ as

µ̃ϑ(A) = µϑ

(
−1
f (A)

)
∀A ∈ B(Y )

and denote its density function with p̃ϑ.
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Fisher information

Induced statistical models

Define S̃ as {µ̃ϑ|ϑ ∈ Ξ}.

After these steps, we have an induced statistical model

(Y ,B(Y ), S̃ ,Ξ).
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Fisher information

Monotonicity of Fisher matrix

Monotonicity of Fisher matrix

If we measure less precisely we can have less information.

Definition

Assume that (X ,S ,Ξ) is a statistical model and f : X → Y is a
measurable surjective map. Let us define

r(·, ·) : X × Ξ→ R (x , ϑ) 7→ r(x , ϑ) =
p(x , ϑ)

p̃(f (x), ϑ)
.

f sufficient statistic of S , if for every x ∈ X the function

r(x , ·) : Ξ→ R ϑ 7→ r(x , ϑ)

is constant.
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Fisher information

Monotonicity of Fisher matrix

Monotonicity of Fisher matrix

Theorem

Assume that (X ,S ,Ξ) is a statistical model, f : X → Y is a
measurable surjective map and (Y ,Q,Ξ) is the induced statistical
model. For every ϑ ∈ Ξ the Fisher information matrix in S is

g
(F)
S (ϑ) and in Q is g

(F)
Q (ϑ). For every ϑ ∈ Ξ

g
(F)
Q (ϑ) ≤ g

(F)
S (ϑ). (?)

Information loss: ∆g(ϑ) = g
(F)
S (ϑ)− g

(F)
Q (ϑ)

∆gik(ϑ) =

∫

X
p(x , ϑ)

∂ log r(x , ϑ)

∂ϑi

∂ log r(x , ϑ)

∂ϑk
d x

Equality holds in (?) iff f sufficient statistic of S .
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Fisher information

Monotonicity under Markov kernel

Monotonicity under Markov kernel

Definition

Assume that X ⊆ Rn and Y ⊆ Rm are connect open sets. The
map

κ : X × Y → R (x , y) 7→ κ(y |x)

is Markov kernel or transition probability if ∀x ∈ X and ∀y ∈ Y :
κ(y |x) ≥ 0, and ∀x ∈ X :

∫

Y
κ(y |x) d y = 1.
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Fisher information

Monotonicity under Markov kernel

Theorem

Assume that (X ,S ,Ξ) is a statistical model and

κ : X × Y → R (x , y) 7→ κ(y |x)

is a Markov kernel. Define p̃(y , ϑ) =
∫
X κ(y |x)p(x , ϑ) d x , and

denote the set of these distributions by (Y ,Q,Ξ). Then for every
ϑ ∈ Ξ we have

g
(F)
Q (ϑ) ≤ g

(F)
S (ϑ).

The information loss ∆g(ϑ) = g
(F)
S (ϑ)− g

(F)
Q (ϑ) is

∆gik(ϑ) =

∫

X
p(x , ϑ)

∂ log r(x , ϑ)

∂ϑi

∂ log r(x , ϑ)

∂ϑk
d x .
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Fisher information

Cramer-Rao inequality

Cramer-Rao inequality

We consider the problem of estimating unknown parameter.

Assume that a data is randomly generated subject to a probability
distribution which is unknown but is assumed to be in an n
dimensional statistical model.

Assume that (X ,S ,Ξ) is a statistical model. The measurement is
a map X : X → Rm. (m = 1 is the real valued measurement)

After k measurements we estimate the parameter ϑ with an
estimator

ϑ̃ : (Rm)k → Ξ (x1, . . . , xk) 7→ ϑ̃(x1, . . . , xk).
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Fisher information

Cramer-Rao inequality

Assume that we have independent measurements. The expected
value of ϑ̃ with respect to p(k)(x , ϑ) is

Eϑ(ϑ̃) =

∫

X k

p(k)(x , ϑ)ϑ̃(x) d x .

The estimator ϑ̃ is unbiased if for every ϑ ∈ Ξ

Eϑ(ϑ̃) = ϑ.

The variance of the estimator is

Vϑ(ϑ̃)ij = Eϑ
(
(ϑ̃− Eϑ(ϑ̃))i (ϑ̃− Eϑ(ϑ̃))j

)
=

=

∫

X k

p(k)(x , ϑ)(ϑ̃(x)− Eϑ(ϑ̃))i (ϑ̃(x)− Eϑ(ϑ̃))j d x .
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Fisher information

Cramer-Rao inequality

Theorem (Cramer-Rao)

Assume that (X ,S ,Ξ) is a statistical model, k ∈ N+, g (F) is the
Fisher information of (X k ,S (k),Ξ), ϑ̃ is an unbiased estimator of ϑ
and V(ϑ)(ϑ̃) its variance. For every ϑ ∈ Ξ we have

Vϑ(ϑ̃) ≥
(
g (F)(ϑ)

)−1
.
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Fisher information

Cramer-Rao inequality

Example (Cramer-Rao inequality)

Define X = {0, 1}, Ξ = ]0, 1[ and S a set of functions

p : X × Ξ→ R (x , ϑ) 7→

{
1− ϑ if x = 0,

ϑ if x = 1.

Then (X , S ,Ξ) is a statistical model. Assume that we have
independent measurements x1, . . . , xk . Consider the estimator for ϑ

ϑ̃ : X k → Ξ (x1, . . . , xk) 7→ 1

k

k∑

i=1

xi .

ϑ̃ is unbiased

Eϑ(ϑ̃) =
k∑

i=0

(
k

i

)
ϑk−i (1− ϑ)i

k − i

k
= ϑ.
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Fisher information

Cramer-Rao inequality

Example (Cramer-Rao inequality (cont.))

The variance of ϑ̃ is

Vϑ(ϑ̃) =
k∑

i=0

(
k

i

)
ϑk−i (1− ϑ)i

(
k − i

k
− ϑ

)2

=
ϑ(1− ϑ)

k
.

The Fisher information is gS(ϑ) =
1

ϑ(1− ϑ)
for k measurements is

g (F)(ϑ) = kgS(ϑ).
The Cramer–Rao inequality in this setting is

ϑ(1− ϑ)

k
≥ ϑ(1− ϑ)

k
.

So ϑ̃ has the least variance.

Attila Andai Information Geometry



Information Geometry

Fisher information

Entropy and Fisher information

Fisher information of a density function

Consider a density function f : Rn → R and the shift as a
parameter

f̃ : Rn × Rn → R (x , y) 7→ f̃ (x , y) = f (x + y).

The Fisher information of f̃ is

gik(y) =

∫

Rn

1

f̃ (x , y)

∂ f̃ (x , y)

∂yi

∂ f̃ (x , y)

∂yk
d x .

It does not depend on y , reasonable to define

gik =

∫

Rn

1

p(x)

∂p(x)

∂xi

∂p(x)

∂xk
d x

as Fisher information of f .
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Fisher information

Entropy and Fisher information

Entropy

Definition

The entropy of a density function f : X → R

S(f ) = −
∫

X
f (x) log f (x) d x .

(0 log 0 = 0)
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Fisher information

Entropy and Fisher information

Fisher information vs. Entropy

1 Fisher information is for family of distributions and for single
distributions. Entropy is for single distributions.

2 Fisher information is strictly positive, entropy could be any
real number.

3 There is maximum entropy principle and minimum Fisher
information principle.
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Fisher information
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Fisher information

Entropy and Fisher information

Fisher information vs. Entropy
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Fisher information

Entropy and Fisher information

4 The Fisher information of the density function p with single
variable is

g = 4

∫

R

(
d
√
p(x)

d x

)2

d x .

Fisher defined the probability amplitude q(x) =
√
p(x).

He also studied the Lagrange density

L = 4
(
q(x)′

)2

and gave information theoretical background of potential
energy. Fisher studied complex probability amplitudes too and
examined the Lagrange function with kinetic energy term in
the form of

Lm = C∇ψ ×∇ψ∗.
(This was written down half year later in 1926 by Schrödinger
for function ψ.)
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Fisher information

Entropy and Fisher information
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Fisher information

Distance of coins

Distance of coins

What is the distance between coins (p1, 1− p1) and (p2, 1− p2)?

In 1925 Fisher suggested the angle between vectors
(
√
p1,
√

1− p1) and (
√
p2,
√

1− p2) by theoretical arguments.
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Fisher information

Distance of coins
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Fisher information

Distance of coins

The measurement based consideration is the following.
Assume that p1 < p2. If we can have n measurements then the
uncertainty of measurements is the typical fluctuation

∆p =

√
p(1− p)

n
.

The distributions (p1, 1− p1) and (p2, 1− p2) are said to be
distinguishable in n measurements if

|p1 − p2| ≥ ∆p1 + ∆p2.
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Fisher information

Distance of coins

Define k(n, p1, p2) as the number of those probability distributions
(pi , 1− pi ) for which p1 < pi < p2, pi < pi+1 and (pi , 1− pi )
distinguishable in n measurements from (pi+1, 1− pi+1). Let the
distance be between (p1, 1− p1) and (p2, 1− p2)

d(p1, p2) = lim
n→∞

k(n, p1, p2)√
n

.

This gives us for distance d(p1, p2)

p2∫

p1

1√
p(1− p)

d p = arccos
(√

p1p2 +
√

(1− p1)(1− p2)
)
.
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Divergences

General contrast function

General contrast function

Definition

Let (X ,S ,Ξ) be a statistical model. A general contrast function is
a function

D : S × S → R (p, q) 7→ D(p, q)

if ∀p, q ∈ S : D(p, q) ≥ 0 and D(p, q) = 0 iff p = q.

The dual divergence is given as D∗(p, q) = D(q, p).

Let us consider some examples.
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Divergences

General contrast function
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Divergences

General contrast function

Kullback–Liebler DKL(p, q) =

∫

X
p(x) log

p(x)

q(x)
d x

Hellinger DH(p, q) =

∫

X

(√
p(x)−

√
q(x)

)2
d x

χ2 Dχ2(p, q) =

∫

X
p(x)

[(
p(x)

q(x)

)2

− 1

]
d x

α ∈ ]−1, 1[ Dα(p, q) =
4

1− α2

[
1−

∫

X
p(x)

1−α
2 q(x)

1+α
2 d x

]

Harmonic DHa(p, q) = 1−
∫

X

2p(x)q(x)

p(x) + q(x)
d x

Triangle D∆(p, q) =

∫

X

(p(x)− q(x))2

p(x) + q(x)
d x
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Divergences

General contrast function

These distance like functions used in many areas of mathematics
and applications.

For example DKL(p, q):

? is often called the information gain achieved if P is used
instead of Q in the context of machine learning,

? can be constructed as measuring the expected number of
extra bits required to code samples from P using a code
optimized for Q rather than the code optimized for P, in the
context of coding theory.
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Divergences

Csiszár divergence

Csiszár divergence

These quantities can be handled as a special cases of Csiszár
divergence

Definition

Assume that f : R+ → R is a strictly convex function and
f (1) = 0. The Csiszár divergence is

Df (p, q) =

∫

X
p(x)f

(
q(x)

p(x)

)
d x .

For the function f \(u) = uf (u−1) we have

Df (p, q) = Df \(q, p).
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Divergences

Csiszár divergence

α-divergence

If α ∈ R and

fα : R→ R x 7→





4
1−α2

(
1− x

1+α
2

)
if α 6= ±1

x log x if α = 1

− log x if α = −1

then Df−1 = DKL, Df0 = 2DH and in the α 6= ±1 case Dfα = Dα.
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Divergences

Csiszár divergence

The Csiszár divergence Df is monotone and jointly convex.

Theorem

For probability functions p, q : X → R and Markov kernel
κ : X × Y → R define p̃(y) =

∫
X κ(y |x)p(x) d x and

q̃(y) =
∫
X κ(y |x)q(x) d x . For the Csiszár divergences we have

Df (p̃, q̃) ≤ Df (p, q).

Theorem

For density functions p1, p2, q1, q2 : X → R and parameter
0 ≤ λ1 ≤ 1, λ2 = 1− λ1

Df (λ1p1 + λ2p2, λ1q1 + λ2q2)≤λ1Df (p1, q1) + λ2Df (p2, q2)

holds.

Attila Andai Information Geometry



Information Geometry

Divergences

Csiszár divergence
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Divergences

Contrast function

A general contrast function D (in some cases) has series
expansion. From now assume that for every ϑ ∈ Ξ the function
y 7→ D(p(x , ϑ+ y), p(x , ϑ)) has series expansion with respect to y .

D(p(x , ϑ+y), p(x , ϑ)) =
n∑

i ,k=1

g
(D)
ik (p)

yiyk
2

+
n∑

i ,j ,k=1

h
(D)
ijk

yiyjyk
6

+o(‖y‖3)

Definition

We call D to divergence or contrast function if for every ϑ ∈ Ξ the
function D(p(x , ϑ+ y), p(x , ϑ)) has series expansion with respect

to y and second order term g
(D)
ik is positive definite.
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Divergences

Contrast function

Theorem

We have the following equalities for the series expansion of
divergences.

g (DKL) = g (F) g (DH) =
1

2
g (F) g (Dχ2 ) = 2g (F)

g (Dα) = g (F) g (DB) =
1

4
g (F) g (DHa) =

1

2
g (F)

g (DJ) = 2g (F) g (D∆) = g (F) g (DLW) =
1

4
g (F)

g (Df ) = f ′′(1)g (F)
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Differential geometry

Riemannian metric

Differential geometry, Riemannian metric

Definition

(M,A) is an n dimensional manifold if

1 M is a Hausdorff topological space with countable base,

2 A is countable and its elements are homeomorphisms
φi : Ui → Vi , where Ui ⊆ M and Vi ⊆ Rn are open sets,

3 for every pair of functions φi , φj ∈ A the map

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi (Ui ∩ Uj)

is in C∞,

4 every x ∈ M point is contained in some Ui .
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Riemannian metric

Assume that M is an n dimensional manifold and p ∈ M.

Denote by Fp the set of smooth functions defined in a
neighbourhood of p.

A derivation is a map
D : Fp → R

such that for every a, b ∈ R and functions f , g ∈ F

D(af + bg) = aD(f ) + bD(g) D(fg) = f (p)D(g) + D(f )g(p)

holds.
The set of derivations denoted by TpM and called tangent space.
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Riemannian metric

The tangent bundle is TM =
⋃

p∈M
{p} × TpM.

A vector field is a map

X : M →
⋃

p∈M
TpM p 7→ X (p)

if

1 for every p ∈ M: X (p) ∈ TpM,

2 for every p ∈ M and f ∈ Fp the function

Xf : Dom(X ) ∩Dom(f )→ R p 7→ X (p)f

is smooth.

The set of vector fields is denoted by X (M).
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Riemannian metric

Definition

A map

g : M →
⋃

p∈M
Lin(TpM × TpM,R)

is Riemannian metric if

1 for every p ∈ M the map gp : TpM × TpM → R is a scalar
product,

2 for every vector field X ∈ X (M) the function

g(X ,X ) : M → R p 7→ gp(Xp,Xp)

is smooth.

The pair (M, g) is called Riemannian geometry or Riemannian
manifold.
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Riemannian metric

Assume that p ∈ M and ϕ : U → Rn is a local coordinate system
around p. For every f ∈ Fp define (i = 1, . . . , n)

∂i f =
∂(f ◦ ϕ−1)

∂xi
(ϕ(p)).

We consider (∂1, . . . , ∂n) as a basis of TpM. The Riemannian
metric in this coordinate system can be described with the

gij = g(∂i , ∂j).

matrix.
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Covariant derivative

The map

∇ : X (M)×X (M)→ X (M) (X ,Y ) 7→ ∇XY

is a covariant derivative if

1 for every vector field X ,Y ,Z ∈ X (M)

∇X+YZ = ∇XZ +∇YZ , ∇X (Y + Z ) = ∇XY +∇XZ

2 for every vector field X ,Y ∈ X (M) and function f ∈ F(M)

∇fXY = f∇XY , ∇X (fY ) = (Xf )Y + f∇XY .
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Covariant derivative

Assume that p ∈ M and ϕ : U → Rn is a local coordinate system
around p. The covariant derivative can be described by Christoffel
symbol of the first kind

Γijk = g(∇∂i∂j , ∂k)

and by Christoffel symbol of the second kind

Γ..kij ∂k = ∇∂i∂j .
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Levi-Civita covariant derivative

The pair (M,∇) is called to be an affine manifold.
The affine manifold (M,∇) called torsion free if Γ..kij = Γ..kji holds in
every local coordinate system.
The covariant derivative ∇ on a (M, g) Riemannian manifold
called Riemannian covariant derivative if for every vector field
X ,Y ,Z ∈ X (M)

Xg(Y ,Z ) = g(∇XY ,Z ) + g(Y ,∇XZ ).

The covariant derivative ∇ on a (M, g) Riemannian manifold
called Levi-Civita covariant derivative if torsion free Riemannian
covariant derivative.
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Levi-Civita covariant derivative

Theorem

For every (M, g) Riemannian manifold there exists a unique
Levi–Civita covariant derivative ∇, which can be expressed as

Γ..mij = gkm 1

2
(∂igjk + ∂jgik − ∂kgij).

in local coordinate systems.
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Curvature

Curvature

Definition

For an affine manifold (M,∇) define the curvature as

R : X (M)×X (M)×X (M)→ X (M) (X ,Y ,Z ) 7→ R(X ,Y )Z

R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z .

The affine manifold (M,∇) is flat if R = 0.

Attila Andai Information Geometry



Information Geometry

Differential geometry

Curvature

In a local coordinate system the curvature tensor can be handled
by the

R(∂i , ∂j)∂k = R ...lijk ∂l ,

g(R(∂i , ∂j)∂k , ∂l) = Rijkl

quantities.

The curvature tensor has symmetries

Rijkl = −Rjikl , Rijkl = −Rijlk , Rijkl = Rklij .

One can compute the curvature tensor as

R ...lijk = ∂iΓ
..l
jk − ∂jΓ..lik + Γ..mjk Γ..lim − Γ..mik Γ..ljm.
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Curvature

Definition

For an (M,∇) affine manifold with curvature R the function

Ric : X (M)×X (M)→ F(M) (X ,Y ) 7→ Tr
(
Z 7→ R(Z ,X )Y

)

is called Ricci curvature.

In local coordinate system the matrix

Ricij = Ric(∂i , ∂j)

can be computed as
Ricjk = R ...iijk .
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Length and volume

Length and volume

Assume that (M, g) is a Riemannian manifold and γ : ]a, b[→ M
is a smooth curve. The length of the curve defined as

lγ(a, b) =

∫ b

a

√
g(γ̇(t), γ̇(t)) d t.

The volume of the set U ⊆ Dom(φ)

V (U) =

∫

φ(U)

√
det g .
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Geodesic line

Geodesic line

A smooth curve γ : ]a, b[→ M is called to be a geodesic line if in
local coordinate systems

d2 γk

d t2
+

dimM∑

i ,j=1

(Γ..kij ◦ γ)
d γ i

d t

d γj

d t
= 0

holds.
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Information geometry basics

Consider a statistical model (X , S ,Ξ).

The manifold M = Ξ, open connected subset of Rn.

The Riemannian metric g = g (F) is the Fisher information.

We can compute the Levi–Civita covariant derivative or define new
ones.
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Information geometry basics

Consider a statistical model (X , S ,Ξ).

The manifold M = Ξ, open connected subset of Rn.

The Riemannian metric g = g (F) is the Fisher information.

We can compute the Levi–Civita covariant derivative or define new
ones.
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Information geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.

In 1979, Ruppeiner claimed that thermodynamic systems can be
represented by Riemannian geometry, and that statistical
properties can be derived from the model. (For example he found
connection between the behaviour of correlation functions and
curvature at second order phase transitions.)

In 1999, Brody and Ritz studied the curvature of statistical model
of Ising chains.
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Information geometry basics

In 1945, Rao suggested to consider the Fisher information as
Riemannian metric.

In 1975, Efron studied first the curvature of statistical manifolds.

In 1979, Ruppeiner claimed that thermodynamic systems can be
represented by Riemannian geometry, and that statistical
properties can be derived from the model. (For example he found
connection between the behaviour of correlation functions and
curvature at second order phase transitions.)

In 1999, Brody and Ritz studied the curvature of statistical model
of Ising chains.
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Alpha covariant derivatives

Definition

Consider the Pn set. For every −1 ≤ α ≤ 1 define

Γ
(α)
ijk =

n∑

l=0

p(l , ϑ)
(
∂i∂j(log p(l , ϑ))

+
1− α

2
(∂i log p(l , ϑ))(∂j log p(l , ϑ))(∂k log p(l , ϑ))

)
,

which is called α-covariant derivative.

Theorem

The 0-covariant derivative is Levi-Civita covariant derivative.
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Examples

Example (Geodesic line in P1)

In the space (P1,∇) γ is geodesic line iff

d2 γ(t)

d t2
− (1− 2γ(t))

2γ(t)(1− γ(t))

(
d γ(t)

d t

)2

= 0.

The solution (with initial values γ(0) = a and γ̇(0) = b) is

γ(t) = cos2

(
bt

2
√
a
√

1− a
+ arccos

√
a

)
.
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Examples

Example (Normal distribution)

Let us define the base set X = R, the parameter space
Ξ = R× R+ and the elements of S as

p(x , µ, σ) =
1√
πσ

exp

(
−(x − µ)2

σ2

)
, (µ, σ) ∈ Ξ.

Using the coordinate system (µ, σ) the Fisher information of the
statistical model (X ,S ,Ξ) is

(g
(F)
ik ) =

(
2
σ2 0
0 2

σ2

)
.

The pair (Ξ, g (F)) is special Riemannian geometry, called
hyperbolic plane.
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Examples

Example (Normal distribution cont.)

The geodesic curves are those semicircles whose centre lies on the
axis µ and the µ = constant half lines.
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Examples

Example (Normal distribution cont.)

Consider the distributions given by parameters (µ1, σ1) and
(µ2, σ2) (µ1 ≤ µ2), where µ1 ≤ µ2. If µ1 < µ2 then define the
parameters

R =

√(
µ2 − µ1

2

)2

+
σ2

1 + σ2
2

2
+

(
σ2

2 − σ2
1

2(µ2 − µ1)

)2

,

C =
µ1 + µ2

2
+

σ2
2 − σ2

1

2(µ2 − µ1)
.

The geodesic curve connecting the points (µ1, σ1) and (µ2, σ2) is
the (µ− C )2 + σ2 = R2 semicircle (σ > 0).
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Examples

Example

Normal distribution cont. The geodesic distance between the
points is the following.

1 If (µ1 − µ2)2 ≤
∣∣σ2

2 − σ2
1

∣∣ then

d
(

(µ1, σ1), (µ2, σ2)
)

=
√

2

∣∣∣∣arch
R

σ1
− arch

R

σ2

∣∣∣∣ .

2 If (µ1 − µ2)2 ≥ |σ2
1 − σ2

2| then

d
(

(µ1, σ1), (µ2, σ2)
)

=
√

2

(
arch

R

σ1
+ arch

R

σ2

)
.

3 If µ1 = µ2 then d
(

(µ1, σ1), (µ2, σ2)
)

=
√

2

∣∣∣∣log
σ1

σ2

∣∣∣∣.
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Pull-back metric

Assume that ϕ : M → N is a smooth map between differentiable
manifolds.
For every p ∈ M we have maps

ϕ1 : FN
ϕ(p) → F

M
p f 7→ f ◦ ϕ

and
ϕ∗ : TpM → Tϕ(p)N v 7→ v ◦ ϕ1.

Definition

If (N, g) is a Riemannian manifold then we can define the
pull-back metric on M as

gM
p (x , y) = gN

ϕ(p)(ϕ∗(x), ϕ∗(y)).

Attila Andai Information Geometry



Information Geometry

Differential geometry

Pull-back metric

Theorem

The pull back metric of the euclidean metric by the map

Pn → Rn+1 (p1, . . . , pn) 7→



√√√√1−

n∑

k=1

pk ,
√
p1, . . . ,

√
pn




is the Fisher metric.

Theorem

The volume of the space Pn equals to the surface of the n + 1
dimensional ball divided by 2n+1, that is

V (Pn) =
π(n+1)/2

2nΓ
(
n+1

2

) .
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Uniqueness of Fisher metric

Theorem

Let us define Xn = {0, 1, . . . , n} (n ∈ N+). Assume than for every
n a Riemannian metric gn is given on Pn. For a κ : Xn × Xm → R
transition probability denote by κ̃ : Pn → Pm. If for every
transition probability κ : Xn × Xm → R for every point p ∈ Pn for
every tangent vector X ∈ TpPn

gκ(p)(κ̃∗(X ), κ̃∗(X )) ≤ gp(X ,X )

holds then there exists a unique positive number c such that for

every n ∈ N+ gn = cg
(F)
n .
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Duality on Riemannian manifolds

Definition

For an (M, g) Riemannian geometry the covariant derivatives ∇
and ∇∗ are called dual covariant derivatives if for every vector field
X ,Y ,Z ∈ X (M)

Zg(X ,Y ) = g(∇ZX ,Y ) + g(X ,∇∗ZY )

holds. We call (M, g ,∇,∇∗) dual Riemannian geometry.
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Duality on Riemannian manifolds

Theorem

Consider a statistical model (X , S ,Ξ) with Fisher metric g . For all
α ∈ [−1, 1] the covariant derivatives ∇(α) and ∇(−α) are torsion
free and dual.

Theorem

Assume that (M, g ,∇,∇∗) torsion free dual geometry with
curvatures R and R∗. In this case R = 0 iff R∗ = 0.

In this case we call (M, g ,∇,∇∗) flat dual Riemannian geometry.
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From divergence to duality

Assume that M is an n dimensional manifold, D : M ×M → R is a
divergence, ϑ ∈ M, φ is a local coordinate system in a
neighbourhood of p. Consider the function

D(ϑ,φ) : Rn → R y 7→ D(ϑ, φ−1(φ(ϑ) + y))

and its series expansion

D(ϑ,φ)(y) =
1

2

n∑

i ,k=1

g
(D)
ik (ϑ)yiyk +

1

6

n∑

i ,j ,k=1

h
(D)
ijk (ϑ)yiyjyk + o(‖y‖3).

At every point ϑ ∈ M the matrix g (D)(ϑ) is positive definite, so
(M, g (D)) is Riemannian geometry. From the third order term
define

Γ
(D)
ijk = h

(D)
ijk − ∂kg

(D)
ij i , j , k ∈ {1, 2, . . . , n} .
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Theorem (From divergence to duality)

Assume that M is an n dimensional manifold, D is a divergence on

M and we have the induced quantities g (D), Γ
(D)
ijk and Γ

(D∗)
ijk . In this

case Γ
(D)
ijk and Γ

(D∗)
ijk can be considered as a Christoffel symbols of

the first kind of torsion free covariant derivatives ∇(D) and ∇(D∗).
Moreover (M, g ,∇(D),∇(D∗)) is a torsion free dual geometry.

Theorem

If (M, g ,∇,∇∗) is a torsion free dual geometry then there exists a
D divergence which induces the same duality.
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From duality to divergence

Definition

If (M,∇) is an affine manifold, x ∈ M and φ and ϑ are local
coordinate systems of a neighbourhood of x . We call φ to affine
coordinate system if for all 1 ≤ i , j ≤ dimM

∇∂i∂j = 0

holds and we call φ and ϑ dual coordinate systems if

g(x)(∂
(ϑ)
i , ∂

(η)
j ) = δij .
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Theorem (From duality to divergence)

Assume that (M, g ,∇,∇∗) is a flat dual n dimensional geometry.
Then every point x ∈ M has a neighbourhood U ⊆ M with dual
coordinate systems ϑ and η. Assume that U = M.

1 In this case there exists a function ψ : M → R such that for
every 1 ≤ i ≤ n

∂
(ϑ)
i ψ = ηi .

2 For the function

φ : M → R x 7→ φ(x) =
n∑

i=1

ϑi (x)ηi (x)− ψ(x)

we have
∂

(η)
i φ = ϑi 1 ≤ i ≤ n.
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Theorem (From duality to divergence cont.)

3 For every indices 1 ≤ i , j ≤ n

g(∂
(ϑ)
i , ∂

(ϑ)
j ) = ∂

(ϑ)
i ∂

(ϑ)
j ψ g(∂

(η)
i , ∂

(η)
j ) = ∂

(η)
i ∂

(η)
j φ.

4 The functions ψ, φ has extrema for every x ∈ M

φ(x) = max
y∈M

(
n∑

i=1

ϑi (y)ηi (x)− ψ(y)

)

ψ(x) = max
y∈M

(
n∑

i=1

ϑi (x)ηi (y)− φ(y)

)
.
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Theorem (From duality to divergence cont.)

5 The functions φ and ψ are strictly convex functions of
(η1, . . . , ηn) and (ϑ1, . . . , ϑn) respectively.

6 We have a canonical divergence D : M ×M → R

D(g ,∇)(p, q) = ψ(p) + φ(q)−
n∑

i=1

ϑi (p)ηi (q).
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Example (Duality for discrete distribution)

Base space is X = {0, 1, . . . , n} and the parameter space is
Ξ =

{
(p1, . . . , pn) ∈ (R+)

n |
∑n

k=1 pk < 1
}

. The Fisher metric is
g .
The covariant derivatives ∇(−1) and ∇(1) are torsion free and
(Ξ, g ,∇(1),∇(−1)) is flat dual geometry.

Let us define the following coordinate systems

η : Ξ→ Rn p 7→ η(p) = (p1, . . . , pn)

ϑ : Ξ→ Rn p 7→ ϑ(p) =

(
log

p1

p0
, . . . , log

pn
p0

)
,

where p0 = 1−
n∑

k=1

pk .
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Example (Duality for discrete distribution cont.)

The coordinate systems η and ϑ are affine for (Ξ,∇(−1)) and
(Ξ,∇(1)).
(∇(1) called exponential covariant derivative and ∇(−1) called
mixture covariant derivative.)
If we use the potential function

ψ : Ξ→ R p 7→ − log p0

then we have
∂

(ϑ)
i ψ(p) = ηi
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Example (Duality for discrete distribution cont.)

The function φ is the following

φ(p) =
n∑

i=0

pi log pi = −S(p).

The canonical divergence of the (Ξ, g ,∇(1),∇(−1)) flat dual
geometry is

D(g ,∇)(p, q) = ψ(p) + φ(q)−
n∑

i=1

ϑi (p)ηi (q)

=
n∑

i=0

qi log
qi
pi

= DKL(q, p).
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Pythagorean theorem

Theorem

Assume that (M, g ,∇,∇∗) is a flat dual geometry, a, b, c ∈ M, γ1

is a ∇ geodesic curve connecting a and b, γ2 is a ∇∗ geodesic
curve connecting b and c such that g(b)(γ̇1(b), γ̇2(b)) = 0. Then

D(g ,∇)(a, c) = D(g ,∇)(a, b) + D(g ,∇)(b, c).
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Pythagorean theorem
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Projection theorem

Theorem

Assume that (M, g ,∇,∇∗) is a flat dual geometry, N is a
submanifold of M and x ∈ M \ N. The point y ∈ N is a critical
point of the function

N → R y 7→ D(g ,∇)(x , y)

iff the geodesic line between x and y is perpendicular to N.
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Quantum mechanical setting

Quantum mechanical setting

In quantum setting we use n dimensional Hilbert space.

A self-adjoint, positive semidefinite trace one operator: state.

The set of states is called to be state space.

The interior of the state space is denoted by M+
n .

The extremal points of the state space: pure states.

A self-adjoint operator is called observable.

The expected value of an observable A in a state D is Tr(DA).
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Quantum mechanical setting

Example (2 dimensional Hilbert space (qubit))

Every state D ∈M2 can be uniquely written in the form of

D =
1

2

(
1 + z x + i y
x − i y 1− z

)
. (??)

For states we have
x2 + y2 + z2 ≤ 1

and for parameters (x , y , z) ∈ R3 equation (??) defines a state iff
x2 + y2 + z2 ≤ 1.
Therefore the state space of a two dimensional quantum system
can be identified with the closed unit ball in R3.
(x , y , z) are called to be Stokes parameters.
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Entropy

Entropy

The entropy of a state D can be defined as in the classical case

S(D) = −TrD logD,

called Neumann entropy.
The entropy is a concave function.

Theorem

For every state D1,D2 ∈M+
n and parameter λ ∈ [0, 1]

λS(D1) + (1− λ)S(D2) ≤ S(λD1 + (1− λ)D2).
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Riemannian metric on state space

We will refer to M+
n as open convex subset of Rk with its

canonical coordinate system. At a given point D0 ∈M+
n we

identify the tangent space with n × n self-adjoint trace zero
operators Mn. For a given smooth function f :M+

n → R at a
state D0 ∈M+

n the effect of the tangent vector X ∈Mn is

(Xf )(D0) =
d f (D0 + tX )

d t

∣∣∣∣
t=0

.

We denote by TDM+
n the tangent space of M+

n at a point
D ∈M+

n .
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Riemannian metric on state space

We can define Riemannian metrics on M+
n , for example

KD(X ,Y ) = TrDXY D ∈M+
n X ,Y ∈ TMM+

n

is a Riemannian metric.

Problems with Fisher metric:
How to generalise equations like below?

g (F)(ϑ)ik =

∫

X
p(x , ϑ)(∂i log p(x , ϑ))(∂k log p(x , ϑ)) d x

g (F)(ϑ)ik = 4

∫

X
(∂i
√
p(x , ϑ))(∂k

√
p(x , ϑ)) d x
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Introduction to noncommutative information geometry

Riemannian metric on state space

There was the concepts of left and right logarithmic derivative

dDϑ
dϑ

= Dϑ × Lr ,ϑ
dDϑ
dϑ

= Ll ,ϑ × Dϑ.

The second derivative of the entropy generates a Riemannian
metric too.

The pull back of the euclidean metric by

M+
n → Rk D 7→

√
D

defines Riemannian metric too.
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Extending some classical concept to quantum setting

Extending some classical concept to quantum setting

Let us denote by Mn the space of n × n matrices and by Mm(Mn)
those m ×m matrices whose elements are n × n matrices.

Definition

A linear map T : Mn → Mm is called positive if maps every
positive operator to a positive operator.
A linear map T : Mn → Mm is called completely positive if for
every k ∈ N the operator

T (k) : Mk(Mn)→ Mk(Mm) [Aij ] 7→ T (k)
(
[Aij ]

)
= [T (Aij)]

is positive.
We call a linear map T : Mn → Mm is called to be a stochastic
map if completely positive and trace preserving.
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Preparations for Petz theorem

Extending some classical concept to quantum setting

Theorem

A linear map T : Mn → Mm is completely positive iff there exist
operators Vi : Mm → Mn such that

T (A) =
N∑

i=1

ViAV
∗
i ∀A ∈ Mn.

The map T is trace preserving iff
N∑

i=1

ViV
∗
i = I.
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Preparations for Petz theorem

Extending some classical concept to quantum setting

Definition

Consider the family of Riemannian manifolds (M+
n ,K

(n))n∈N. If
for every n,m ∈ N, stochastic map T : Mn → Mm, state D ∈M+

n

and tangent vector X ∈Mn

K
(m)
T (D)(T (X ),T (X )) ≤ K

(n)
D (X ,X )

holds then we call (M+
n ,K

(n))n∈N a family of monotone metrics.
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Preparations for Petz theorem

Extending some classical concept to quantum setting

Consider a function f : R→ R and a self-adjoint matrix X .
How to compute f (X ):
– X ∈M+

n can be diagonalized by some unitary matrix U, that is
X = UDU∗.

f (X ) := Uf (D)U∗

– X can be written as X =
n∑

i=1

λiEi , where (λi )i=1,...,n are the

eigenvalues and (Ei )i=1,...,n are the corresponding projections

f (X ) =
n∑

i=1

f (λi )Ei .

Definition

A function f : R→ R called operator monotone if for every n ∈ N
and self-adjoint matrices A,B ∈ Mn from A ≤ B follows
f (A) ≤ f (B).
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Preparations for Petz theorem

Extending some classical concept to quantum setting

Denote by Lin(Mn) the set of linear A : Mn → Mn maps and
define the Hilbert-Schmidt scalar product

〈·, ·〉 : Lin(Mn)× Lin(Mn)→ C (A,B) 7→ TrA∗B.

For D ∈ Mn define the left and the right multiplication operators

Ln,D(A) = DA Rn,D(A) = AD.

If D ∈M+
n then Ln,D and Rn,D are self-adjoint operator.

〈Ln,DA,B〉 = 〈DA,B〉 = Tr(DA)∗B = TrA∗D∗B =

= TrA∗DB = 〈A,DB〉 = 〈A, Ln,DB〉

〈Rn,DA,B〉 = 〈AD,B〉 = Tr(AD)∗B = TrD∗A∗B =

= TrA∗BD = 〈A,BD〉 = 〈A,Rn,DB〉
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Means

Basic property of means

Basic property of means

What is a mean?
A function M : R+×R+ → R+ is a mean if (∀x , y , x0, y0, t ∈ R+)

M(x , x) = x f (1) = 1

M(x , y) = M(y , x) f (t) = tf (t−1)

x < y ⇒ x < M(x , y) < y f (·> 1) > 1, f (0 < ·< 1) < 1

x < x0, y < y0 ⇒ M(x , y) < M(x0, y0) f increasing

M(x , y) is continuous f continuous

M(tx , ty) = tM(x , y)

M(x , y) = xf
(y
x

)
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Basic property of means

We have

means =



f ∈ C (R+,R+)

∣∣∣
f increasing
f (1) = 1

∀t ∈ R+ : f (t) = tf (t−1)





M(x , y) = xf
(y
x

)

arithmetic mean: f (t) =
1 + t

2
geometric mean: f (t) =

√
t

logarithmic mean: f (t) =
t − 1

log t
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Means of matrices

Means of matrices

Define means on n × n, positive definite matrices M+
n :

X ∈M+
n ⇐⇒ X = X ∗,

{
〈v ,Xv〉 > 0 ∀v ∈ Cn \ {0}
every eigenvalue of X is positive

We write X ≤ Y if Y − X ∈M+
n .
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Means of matrices

M is a mean of matrices if for every X ,Y ∈M+
n

– X ≤ X0, Y ≤ Y0 : M(X ,Y ) ≤ M(X0,Y0)
– (Xn)n∈N and (Yn)n∈N are decreasing sequences (Xn+1 ≤ Xn,
Yn+1 ≤ Yn) in M+

n with limits X and Y then M(Xn,Yn) is
decreasing and

lim
n→∞

M(Xn,Yn) = M(X ,Y )

– T ∗M(X ,Y )T ≤ M(T ∗XT ,T ∗YT ) for all T
– M(X ,X ) = X

Theorem (Kubo-Ando)

If M is a matrix mean, then there exists an operator monotone
function f with properties f (t) = tf (t−1) and f (1) = 1 such that
for every X ,Y ∈M+

n

M(X ,Y ) = X 1/2f (X−1/2YX−1/2)X 1/2.
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Looking for monotone metrics

Looking for monotone metrics:

monotonicity:

gT (D)(T (X ),T (X )) ≤ gD(X ,X ) ∀D ∈Mn,∀X ∈ TpMn ,

gD(X ,Y ) =
〈
X , J−1

D (Y )
〉

= Tr(XJ−1
D (Y )), where

JD : Mat(n,C)→ Mat(n,C) linear map.

gT (D)(T (X ),T (X )) =
〈
T (X ), J−1

T (D)(T (X ))
〉

gT (D)(T (X ),T (X )) =
〈
X ,T ∗J−1

T (D)T (X )
〉

gD(X ,X ) =
〈
X , J−1

D (X )
〉

=
〈
X ,T ∗J−1

D T (X )
〉

monotonicity: T ∗J−1
T (D)T ≤ J−1

D

TJDT
∗ ≤ JT (D)
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What can JD(X ) be?

”D can act on left ϕ1(D)X and on the right Xϕ1(D)”
in general ϕ1(D)Xϕ2(D) gives the idea:

JD(X ) = M(LD ,RD)(X ).

Where LD(X ) = DX and RD(X ) = XD.
We have M(LD ,RD) = M(RD , LD)
and the monotonicity

TJDT
∗ ≤ JT (D)

gives
TM(LD ,RD)T ∗ ≤ M(TLDT

∗,TRDT
∗).

M is a mean!
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A variant of Petz theorem

Theorem (Petz)

Assume that for every n ∈ N the pair (Mn, gn) is a
Riemannian-manifold. If for every stochastic map T the
monotonicity

gT (D)(T (X ),T (X )) ≤ gD(X ,X ) ∀D ∈Mn,∀X ∈ TpMn,

holds then there exists an operator monotone function f : R+ → R
with the property f (x) = xf (x−1), such that

gD(X ,Y ) = Tr

(
X
(
R

1
2
n,D f (Ln,DR

−1
n,D)R

1
2
n,D

)−1
(Y )

)
.
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Petz theorem

A variant of Petz theorem

Classical case:

Pn =

{
(p1, . . . , pn)

∣∣∣∣∣ 0 < pi < 1,
n∑

i=1

pi = 1

}
.

Theorem (Cencov) Assume that for every n ∈ N
(Pn, gn) is a Riemannian manifold. If for every
transition probability κ : Xn × Xm → R

gκ̃(p)(κ∗(X ), κ∗(X )) ≤ gp(X ,X ) ∀p ∈ ∆n−1, ∀X ∈ Tp∆n−1 ,

(monotonicity) holds, then the family of metrics (gn)n∈N unique
up to a positive factor. given by the equation

gD(X ,Y ) = Tr

(
X
(
R

1
2
n,D f (Ln,DR

−1
n,D)R

1
2
n,D

)−1
(Y )

)
,

where f : R+ → R+ is an operator monotone function such that
f (x) = xf (x−1) (∀x ∈ R+).
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A variant of Petz theorem

Definition

Consider the Riemannian manifold (M+
n ,K

(n)). The metric K (n) is
called monotone metric if there exists an operator monotone
function f : R+ → R such that for every positive number x
f (x) = xf (x−1) and K (n) is generated by f .

gD(X ,Y ) = Tr

(
X

(
R

1
2
n,D f (Ln,DR

−1
n,D)R

1
2
n,D

)−1

(Y )

)
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Properties of operator monotone functions

Properties of operator monotone functions

Definition

Assume that f : R+
0 → R is an operator monotone function.

f \(x) = xf (x−1) is called to transpose of f ,
f ⊥(x) = x

f (x) is called to dual of f .

f is symmetric if f = f \

f is normalized if f (1) = 1.

Theorem

If f : R+
0 → R is symmetric operator monotone, then its dual is

symmetric and operator monotone too.
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Representation theorems for operator monotone functions

Representations of operator monotone functions

Denote by FR+
0

the set of operator monotone functions defined on

R+
0 and by F (S,n)

R+
0

the symmetric normalized ones.

Denote by GI the set of positive Radon-measures on the interval
I ⊆ R.

A measure µ ∈ GI is said to be normalized if µ(I ) = 1.

Denote by G(n)
I the set of normalized measures.
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Representation theorems for operator monotone functions

Theorem (Löwner)

There is a bijective correspondence

φ : GR+
0
→ FR+

0
µ 7→ fµ

fµ(x) =

∫ ∞

0

x(1 + t)

x + t
dµ(t).
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Representation theorems for operator monotone functions

Theorem

There is a bijective correspondence

φ : G[0,1] → FR+
0

µ 7→ fµ

fµ(x) =

∫ 1

0

x

(1− t)x + t
dµ(t).

The function fµ is symmetric iff µ([0, s]) = µ([1− s, 1]) holds for
every 0 ≤ s ≤ 1.
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Cencov-Morozova function

Cencov-Morozova function

Definition

The function c :
(
R+

0

)2 → R is called Cencov–Morozova function
if there exists an f ∈ FR+

0
such that for every positive x , y

c(x , y) =
1

yf
(
x
y

) .
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Cencov-Morozova function

If f : R+ → R+ is operator monotone then it is smooth, moreover
it can be extended to a horizontal in the complex plane around the
positive real axes.
So if f is operator monotone then for every ρ ∈ R we have

f (ρ) =
1

2π i

∮

Γ
f (ξ)(ξ − ρ)−1 d ξ

by Cauchy integral formula, where Γ is a smooth closed curve
around ρ with counter-clockwise orientation.
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Riesz–Dunford operator calculus

The Riesz–Dunford operator calculus states that this can be done
for operators too. If A is a self-adjoint operator then

f (A) =
1

2π i

∮

Γ
f (ξ)(ξ I−A)−1 d ξ,

where the interior of Γ contains all the eigenvalues of A.

Im

Re
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Petz theorem with Cencov-Morozova functions

We have seen that for a state D ∈M+
n the multiplications Ln,D

and Rn,D are self-adjoint operators, so we have

f (Ln,D) =
1

2π i

∮

Γ
f (ξ)(ξ I−Ln,D)−1 d ξ

f (Rn,D) =
1

2π i

∮

Γ
f (ξ)(ξ I−Rn,D)−1 d ξ.

This leads us to

f (Ln,D)(X ) =
1

2π i

∮

Γ
f (ξ)(ξ I−D)−1X d ξ

f (Rn,D)(X ) =
1

2π i

∮

Γ
f (ξ)X (ξ I−D)−1 d ξ.
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Petz theorem with Cencov-Morozova functions

These expressions can be extended to multivariate case, such as

c(Ln,D ,Rn,D)=
1

(2π i)2

∮∮
c(ξ, η)(ξ I−Ln,D)−1(η I−Rn,D)−1 d ξ d η,

which effect can be computed as

c(Ln,D ,Rn,D)(X )=
1

(2π i)2

∮∮
c(ξ, η)(ξ I−D)−1X (η I−D)−1 d ξ d η.
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Petz theorem with Cencov-Morozova functions

Theorem

If K (n) is a monotone metric on M+
n generated by an operator

monotone function f then for every state D ∈M+
n and tangent

vector X ,Y ∈ TDM+
n we have

K
(n)
D (X ,Y ) = Tr

1

(2π i)2

∮∮
c(ξ, η)X (ξ I−D)−1Y (η I−D)−1 d ξ d η.
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Examples for monotone metrics

Examples for functions in F (S,n)

R+
0

.

fSM(x) =
1 + x

2
fLA(x) =

2x

1 + x
fKM(x) =

x − 1

log x

fP1(x) =
2xα+1/2

1 + x2α
0 ≤ α ≤ 1/2

fP2(x) =
β(1− β)(x − 1)2

(xβ − 1)(x1−β − 1)
β ∈ [−1, 2] \ {0, 1} ,

WYD(x) =
1− α2

4

(x − 1)2

(1− x
1−α

2 )(1− x
1+α

2 )
α ∈ [−3, 3] \ {−1, 1}

fWY(x) =
1

4
(
√
x + 1)2

fP3(x) =

(
1 + x

1
ν

2

)ν
ν ∈ [1, 2]
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Explicit expression for operator monotone metrics

Consider the matrix units Eij ((Eij)ab = δiaδjb) and matrices
Fij = Eij + Eji and Hij = iEij − iEji . (These form a basis of the
tangent space.)

Theorem

If the monotone metric K (n),f on M+
n is generated by f then at a

state D ∈M+
n in the form of D =

n∑

k=1

λkEkk we have

1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n :




GD(Hij ,Hkl) = δikδjl2c(λi , λj)
GD(Fij ,Fkl) = δikδjl2c(λi , λj)
GD(Hij ,Fkl) = 0,

1 ≤ i < j ≤ n, 1 ≤ k ≤ n : GD(Hij ,Fkk) = G (Fij ,Fkk) = 0,

1 ≤ i ≤ n, 1 ≤ k ≤ n : GD(Fii ,Fkk) = δik4c(λi , λi ).

Attila Andai Information Geometry



Information Geometry

Computing monotone metrics

Examples

Example (Smallest metric)

The metric K
(n)
SM generated by the function fSM(x) = 1+x

2 is called

smallest metric since fSM(x) is maximal among functions in F (S,n)

R+
0

with respect to the pointwise order

f ≤
[0,1]

g ⇐⇒ f (x) ≤ g(x) ∀x ∈ [0, 1] .

The corresponding Chencov-Morozova function is

cSM(x , y) =
2

x + y
.
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Computing monotone metrics

Examples

Example (Smallest metric cont.)

The inner product of vectors X ,Y can be written in the form of

K
(n)
SM,D(X ,Y ) = TrXZ ,

where Z is the solution of the equation

DZ + ZD = 2Y .

The geodesic distance between states D1 and D2 according to this
metric is

dSM(D1,D2) =

√
2
(

1− Tr
(
D

1/2
1 D2D

1/2
1

)1/2
)
.

(1992 Uhlmann, studying Berry phase)
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Computing monotone metrics

Examples

Example (Largest metric)

The metric K
(n)
LA generated by the function fLA(x) = 2x

1+x is called

largest metric since fSM(x) is maximal among functions in F (S,n)

R+
0

.

In this case the metric can be written in a simple form

K
(n)
LA,D(X ,Y ) = TrXD−1Y .
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Computing monotone metrics

Examples

Example (Kubo-Mori metric)

The metric generated by the function fKM(x) =
x − 1

log x
.

Its Cencov–Morozova function is

cKM(x , y) =
log x − log y

x − y
.

Using the integral representation

cKM(x , y) =

∫ ∞

0
(t + x)−1(t + y)−1 d t

we have for the metric

K
(n)
KM,D(X ,Y ) = Tr

∫ ∞

0
X (t + D)−1Y (t + D)−1 d t.

(Linear response theory Fick, Sailer.)
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Computing monotone metrics

A simple consequences of ordering

A simple consequences of ordering

Theorem

For every f ∈ F (S,n)

R+
0

we have

fSM ≥
[0,1]

f ≥
[0,1]

fLA.

Theorem

Assume that f ∈ F (S,n)

R+
0

. For every state D ∈M+
n and tangent

vector X ∈ TDM+
n we have

K
(n)
LA,D(X ,X ) ≥ K

(n),f
D (X ,X ) ≥ K

(n)
SM,D(X ,X ).
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Computing monotone metrics

A simple consequences of ordering

We have a continuous path in F (S,n)

R+
0

from smallest to largest.

fSM = f
(ν=1)
P3

≥
[0,1]

f
(1≤ν≤2)
P3

≥
[0,1]

f
(ν=2)
P3 = fWY

fWY = f
(α=0)
WYD

≥
[0,1]

f
(0≤α≤3)
WYD

≥
[0,1]

f
(α=3)
WYD = fLA
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Computing monotone metrics

Monotone metric from entropy

Monotone metric from entropy

Consider the integral representation of the log function

log x =

∫ ∞

0
(1 + t)−1 − (x + t)−1 d t.

We have for the entropy

S(D) = TrD

∫ ∞

0
(D + t)−1 − (I+t)−1 d t.

The first derivative of the entropy is dS(D)(A) = −TrA logD.

Attila Andai Information Geometry



Information Geometry

Computing monotone metrics

Monotone metric from entropy

The second derivative is

d2 S :M+
n → Lin

(
TMn,Lin(TMn,R)

)

d2 S(D)(A)(B) = −Tr

∫ ∞

0
(D + t)−1A(D + t)−1B d t,

which is (−1) times the Kubo-Mori metric.
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Computing monotone metrics

Monotone metric from euclidean metric

Monotone metric from euclidean metric

For the complex state space M+
n denote by Sn2−1

1 the unit ball in
the euclidean space Rn×n and consider the map

φ :M+
n → Sn2−1 D 7→

√
D.

Using derivative of φ

(dD φ)(A) =
(
L

1/2
D + R

1/2
D

)−1
(A)

we can deduce that the pull back metric in this case is

(φ∗g)(A,B) = 〈(dDφ)(A), (dDφ)(B)〉

= TrA(L
1/2
D + R

1/2
D )−2(B)

=
1

4
TrAcWY(LD ,RD)(B).
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Computing monotone metrics

Monotone metric from euclidean metric

So in this case easy to compute the geodesic distance between
states D1 and D2

dWY(D1,D2) = 2 arccosTrD
1/2
1 D

1/2
2 .
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Relative entropy from operator convex functions

First relative entropy

The first version of relative entropy in quantum setting was given
by Umegaki in 1962. He defined the relative entropy of states
D1,D2 ∈M+

n as

S(D1,D2) = TrD1(logD1 − logD2).

This relative entropy is called to Umegaki relative entropy.
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Relative entropy

Relative entropy from operator convex functions

Relative entropy from operator convex functions

Definition

A continuous function f : R→ R is called operator convex if for
every n ∈ N and n × n self-adjoint operator A,B and parameter
λ ∈ [0, 1]

f (λA + (1− λ)B) ≤ λf (A) + (1− λ)f (B)

holds.

The set of operator convex functions g with property g(1) = 0
defined on the interval I ⊆ R is denoted by KI .
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Relative entropy

Relative entropy from operator convex functions

Representation theorem for operator convex functions

Theorem

If g : R+ → R is an operator convex function then there exist
parameters a ∈ R, b, c ∈ R+

0 and a positive finite measure µg on
the interval R+

0 such that

g(x) = a(x−1)+b(x−1)2+c
(x − 1)2

x
+

∫ ∞

0
(x−1)2 1 + t

x + t
dµg (t).

For every parameter a ∈ R, b, c ∈ R+
0 and finite measure µ

equation above defines an operator convex function.
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Relative entropy

Relative entropy from operator convex functions

Definition (Petz)

If g ∈ KR+ then the function Hg (·, ·) :M+
n ×M+

n → R

Hg (D1,D2) = Tr
(
D

1/2
1 g(LD2R

−1
D1

)D
1/2
1

)

is called to g -relative entropy.
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Relative entropy

Properties of the relative entropy

Theorem (Properties of g -relative entropy)

Assume that H is a g -relative entropy.

1 Then for every state D1,D2: H(D1,D2) ≥ 0, and
H(D1,D2) = 0 iff D1 = D2.

2 H is jointly convex, that is for every state D1,D2,D3,D4 and
parameter λ ∈ [0, 1] we have

H(λD1 + (1− λ)D2, λD3 + (1− λ)D4)

≤ λH(D1,D3) + (1− λ)H(D2,D4).
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Relative entropy

Properties of the relative entropy

Theorem (Properties of g -relative entropy cont.)

3 H is monotone: for every stochastic map T :M+
n →M+

n

H(T (D1),T (D2)) ≤ H(D1,D2) ∀D1,D2 ∈M+
n .

4 H is differentiable: for every state D1,D2 ∈M+
n and tangent

vectors A ∈ TD1M+
n , B ∈ TD2M+

n the map R× R→ R

(x , y) 7→ H(D1 + xA,D2 + yB)

is differentiable at the origin.
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Relative entropy

Properties of the relative entropy

The quantity Hg (D1,D2) depends mainly on D1 − D2.

Theorem

If g ∈ KR+ then for every state D1,D2 ∈M+
n

Hg (D1,D2) = Tr

(
(D1 − D2)R−1

D1

(
g(LD2R

−1
D1

)(D1 − D2)
))

.
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Relative entropy

Properties of the relative entropy

For an operator convex function g define its transpose as
g\(x) = xg(x−1), and dual as g⊥(x) = x

g(x) .

g is said to be symmetric if g\ = g .

g is said to be normalised if g ′′(1) = 1.

The effect of transpose is changing the arguments

Hg (D1,D2) = Hg\(D2,D1).
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Relative entropy

Riemannian metric from relative entropy

Theorem (Riemannian metric from relative entropy)

Assume that g ∈ KR+
0

. Then

K g ,(n) :M+
n → Lin(TMn × TMn,R)

K
g ,(n)
D (X ,Y ) = − ∂2

∂s∂t
Hg (D + tX ,D + sY )

∣∣∣∣∣
t=s=0

is a Riemannian metric on M+
n .

Define an equivalence relation on KR+ as

f ∼ g ⇐⇒ f + f \ = g + g\.

Theorem

The functions g1, g2 ∈ KR+ generates the same metric iff g1 ∼ g2.
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Relative entropy

Relative entropy and monotone metrics

Relative entropy and monotone metrics

Theorem

The map φ : KS
R+ → FS

R+
0

g(x) 7→ φ(g)(x) =





(x − 1)2

g(x) + xg(x−1)
if x > 0, x 6= 1,

1

g ′′(1)
if x = 1,

1

lim
x→0

g(x) + xg(x−1)
if x = 0

is well-defined and

K
g ,(n)
D (X ,Y ) = K

(n),φ(g)
D (X ,Y ) ∀D ∈M+

n ∀X ,Y ∈ TMn.
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Relative entropy

Relative entropy and monotone metrics

Relative entropy and monotone metrics

Theorem

The map ε : F (S)

R+
0

→ K(S)
R+

f (x) 7→ ε(f )(x) =
(x − 1)2

2f (x)

is well-defined and K (n),f = K ε(f ),(n) holds.
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Relative entropy

Relative entropy and monotone metrics

Relative entropy and monotone metrics

Combining these we have the following theorem.

Theorem

There is a simple bijective correspondence between

1 the set of monotone metrics,

2 F (S)

R+
0

,

3 K(S)
R+ .
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Relative entropy

Examples

Example (Smallest metric)

The corresponding operator monotone function is f (x) = 1+x
2 and

the generated operator convex function is

g(x) =
(x − 1)2

1 + x
.

and the relative entropy

HSM :M+
n ×M+

n → R (D1,D2) 7→ HSM(D1,D2)

HSM(D1,D2) = Tr(D1 − D2)(LD2 + RD1)−1(D1 − D2).

Bures relative entropy
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Relative entropy

Examples

Example (Largest metric)

The corresponding operator monotone function is f (x) = 2x
1+x and

the generated operator convex function is

g(x) = (x − 1)2 1 + x

4x

and the relative entropy is

Hg1(D1,D2) =
1

2
Tr(D1 − D2)D−1

1 (D1 − D2).

Quadratic relative entropy
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Relative entropy

Examples

Example (Kubo-Mori metric)

The corresponding operator monotone function is f (x) = x−1
log x and

the generated operator convex function is

g(x) =
x − 1

2
log x

and the generated relative entropy is

Hg1(D1,D2) = TrD1

(
logD1 − logD2

)
.

Umegaki relative entropy

Attila Andai Information Geometry



Information Geometry

Duality

Basic definitions

Assume that f ∈ F (n)

R+
0

and h ∈ Kn
R+ . We use the term h is

compatible with f if for the function

g(x) =
(x − 1)2

2f (x)

h ∼ g holds.
For a monotone metric K (n),f and a compatible function h we
define a covariant derivative ∇f ,h : TMn × TMn → TMn as

K
(n),f
D (∇f ,h

X Y ,Z ) = − ∂3

∂s∂t∂u
Hh(D + sX + tY ,D + uZ )

∣∣∣∣
s,t,u=0

,

where X ,Y ,Z ∈ TDM+
n .

(Giblisco, Isola, Uhlmann, Dabrowksi, Jadczyk, Hübner)
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Duality

Main theorem of duality

Main theorem of duality

Theorem

For a function f ∈ F (S,n)

R+
0

and a compatible function h ∈ K(n)
R+ the

quadruplet (M+
n ,K

(n),f ,∇f ,h,∇f ,h\) is torsion free dual geometry.
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Duality

A characterization of the Kubo-Mori metric

A characterization of the Kubo-Mori metric

Theorem

If (M+
n , g ,∇(1),∇(−1)) is a dual geometry for some Riemannian

metric then g equals to Kubo-Mori metric g (KM) up to a positive
multiplicative factor.
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Duality

Pythagorean theorem

Pythagorean theorem

Theorem

Consider states D1,D2,D3 ∈M+
n and ∇(1) geodesic curve γ1

connecting D1 and D2 and ∇(−1) geodesic curve γ2 connecting D2

and D3. If
K

(n)
KM,D2

(γ̇1(D2), γ̇2(D2)) = 0 ,

holds then

Hlog(D1,D3) = Hlog(D1,D2) + Hlog(D2,D3).
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Duality

Pythagorean theorem

Pythagorean theorem
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About volume of the state space

Hilbert-Schmidt measure

Hilbert-Schmidt measure

The Hilbert-Schmidt measure on M+
n is defined by the Euclidean

metric

d(D1,D2) =
√

Tr(D1 − D2)2

We can consider M+
n as a manifold with metric

gD(X ,Y ) = Tr(XY ) D ∈M+
n X ,Y ∈ TDM+

n .

Induces the flat, Euclidean geometry on the set of states.
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About volume of the state space

Hilbert-Schmidt measure

The invariant volume measure is

ρ(D) =
√

det gD = 1 .

(Which is the most simple prior on M+
n .) The volume of the state

space is

Volume =

∫

M+
n

1 dD ,

where
dD = d a11 d a12 . . . d a22 d a23 . . . d an−1,n .
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About volume of the state space

Hilbert-Schmidt measure

The invariant volume measure is

ρ(D) =
√

det gD = 1 .

(Which is the most simple prior on M+
n .) The volume of the state

space is

Volume =

∫

M+
n

1 dD ,

where
dD = d a11 d a12 . . . d a22 d a23 . . . d an−1,n .
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44




Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A1

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A2

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A3

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.

Attila Andai Information Geometry



Information Geometry

About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A3

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A3

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Some notations:

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 A3

Tn := det(An)× (An)−1 detTn = (detAn)n−1

A4 =




a11 a12 a13 a14

a∗12 a22 a23 a24

a∗13 a∗23 a33 a34

a∗14 a∗24 a∗34 a44


 x1, x2, x3

Lemma: detAn = ann(detAn−1)−
〈
xn−1,Tn−1xn−1

〉
.
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents

1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents

b




0.125
0.25

0.625




1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents

b




0.125
a12

a12
0.25

0.625




1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents

b




0.25 a12

a12 0.5
0.25




1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents




0.25 0.1 a13

0.1 0.5 a23

a13 a23 0.25


 b

b

1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 3× 3 real case:

x

y

z

diagon
al elem

ents




0.25 0.05
a13

0.05 0.05
a23

a13
a23 0.25




b

b

1
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About volume of the state space

A decomposition of the state space

Decomposition of the state space: 4× 4 real case:

x

y

z

diagon
al elem

ents




0.24 0.05 0.02
a14

0.05 0.04 0.03
a24

0.02 0.03 0.24
a34

a14
a24

a34 0.03




b

b b

1
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About volume of the state space

The volume

Theorem

For every n ∈ N the volume of the state space M+
n is

V (M+
n ) =

πdn(n−1)/4

Γ
(
d n(n−1)

2 + n
)

n−1∏

i=1

Γ

(
id

2
+ 1

)

and the integral of the function detα with respect to the
normalized Hilbert–Schmidt measure is

∫

M+
n

det α =
Γ
(
dn(n−1)

2 + n
)

Γ
(
dn(n−1)

2 + n + nα
)

n∏

i=1

Γ
(
d i−1

2 + 1 + α
)

Γ
(
d i−1

2 + 1
) .
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About volume of the state space

The qubit case

In the space of qubits we use the Stokes parametrization

D =
1

2

(
1 + x y + i z
y + i z 1− x

)
.

M2 can be identified with the unit ball in R3 and R2.
The Riemannian metric g (f ) in this coordinate system is

gf (x , y , z) =
1

2




1
2λ1λ2

0 0

0 1

λ1f
(
λ2
λ1

) 0

0 0 1

λ1f
(
λ2
λ1

)




gf (x , y) =
1

2

( 1
2λ1λ2

0

0 1

λ1f
(
λ2
λ1

)
)
.
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About volume of the state space

The qubit case

The volume is an integral on the unit ball, which can be expressed
as

V
(
M(C)

2

)
= 2π

1∫

0

(
1− t

1 + t

)2 1√
tf (t)

d t

V
(
M(R)

2

)
=
√

2π

1∫

0

1− t

1 + t

1√
t + t2

√
f (t)

d t.

The volume of the state space with monotone metric is unknown.
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About volume of the state space

The qubit case

Some operator monotone functions and the corresponding volumes.

f (x) : V
(
M(C)

2

)
: V

(
M(R)

2

)
:

1 + x

2
π2 2π

2x

1 + x
∞ ∞

x − 1

log x
2π2 ∼ 8.298

√
x ∞ 4π

(
√
x + 1)2/4 4π(π − 2) 4π(2−

√
2)

2
√
x(x − 1)

(1 + x) log x
∞ ∼ 19.986
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Uncertainty relations

Brief history of uncertainty relations

Brief history of uncertainty relations

1927, Heisenberg: not possible to measure the position and
moment at a same time. (Idea, not a theorem.)

Heisenberg studied Gauss distributions (f (q)), where ”uncertainty”
was the width of Df .

q

f(q)

f(0)
e ︸ ︷︷ ︸

Df

1

If F(f ) denotes the Fourier transform of f then the first equation
for uncertainty was

DfDF(f ) = constant.
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Uncertainty relations

Brief history of uncertainty relations

1927, Kennard: For observables A,B if [A,B] = − i then

VarD(A)VarD(B) ≥ 1

4
,

where VarD(A) = Tr(DA2)− (Tr(DA))2.

1929, Robertson: For all observables A,B

VarD(A)VarD(B) ≥ 1

4
|Tr(D [A,B])|2 .
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Uncertainty relations

Brief history of uncertainty relations

1930, Schrödinger: For all observables A,B

VarD(A)VarD(B)− CovD(A,B)2 ≥ 1

4
|Tr(D [A,B])|2 ,

where

CovD(A,B) =
1

2

(
Tr(DAB) + Tr(DBA)

)
− Tr(DA)Tr(DB).

Or in a bit different form:

det

(
CovD(A,A) CovD(A,B)
CovD(B,A) CovD(B,B)

)
≥

≥ det

[
− i

2

(
Tr(D [A,A]) Tr(D [A,B])
Tr(D [B,A]) Tr(D [B,B])

)]
.
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Uncertainty relations

Brief history of uncertainty relations

1930, Schrödinger: For all observables A,B

VarD(A)VarD(B)− CovD(A,B)2 ≥ 1

4
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(
Tr(DAB) + Tr(DBA)
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− Tr(DA)Tr(DB).
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≥
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)]
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Uncertainty relations

Brief history of uncertainty relations

1934, Robertson: For finite set of observables (Ai )i∈I

det

(
[CovD(Ah,Aj)]h,j∈I

)
≥det

([
− i

2
Tr(D [Ah,Aj ])

]

h,j∈I

)
.

∼2000–, Furuichi, Gibilisco, Hansen, Imparato, Isola, Kosaki,
Kuriyama, Luo, Petz, Yanagi, Q. Zhang, Z. Zhang
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Uncertainty relations

Brief history of uncertainty relations

1934, Robertson: For finite set of observables (Ai )i∈I

det

(
[CovD(Ah,Aj)]h,j∈I

)
≥det

([
− i

2
Tr(D [Ah,Aj ])

]

h,j∈I

)
.

∼2000–, Furuichi, Gibilisco, Hansen, Imparato, Isola, Kosaki,
Kuriyama, Luo, Petz, Yanagi, Q. Zhang, Z. Zhang
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Uncertainty relations

Covariances

New concepts

For observables A,B, state D ∈M+
n and operator monotone

function f :

CovD(A,B) =
1

2
(Tr(DAB) + Tr(DBA))− Tr(DA)Tr(DB)

CovfD(A,B) = 〈A,B〉D,f (2002, Petz)

qCovasD,f (A,B) =
f (0)

2
〈i [D,A] , i [D,B]〉D,f

qCovsD,f (A,B) =
f (0)

2
〈{D,A} , {D,B}〉D,f ,

where [., .] is the commutator and {., .} is the anticommutator.

For an observable A and state D define A0 = A− Tr(DA)I , then
TrDA0 = 0.
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Uncertainty relations

Covariances

For observables (A(k))k=1,...,N with zero mean at a state D define

[CovD ]ij = CovD(A(i),A(j))
[
CovfD

]
ij

= CovfD(A(i),A(j))

[
qCovasD,f

]
ij

= qCovasD,f (A(i),A(j))
[
qCovsD,f

]
ij

= qCovsD,f (A(i),A(j)).

2006, Gibilisco: Conjecture: det(CovD) ≥ det(qCovasD,f ).

2008, Andai: The conjecture is true.
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Up to date results

Up to date results

Theorem (2016, Lovas, Andai)

det(CovD) ≥ det(qCovsD,f ) ≥ det(qCovasD,f ).

2f (0)CovfRLDD (A0,B0)

≤ qCovsD,f (A0,B0)− qCovasD,f (A0,B0)

≤ CovfRLDD (A0,B0)

det(qCovsD,f )− det(qCovasD,f ) ≥ (2f (0))N det(CovfRLDD )

2017, Lovas, Andai: Further extensions of symmetric and
antisymmetric covariant derivatives and simplified proof for the
original Robertson inequality
2018: ???
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[48] H. Hasegawa.
Non-commutative extension of the information geometry.
In Quantum communications and measurement (Nottingham, 1994), pages 327–337. Plenum, New York, 1995.

Attila Andai Information Geometry



Information Geometry

Uncertainty relations

Up to date results

References VII

[49] M. Hayashi.
Asymptotic estimation theory for a finite-dimensional pure state model.
J. Phys. A, 31(20):4633–4655, 1998.

[50] M. Hayashi.
Corrigenda: “Asymptotic estimation theory for a finite-dimensional pure state model”.
J. Phys. A, 31(41):8405, 1998.

[51] E. Hellinger.
Neue Bergründung der Theorie quadratischer Formen von unendlich vielen Veränderlichen.
J. für reine and Angew. Math., 36:210–271, 1909.

[52] F. Hiai és D. Petz.
The semicircle law, free random variables and entropy, volume 77 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2000.

[53] M. Hübner.
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Quantum information geometry and standard purification.
J. Math. Phys., 43(5):2187–2201, 2002.

[59] A. Jenčová.
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[103] A. Uhlmann.
Spheres and hemispheres as quantum state spaces.
J. Geom. Phys., 18(1):76–92, 1996.

[104] H. Umegaki.
Conditional expectation in an operator algebra. IV. Entropy and information.
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