The Interior

The exterior

Self-Similar solution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

A stellar model with diffusion in general relativity

J. Geom. Phys. 120 (2017) 62-72

Artur Alho (Joint work with Simone Calogero)

Center for Mathematical Analysis, Geometry and Dynamical Systems, Technical University of Lisbon

XXVI International Fall Workshop on Geometry and Physics, Braga - September 5th, 2017

Introduction

Structure of singularities formed in the gravitational collapse of bounded matter distributions

- Are such singularities naked, i.e. visible to far-away observers?
- Are they safely hidden inside a black-hole?

Collapse of a homogenous dust ball: Oppenheimer-Snyder (1937)

• Consists of a collapsing Friedmann-Lemaître-Robertson-Walker interior matched at a comoving boundary with a Schwarzschild exterior .

Collapse of an inhomogeneous dust ball: Christodoulou (1984)

- Consists of a Lemaître-Tolman-Bondi interior matched at a comving boundary with a Schwarzschild exterior.
- In contrat with Oppenheimer-Snyder, inhomogeneous dust collapse leads to the formation of naked singularities.

Diffusion in General Relativity

- Gravitational collapse of matter subject to diffusion?
- Mathematically the inclusion of diffusion terms introduce a regularizing effect in the equations, which might prevent the formation of naked singularities
- Diffusion is the cause for several physical processes
 - Heat conduction
 - Brownian motion
- At the microscopic level diffusion is due to random collisions between the particles of the system with those of the background substance
 - Stochastic differential equations
- At the macroscopic scale, random effects are averaged, and diffusion is described by an effective and deterministic theory
 - Relativistic kinetic Fokker-Planck equation for distribution function f.
- There are two theories:
 - Kinetic theory based on a Fokker-Planck equation for the particle density in the phase-space:
 - S. Calogero, JCAP 11/2011, 016 (2011)
 - Fluid theory which is the formal macroscopic limit of the kinetic theory: S. Calogero J. Geom. Phys. **62**, 2208–2213 (2012)

Fluid theory

• The energy-momentum tensor and energy current for a perfect fluid

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} + p(g^{\mu\nu} + u^{\mu} u^{\nu})$$
$$J^{\mu} = n u^{\mu}$$

• For a perfect-fluid undergoing velocity diffusion

$$\nabla_{\mu} T^{\mu\nu} = \sigma J^{\nu}$$
$$\nabla_{\mu} J^{\mu} = 0$$

- σ is the diffusion constant and measures the average energy transferred per unit time from the background substance to a fluid particle.
- Projecting parallel and orthogonal to u^{μ}

$$\nabla_{\mu}(\rho u^{\mu}) + p \nabla_{\mu} u^{\mu} = \sigma n,$$

$$(\rho + p) u^{\mu} \nabla_{\mu} u^{\nu} + u^{\nu} u^{\mu} \nabla_{\mu} p + \nabla^{\nu} p = 0,$$

$$\nabla_{\mu}(n u^{\mu}) = 0.$$

• First-law of thermodynamics: entropy ${\cal S}=
ho/n$

$$u^{\mu}\nabla_{\mu}S = \sigma,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- In presence of diffusion $T_{\mu\nu}$ is not divergence-free. Incompatibility with the twice contracted Bianchi identities $\nabla_{\mu}G^{\mu}_{\ \nu} = 0$.
- Add a matter field which interacts with the fluid particles restoring the local conservation of energy
- The new matter field plays the role of a background medium in which particles undergo diffusion
- The simplest model for this medium is a vaccum-energy described by a cosmological scalar field (varying $\Lambda)$

$$G_{\mu\nu} + \phi g_{\mu\nu} = T_{\mu\nu}$$

• The diffusion equation is

$$\nabla_{\mu}\phi = \sigma J_{\mu}$$

- When $\sigma = 0$ the model reduces to the Einstein-Euler system with cosmological constant Λ .
- A. Alho, S. Calogero, M. P. Ramos and A. J. Soares: Dynamics of Robertson-Walker spacetimes with diffusion, Annals of Physics 204 (2015)
- Stellar models in Spherical Symmetry

The Interior

The exterior

Self-Similar solution

The Interior Region

Comoving system of coordinates:

$$g = -e^{2\Phi(t,R)} dt^2 + e^{2\Psi(t,R)} dR^2 + r^2(t,R) d\Omega^2,$$

$$u = -e^{-\Phi(t,R)} \partial_t,$$

where $d\Omega^2 = d\theta^2 + \sin^2 \theta d\psi^2$ is the standard metric on S^2 .

- Fix $\Phi(t,R_b)=0,$ so that t is the proper time of observers at rest with respect to the boundary of the star
- Fix r(0, R) = R, so that the comoving radius R coincides initially, i.e., at time t = 0, with the radius function of the group orbits.

Theorem

Let p = 0 and let (g, ρ, n, u, ϕ) be a spherically symmetric solution. Then ρ , n, ϕ are functions of $t \in [0, T)$ only and there exist a positive function $a : [0, T) \rightarrow (0, \infty)$ and a constant $k \in \mathbb{R}$ such that

$$g = -dt^2 + a(t)^2 \left(\frac{dR^2}{1 - kR^2} + R^2 d\Omega^2\right),$$

$$u = -\partial_t.$$

• Robertson-Walker geometry! By rescaling the radial coordinate we may assume that $k \in \{-1, 0, 1\}$, $R < R_b$, where $R_b < 1$ for k = 1.

Introduction

Diffusion in GR

- From now on we consider a pressureless fluid (dust).
- The conservation of the particle number density gives $n(t) = \frac{a(0)^3 n(0)}{a(t)^3}$, while $a(t), \rho(t), \phi(t)$ satisfy

$$\begin{split} & \left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2} = \frac{1}{3}(\rho + \phi) \quad , \quad \frac{\ddot{a}}{a} = -\frac{1}{6}\rho + \frac{1}{3}\phi, \\ & \dot{\phi} = -3\frac{\beta}{a^3}, \quad , \quad \dot{\rho} = -3\rho\frac{\dot{a}}{a} - \dot{\phi}, \end{split}$$

where $\beta = \sigma n(0)a(0)^3/3$.

- Two classes of solutions: "Expanding" and "Collapsing"
- Collapsing (dust) solutions behave like the Friedmann-Lemaître diffusion-free solution in the limit toward the singularity.
- This implies that the spacelike singularity at $t = t_s$ is a curvature singularity,
- The spacetime is inextendible beyond the spacelike hypersurface $t = t_s$ and no outgoing light ray can emanate from the singularity.

Corollary

There exist no naked singularities in the spherical collapse of dust clouds undergoing diffusion in a cosmological scalar field.

The diffusion forces prevents the formation naked singularities by an explicit and compelling regularizing effect: it forces the dust interior to be spatially homogeneous.

• Let
$$\chi = g^{ab}(\partial_a r)(\partial_b r)$$
, $a = 0, 1$:

$$\chi(t,R) = 1 - kR^2 - \dot{a}(t)^2 R^2 = (\sqrt{1 - kR^2} + \dot{a}(t)R)(\sqrt{1 - kR^2} - \dot{a}(t)R).$$

- Trapped region: $\chi < 0$,
- Regular region: $\chi > 0$.
- Apparent horizon: $\chi = 0$
- Introduce local mass function m(t, R) via

$$\chi = 1 - \frac{2m}{r} - \frac{\phi}{3}r^2, \quad r(t,R) = a(t)R.$$

• It follows the identity

$$m(t,R) = \frac{\rho(t)}{6}r^3 = m(0,R) + \frac{R^3}{2}\beta t,$$

- The local mass is conserved only in the absence of diffusion ($\beta = 0$) and it is otherwise linearly increasing in time.
- The latter behavior is intimately connected with the irreversibility of the diffusion process: the entropy is linearly increasing in time:

$$S(t)=S(0)+\sigma t.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Exterior Region

Bondi coordinates:

$$g_{\mathrm{ext}} = -A(w,r)B(w,r)dw^2 + 2\varepsilon A(w,r)dwdr + r^2 d\Omega^2$$

where $\varepsilon = \pm 1$.

- $\varepsilon = 1$, w is the ingoing (advanced) null coordinate.
- $\varepsilon = -1$, w is the outgoing (retarded) null coordinate.
- The comoving boundary of the star $\boldsymbol{\Sigma}$

$$\Sigma : r = r_{\Sigma}(w),$$

• Σ is assumed to be timelike:

$$A(w, r(w))(B(w, r(w)) - 2\varepsilon \dot{r}_{\Sigma}(w)) > 0, \quad \dot{r}_{\Sigma} = \frac{dr_{\Sigma}}{dw},$$

i.e., the first fundamental form of Σ has the signature (-,+,+).

• Time orientation of spacetime does not change across the boundary

• The two metrics $g_{\rm int}$ and $g_{\rm ext}$ may be matched on Σ if and only if they satisfy the junction conditions that they induce the same first and second fundamental form on Σ ,

Theorem

The metrics satisfy the junction conditions if and only if

(a) There holds

$$r_{\Sigma}(w) = a(t(w))R_b$$

(b) The transformation of variable t = t(w) satisfies

$$\dot{t}(w) = A(w, r_{\Sigma}(w))(\sqrt{1 - kR_b^2} - \varepsilon \dot{a}(t(w))R_b);$$

(c) There holds

$$B(w, r_{\Sigma}(w)) = A(w, r_{\Sigma}(w))(1 - kR_b^2 - \dot{a}(t(w))^2 R_b^2);$$

(d) There holds Q(w) = 0, where

$$Q(w) = \left[(B - 2\varepsilon \dot{r}_{\Sigma}(w))((B - \varepsilon \dot{r}_{\Sigma}(w))\partial_{r}A + \varepsilon \partial_{w}A) - A(2\ddot{r}_{\Sigma}(w) + (B - 3\varepsilon \dot{r}_{\Sigma}(w))\partial_{r}B - \varepsilon \partial_{w}B) \right]_{r=r_{\Sigma}(w)}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ④ ● ● ● ●

.

• Assuming A(w, r) = 1:

Corollary

The exterior metric can be chosen to be the Vaidya type metric with variable cosmological constant given by

$$g_{\mathrm{ext}} = -\left(1 - \frac{2M(w)}{r} - \frac{\Lambda(w)}{3}r^2\right)dw^2 + 2\varepsilon dwdr + r^2 d\Omega^2,$$

where $M(w), \Lambda(w)$ are given by

$$M(w) = m(t(w), R_b)$$
 and $\Lambda(w) = \phi(t(w)).$

• The generalized Vaidya metric solves the Einstein equation with cosmological scalar field $\phi = \Lambda(w)$ and the energy-momentum tensor

$$T_{\mathrm{ext}} = \tilde{\rho} \, dw^2, \quad \tilde{\rho} = \frac{\varepsilon}{r^2} \Big(2 \frac{dM}{dw} + \frac{r^3}{3} \frac{d\Lambda}{dw} \Big),$$

where

$$\frac{dM}{dw} = \frac{\beta R_b^3}{2} (\sqrt{1 - kR_b^2} - \varepsilon \dot{a}(t(w))R_b), \tag{7}$$

$$\frac{d\Lambda}{dw} = -\frac{3\beta}{a(t(w))^3} (\sqrt{1 - kR_b^2} - \varepsilon \dot{a}(t(w))R_b).$$
(8)

When β = 0, i.e., in the absence of diffusion, the functions M and Λ become constant and so T_{ext} = 0.

• Requiring the weak energy condition $\tilde{\rho} > 0$ to hold in the whole exterior region forces us to restrict to the outgoing Vaidya solution.

Proposition

 $\tilde{\rho}(w, r_{\Sigma}(w)) = 0$. Moreover the weak energy condition $\tilde{\rho}(w, r) > 0$, for all $r > r_{\Sigma}(w)$, holds only for the outgoing Vaidya metric ($\varepsilon = -1$).

Proof.

By (7) and (8),

$$\tilde{\rho}(w,r) = \frac{\varepsilon \beta \frac{dt}{dw}}{r^2 a(t(w))^3} [r_{\Sigma}^3(w) - r^3], \quad r \ge r_{\Sigma}(w), \tag{9}$$

by which the result follows immediately.

- If ε = +1 we have ρ̃ > 0 for r < r_Σ(w). Generalisation of the Einstein-Strauss void model.
- We restrict from now on to the generalized outgoing Vaidya metric (arepsilon=-1),

$$g_{\rm ext} = -\left(1 - \frac{2M(u)}{r} - \frac{\Lambda(u)}{3}r^2\right)du^2 - 2dudr + r^2d\Omega^2.$$
 (10)

• The apparent horizons are the hypersurfaces in the exterior where B(u, r) = 0.

• The interior and exterior apparent horizons intersect on the boundary.

Self-Similar solution

• The interior admits the explicit (self-similar) solution:

$$a(t) = \delta_k t$$
 , $\phi(t) = rac{3eta}{2\delta_k}a(t)^{-2}$, $ho(t) = rac{3eta}{\delta_k}a(t)^{-2},$

where δ_k is the real solution of the polynomial equation

$$\delta^3 + k\delta - \frac{3\beta}{2} = 0.$$

- Note that $\delta_k > 0$, for all $k = 0, \pm 1$.
- Towards the past: curvature singularity
- Towards the future: the solution is forever expanding ($\dot{a} > 0$) without acceleration ($\ddot{a} = 0$).
- Apparent horizon:

$$R_{\rm AH} = rac{1}{\sqrt{\delta_k^2 + k}}.$$

• The local mass of the interior is

$$m(t,R)=\frac{\beta}{2}R^3t,$$

hence $m(t, R) \rightarrow +\infty$ as $t \rightarrow +\infty$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Figure: Penrose diagrams for the expanding (at constant rate) interior solution. Each point represents a 2-sphere of radius r = a(t)R. As usual, i^- and i^+ represent past and future timelike infinity respectively, and i^0 corresponds to spacelike infinity. Also, \mathcal{I}^- , \mathcal{I}^+ denote past and future null infinity respectively.

- Let $R = R_b$ the boundary of the star. We distinguish three cases:
 - (i) $R_b > R_{AH}$; the interior has an apparent horizon in this case.
 - (ii) $R_b = R_{AH}$; the boundary of the star coincides with the apparent horizon.
 - (iii) $R_b < R_{AH}$; the interior has no apparent horizon.
- The matching conditions give

$$u = C_k t, \quad r_{\Sigma}(u) = x_{\Sigma} u, \quad x_{\Sigma} = \frac{R_b \delta_k}{C_k}, \quad C_k = \frac{1}{\sqrt{1 - kR_b^2} + \delta_k R_b} > 0,$$

The exterior metric becomes

$$g_{\mathrm{ext}} = -\left(1 - \lambda_1 \frac{u}{r} - \lambda_2 \frac{r^2}{u^2}\right) du^2 - 2dudr + r^2 d\Omega^2, \quad r > x_{\Sigma} u,$$

where

$$\lambda_1 = \frac{\beta R_b^3}{C_k}, \quad \lambda_2 = \frac{\beta C_k^2}{2\delta_k^3}.$$

• Curvature singularity at u = 0, for its Kretschmann scalar $K = \text{Riem}^2$ is given by

$$K = \frac{12\lambda_1^2 u^2}{r^6} + \frac{24\lambda_2^2}{u^4}.$$

• The apparent horizons: hypersurfaces where B(u, r) = 0,

$$B(u,r) = h\left(\frac{r}{u}\right), \quad h(x) = 1 - \frac{\lambda_1}{x} - \lambda_2 x^2.$$

The exterior

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

The following holds:

- (1) In case (i) there is no apparent horizon in the exterior region and B(u, r) < 0 for all $r > r_{\Sigma}(u), u > 0$.
- (2) In case (ii) the apparent horizon in the exterior coincides with the apparent horizon of the interior, as well as with the matching surface:

$$r_{\rm AH}(u) = r_{\Sigma}(u) \equiv R_{\rm AH} = R_b$$

Moreover B(u, r) < 0 for all $r > r_{\Sigma}(u)$.

(3) In case (iii) there exists $x_{AH} > x_{\Sigma}$ such that the metric in the exterior has an apparent horizon at $r = x_{AH}u$. Moreover B(u, r) > 0 for $r_{\Sigma}(u) < r < x_{AH}u$ and B(u, r) < 0 for $r > x_{AH}u$.

Proof.

For the proof it suffices to notice that the function h(x) attains its maximum at $x = x_{\Sigma}$ and $h(x_{\Sigma}) = 1 - (R_b/R_{AH})^2$.

 The model under discussion is self-similar, with the lines r = xu, x > x_Σ, on the (t, r)-plane being tangent to the homothetic vector field in the exterior. We call such curves homothetic curves.

Theorem

There exists $x_* > x_{\Sigma}$ such that the homothetic curve r = xu is spacelike for $x > x_*$, null for $x = x_*$ and timelike for $x_{\Sigma} < x < x_*$. In case (iii) there holds $x_* > x_{AH}$. Moreover the homothetic curve $r = x_*u$ is the first ingoing radial null geodesics that escapes to null-infinity.

Figure: Penrose diagram for the self-similar stellar solution with diffusion in case (iii).