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Introduction

Structure of singularities formed in the gravitational collapse of bounded
matter distributions
e Are such singularities naked, i.e. visible to far-away observers?

e Are they safely hidden inside a black-hole?

Collapse of a homogenous dust ball: Oppenheimer-Snyder (1937)

e Consists of a collapsing Friedmann-Lemaitre-Robertson-Walker interior matched
at a comoving boundary with a Schwarzschild exterior .

Collapse of an inhomogeneous dust ball: Christodoulou (1984)

e Consists of a Lemaftre-Tolman-Bondi interior matched at a comving boundary
with a Schwarzschild exterior.

e In contrat with Oppenheimer-Snyder, inhomogeneous dust collapse leads to the
formation of naked singularities.
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Diffusion in General Relativity

Gravitational collapse of matter subject to diffusion?

Mathematically the inclusion of diffusion terms introduce a regularizing effect in
the equations, which might prevent the formation of naked singularities

Diffusion is the cause for several physical processes

e Heat conduction

e Brownian motion

At the microscopic level diffusion is due to random collisions between the particles
of the system with those of the background substance

e Stochastic differential equations

At the macroscopic scale, random effects are averaged, and diffusion is described
by an effective and deterministic theory

o Relativistic kinetic Fokker-Planck equation for distribution function f.
There are two theories:

o Kinetic theory based on a Fokker-Planck equation for the particle density in the
phase-space:
S. Calogero, JCAP 11/2011, 016 (2011)

e Fluid theory which is the formal macroscopic limit of the kinetic theory:
S. Calogero J. Geom. Phys. 62, 2208-2213 (2012)
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Fluid theory

e The energy-momentum tensor and energy current for a perfect fluid

T = putu” + p(gh” + u*u”)
JH = nut
e For a perfect-fluid undergoing velocity diffusion
VuTH =oJ”
vVt =0

e o is the diffusion constant and measures the average energy transferred per unit
time from the background substance to a fluid particle.

e Projecting parallel and orthogonal to u*
Vu(put) + pVyut = on,
(o + P)urVpu” + u¥uVup +V¥p =0,
Vu(nut) = 0.
o First-law of thermodynamics: entropy S = p/n

utvV,S =o,



Diffusion in GR

In presence of diffusion T, is not divergence-free. Incompatibility with the twice
contracted Bianchi identities V,, G*, = 0.

Add a matter field which interacts with the fluid particles restoring the local
conservation of energy

The new matter field plays the role of a background medium in which particles
undergo diffusion

The simplest model for this medium is a vaccum-energy described by a
cosmological scalar field (varying A)

G,UV + ¢guu = T,ut/

The diffusion equation is
Vup=ody

When ¢ = 0 the model reduces to the Einstein-Euler system with cosmological
constant A.

A. Alho, S. Calogero, M. P. Ramos and A. J. Soares: Dynamics of
Robertson-Walker spacetimes with diffusion, Annals of Physics 204 (2015)

Stellar models in Spherical Symmetry
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The Interior Region

e Comoving system of coordinates:

g = —e2®(tR) g2 4 2V(R) g2 | 2(t, R) d22,
u= —e7¢(t’R)8t,

where dQ2 = d6? + sin® 0dvy? is the standard metric on S2.

o Fix ®(t, Rp) =0, so that t is the proper time of observers at rest with respect to
the boundary of the star

e Fix r(0, R) = R, so that the comoving radius R coincides initially, i.e., at time
t = 0, with the radius function of the group orbits.

Theorem

Let p =0 and let (g, p, n, u, $) be a spherically symmetric solution. Then p, n, ¢ are
functions of t € [0, T) only and there exist a positive function a : [0, T) — (0, c0) and
a constant k € R such that

= —dt® + a(t)?
g +at)({ g

+ R2dQ?),
u= —8t.

e Robertson-Walker geometry! By rescaling the radial coordinate we may assume
that k € {—1,0,1}, R < Rp, where R, < 1 for k = 1.



The Interior

e From now on we consider a pressureless fluid (dust).

3
e The conservation of the particle number density gives n(t) = a(gitgo), while
a(t), p(t), #(t) satisfy
a2k 1 a 1 1
(;) +§—§(P+¢) ) ;——6/)4‘3(1)7
; B . a
¢:_3_37 ) P:—3P——¢,
a a

where 8 = on(0)a(0)3/3.
e Two classes of solutions: “Expanding” and “Collapsing”

Collapsing (dust) solutions behave like the Friedmann-Lemaitre diffusion-free
solution in the limit toward the singularity.

This implies that the spacelike singularity at t = ts is a curvature singularity,

e The spacetime is inextendible beyond the spacelike hypersurface t = ts and no
outgoing light ray can emanate from the singularity.

Corollary

There exist no naked singularities in the spherical collapse of dust clouds undergoing
diffusion in a cosmological scalar field.

e The diffusion forces prevents the formation naked singularities by an explicit and
compelling regularizing effect: it forces the dust interior to be spatially
homogeneous.



The Interior

Let x = g?2(9ar)(Opr), a= 0, 1:

x(t, R) =1 — kR? — 5(t)2R? = (v/1 — kR? + a(t)R)(V/1 — kR? — 3(t)R).

Trapped region: x < 0,
Regular region: x > 0.
Apparent horizon: x =0

Introduce local mass function m(t, R) via

2
x=1- am_ isr2, r(t,R) = a(t)R.
r 3
It follows the identity

m(t,R) = %ﬁ =m(0,R) + %3,8t,

The local mass is conserved only in the absence of diffusion (8 = 0) and it is
otherwise linearly increasing in time.

The latter behavior is intimately connected with the irreversibility of the diffusion
process: the entropy is linearly increasing in time:

S(t) = S(0) + ot.



The exterior

The Exterior Region
Bondi coordinates:
Gext = —A(w, r)B(w, r)dw? + 2¢A(w, r)dwdr + r?dQ?,
where e = £1.
e =1, w is the ingoing (advanced) null coordinate.

e = —1 ,w is the outgoing (retarded) null coordinate.

The comoving boundary of the star *
Yir=rs(w),
Y is assumed to be timelike:

_ dr):
Codw’

i.e., the first fundamental form of X has the signature (—, +,+).

A(w, r(w))(B(w, r(w)) — 2ers(w)) >0, is

Time orientation of spacetime does not change across the boundary
dt/dw >0

The two metrics gint and gext may be matched on X if and only if they satisfy
the junction conditions that they induce the same first and second fundamental
form on X,
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Theorem
The metrics satisfy the junction conditions if and only if
(a) There holds

re(w) = a(t(w))Rs
(b) The transformation of variable t = t(w) satisfies

t(w) = A(w, re(w))(y/1 — kRZ — ea(t(w))Rp);

(c) There holds

B(w, rg(w)) = A(w, rs(w))(1 — kR — a(t(w))*RY);
(d) There holds Q(w) = 0, where

Q(w) = [(B — 2z (w))((B — erg(w))0r A + 0w A)

— AQ2Fg(w) + (B — 3eix (W), B — 0w B)

r=ry(w)



The exterior

e Assuming A(w, r) = 1:

Corollary
The exterior metric can be chosen to be the Vaidya type metric with variable
cosmological constant given by

2M(w)  A(w)
3

r2)dw2 + 2edwdr + r?d?,
B

Bext = _(1 -
where M(w), A(w) are given by
M(w) = m(t(w), Ry) and A(w) = ¢(t(w)).

e The generalized Vaidya metric solves the Einstein equation with cosmological
scalar field ¢ = A(w) and the energy-momentum tensor

%(2dM r3 d/\)

Text = pdw?, = W"‘EW
where
Z"M//’ 5R PP (/T kRZ — ca(t(w))Rs), )
dA 38 .
v —W(q/l—kRg—ea(t(w))Rb). (8)

e When 8 =0, i.e., in the absence of diffusion, the functions M and A become
constant and so Text = 0.



The exterior

e Requiring the weak energy condition p > 0 to hold in the whole exterior region
forces us to restrict to the outgoing Vaidya solution.

Proposition
A(w, re(w)) = 0. Moreover the weak energy condition p(w,r) > 0, for all r > rs(w),
holds only for the outgoing Vaidya metric (¢ = —1).

Proof.
By (7) and (8),

56% 3 3

~ _ w

p(W7 f) - r23(t(W))3 {I’):(W) - r ]7 r 2 I’z(W), (9)
by which the result follows immediately. O

e If e = 41 we have p > 0 for r < ry(w). Generalisation of the Einstein-Strauss

void model.
e We restrict from now on to the generalized outgoing Vaidya metric (¢ = —1),
2M A
gext = —(1— 2M(u) _ %ﬁ)dﬁ — 2dudr + r?dQ?. (10)
r

e The apparent horizons are the hypersurfaces in the exterior where B(u, r) = 0.

e The interior and exterior apparent horizons intersect on the boundary.
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Self-Similar solution

e The interior admits the explicit (self-similar) solution:

38 38 .-
a(t) = 6kt ’ (b(t) - 73(t) 2 ’ p(t) = aa(t) 27
where § is the real solution of the polynomial equation
3
8+ ké — f =0.

o Note that §; > 0, for all k =0, £1.
e Towards the past: curvature singularity

o Towards the future: the solution is forever expanding (& > 0) without acceleration
(a=0).

e Apparent horizon:

1
Rag = 27
\/ O +k
e The local mass of the interior is
m(t,R) = §R3t,

hence m(t, R) — +o0 as t — +o0.
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it /It (t = o0)

i~ /9 (t = 0)
(a) Conformal diagram and bounded conformal dia-
gram for k = 1. The solid lines correspond to the
boundary R = 0 and the dashdotted line to the equa-
tor R = 1. The remaining dotted lines are curves
of constant R, for 0 < R < 1, while the dashed
lines represent the apparent horizon at R = Ray. In
this case a suitable matching surface is given by the
curve R =R, < 1.

The exterior

it /It (t = o00)

i~ /I (t=0)

(b) Bounded conformal
diagram k = 0 and k =
—1. The dotted lines are
curves of constant R and
the dashed line is the ap-
parent horizon R = Ry .
The thick solid line cor-
responds to a Big-Bang
type (null) singularity.

Figure: Penrose diagrams for the expanding (at constant rate) interior solution. Each point

represents a 2-sphere of radius r = a(t)R. As usual, i~
infinity respectively, and i® corresponds to spacelike infinity. Also, 37, J* denote past and future

null infinity respectively.

and it represent past and future timelike

Self-Similar solution



Self-Similar solution

Let R = Rp, the boundary of the star. We distinguish three cases:

(i) Rpb > Ram; the interior has an apparent horizon in this case.
(if) Rp = Rawm; the boundary of the star coincides with the apparent horizon.
(iii) Rp < Ram; the interior has no apparent horizon.

The matching conditions give

Rp4, 1
u= Ckt, re(u)=xsu, x)::ﬂ, = ——— >0,

Cx \/1— kR2 + 6, Ry

The exterior metric becomes

u r’ 2 2 502
gexcz—(l—)qf—)\g—2>du — 2dudr + r°dQ°, r > xzu,
r u
where 5 )
R C
AL = &, A = S
Ck 263

Curvature singularity at u = 0, for its Kretschmann scalar K = Riem? is given by

2.2 2
_ 12X 24N

K
r u*

The apparent horizons: hypersurfaces where B(u, r) =0,

Bu,)=h(1), hx)=1-"1

r
u



Self-Similar solution

Proposition

The following holds:

(1) In case (i) there is no apparent horizon in the exterior region and B(u,r) < 0 for
all r > rs(u),u>0.

(2) In case (ii) the apparent horizon in the exterior coincides with the apparent
horizon of the interior, as well as with the matching surface:

rAH(u) = r):(u) = Rang = Rp.

Moreover B(u, r) < 0 for all r > rs(u).

(3) In case (iii) there exists xay > xs such that the metric in the exterior has an
apparent horizon at r = xayu. Moreover B(u,r) > 0 for rs(u) < r < xagu and
B(u,r) <0 for r > xanu.

Proof.
For the proof it suffices to notice that the function h(x) attains its maximum at
x =xs and h(xs) =1 — (Ry/Ran)?. O

e The model under discussion is self-similar, with the lines r = xu, x > xy, on the
(t, r)-plane being tangent to the homothetic vector field in the exterior. We call
such curves homothetic curves.
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Theorem
There exists x« > xy such that the homothetic curve r = xu is spacelike for x > x,
null for x = x« and timelike for xy < x < x«. In case (iii) there holds x. > xaH.

Moreover the homothetic curve r = xxu is the first ingoing radial null geodesics that
escapes to null-infinity.

it It (r = o0)

u=0,r>0

i

Figure: Penrose diagram for the self-similar stellar solution with diffusion in case (iii).
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