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Introduction

Structure of singularities formed in the gravitational collapse of bounded
matter distributions

• Are such singularities naked, i.e. visible to far-away observers?

• Are they safely hidden inside a black-hole?

Collapse of a homogenous dust ball: Oppenheimer-Snyder (1937)

• Consists of a collapsing Friedmann-Lemâıtre-Robertson-Walker interior matched
at a comoving boundary with a Schwarzschild exterior .

Collapse of an inhomogeneous dust ball: Christodoulou (1984)

• Consists of a Lemâıtre-Tolman-Bondi interior matched at a comving boundary
with a Schwarzschild exterior.

• In contrat with Oppenheimer-Snyder, inhomogeneous dust collapse leads to the
formation of naked singularities.
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Diffusion in General Relativity

• Gravitational collapse of matter subject to diffusion?

• Mathematically the inclusion of diffusion terms introduce a regularizing effect in
the equations, which might prevent the formation of naked singularities

• Diffusion is the cause for several physical processes

• Heat conduction

• Brownian motion

• At the microscopic level diffusion is due to random collisions between the particles
of the system with those of the background substance

• Stochastic differential equations

• At the macroscopic scale, random effects are averaged, and diffusion is described
by an effective and deterministic theory

• Relativistic kinetic Fokker-Planck equation for distribution function f .

• There are two theories:

• Kinetic theory based on a Fokker-Planck equation for the particle density in the
phase-space:
S. Calogero, JCAP 11/2011, 016 (2011)

• Fluid theory which is the formal macroscopic limit of the kinetic theory:
S. Calogero J. Geom. Phys. 62, 2208–2213 (2012)
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Fluid theory

• The energy-momentum tensor and energy current for a perfect fluid

Tµν = ρuµuν + p(gµν + uµuν)

Jµ = nuµ

• For a perfect-fluid undergoing velocity diffusion

∇µT
µν = σJν

∇µJ
µ = 0

• σ is the diffusion constant and measures the average energy transferred per unit
time from the background substance to a fluid particle.

• Projecting parallel and orthogonal to uµ

∇µ(ρuµ) + p∇µuµ = σn,

(ρ + p)uµ∇µuν + uνuµ∇µp +∇νp = 0,

∇µ(nuµ) = 0.

• First-law of thermodynamics: entropy S = ρ/n

uµ∇µS = σ,
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• In presence of diffusion Tµν is not divergence-free. Incompatibility with the twice
contracted Bianchi identities ∇µG

µ
ν = 0.

• Add a matter field which interacts with the fluid particles restoring the local
conservation of energy

• The new matter field plays the role of a background medium in which particles
undergo diffusion

• The simplest model for this medium is a vaccum-energy described by a
cosmological scalar field (varying Λ)

Gµν + φgµν = Tµν

• The diffusion equation is
∇µφ = σJµ

• When σ = 0 the model reduces to the Einstein-Euler system with cosmological
constant Λ.

• A. Alho, S. Calogero, M. P. Ramos and A. J. Soares: Dynamics of
Robertson-Walker spacetimes with diffusion, Annals of Physics 204 (2015)

• Stellar models in Spherical Symmetry
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The Interior Region

• Comoving system of coordinates:

g = −e2Φ(t,R) dt2 + e2Ψ(t,R) dR2 + r2(t,R) dΩ2,

u = −e−Φ(t,R)∂t ,

where dΩ2 = dθ2 + sin2 θdψ2 is the standard metric on S2.

• Fix Φ(t,Rb) = 0, so that t is the proper time of observers at rest with respect to
the boundary of the star

• Fix r(0,R) = R, so that the comoving radius R coincides initially, i.e., at time
t = 0, with the radius function of the group orbits.

Theorem
Let p = 0 and let (g , ρ, n, u, φ) be a spherically symmetric solution. Then ρ, n, φ are
functions of t ∈ [0,T ) only and there exist a positive function a : [0,T ) → (0,∞) and
a constant k ∈ R such that

g = −dt2 + a(t)2(
dR2

1− kR2
+ R2dΩ2),

u = −∂t .

• Robertson-Walker geometry! By rescaling the radial coordinate we may assume
that k ∈ {−1, 0, 1}, R < Rb, where Rb < 1 for k = 1.
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• From now on we consider a pressureless fluid (dust).

• The conservation of the particle number density gives n(t) =
a(0)3n(0)

a(t)3
, while

a(t), ρ(t), φ(t) satisfy

( ȧ

a

)2
+

k

a2
=

1

3
(ρ+ φ) ,

ä

a
= −

1

6
ρ+

1

3
φ,

φ̇ = −3
β

a3
, , ρ̇ = −3ρ

ȧ

a
− φ̇,

where β = σn(0)a(0)3/3.

• Two classes of solutions: “Expanding” and“Collapsing”

• Collapsing (dust) solutions behave like the Friedmann-Lemâıtre diffusion-free
solution in the limit toward the singularity.

• This implies that the spacelike singularity at t = ts is a curvature singularity,

• The spacetime is inextendible beyond the spacelike hypersurface t = ts and no
outgoing light ray can emanate from the singularity.

Corollary
There exist no naked singularities in the spherical collapse of dust clouds undergoing
diffusion in a cosmological scalar field.

• The diffusion forces prevents the formation naked singularities by an explicit and
compelling regularizing effect: it forces the dust interior to be spatially

homogeneous.
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• Let χ = gab(∂ar)(∂b r), a = 0, 1:

χ(t,R) = 1− kR2 − ȧ(t)2R2 = (
√

1− kR2 + ȧ(t)R)(
√

1− kR2 − ȧ(t)R).

• Trapped region: χ < 0,

• Regular region: χ > 0.

• Apparent horizon: χ = 0

• Introduce local mass function m(t,R) via

χ = 1−
2m

r
−
φ

3
r2, r(t,R) = a(t)R.

• It follows the identity

m(t,R) =
ρ(t)

6
r3 = m(0,R) +

R3

2
βt,

• The local mass is conserved only in the absence of diffusion (β = 0) and it is
otherwise linearly increasing in time.

• The latter behavior is intimately connected with the irreversibility of the diffusion
process: the entropy is linearly increasing in time:

S(t) = S(0) + σt.
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The Exterior Region

• Bondi coordinates:

gext = −A(w , r)B(w , r)dw2 + 2εA(w , r)dwdr + r2dΩ2,

where ε = ±1.

• ε = 1, w is the ingoing (advanced) null coordinate.

• ε = −1 ,w is the outgoing (retarded) null coordinate.

• The comoving boundary of the star Σ

Σ : r = rΣ(w),

• Σ is assumed to be timelike:

A(w , r(w))(B(w , r(w)) − 2εṙΣ(w)) > 0, ṙΣ =
drΣ

dw
,

i.e., the first fundamental form of Σ has the signature (−,+,+).

• Time orientation of spacetime does not change across the boundary

dt/dw > 0

• The two metrics gint and gext may be matched on Σ if and only if they satisfy
the junction conditions that they induce the same first and second fundamental
form on Σ,
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Theorem
The metrics satisfy the junction conditions if and only if

(a) There holds
rΣ(w) = a(t(w))Rb

(b) The transformation of variable t = t(w) satisfies

ṫ(w) = A(w , rΣ(w))(
√

1− kR2
b − εȧ(t(w))Rb);

(c) There holds

B(w , rΣ(w)) = A(w , rΣ(w))(1 − kR2
b − ȧ(t(w))2R2

b );

(d) There holds Q(w) = 0, where

Q(w) =

[

(B − 2εṙΣ(w))((B − εṙΣ(w))∂rA+ ε∂wA)

− A(2r̈Σ(w) + (B − 3εṙΣ(w))∂rB − ε∂wB)

]

r=rΣ(w)

.
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• Assuming A(w , r) = 1:

Corollary
The exterior metric can be chosen to be the Vaidya type metric with variable
cosmological constant given by

gext = −
(

1−
2M(w)

r
−

Λ(w)

3
r2
)

dw2 + 2εdwdr + r2dΩ2,

where M(w),Λ(w) are given by

M(w) = m(t(w),Rb) and Λ(w) = φ(t(w)).

• The generalized Vaidya metric solves the Einstein equation with cosmological
scalar field φ = Λ(w) and the energy-momentum tensor

Text = ρ̃ dw2, ρ̃ =
ε

r2

(

2
dM

dw
+

r3

3

dΛ

dw

)

,

where

dM

dw
=
βR3

b

2
(
√

1− kR2
b − εȧ(t(w))Rb), (7)

dΛ

dw
= −

3β

a(t(w))3
(
√

1− kR2
b − εȧ(t(w))Rb). (8)

• When β = 0, i.e., in the absence of diffusion, the functions M and Λ become
constant and so Text = 0.
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• Requiring the weak energy condition ρ̃ > 0 to hold in the whole exterior region
forces us to restrict to the outgoing Vaidya solution.

Proposition
ρ̃(w , rΣ(w)) = 0. Moreover the weak energy condition ρ̃(w , r) > 0, for all r > rΣ(w),
holds only for the outgoing Vaidya metric (ε = −1).

Proof.
By (7) and (8),

ρ̃(w , r) =
εβ dt

dw

r2a(t(w))3

[

r3Σ(w) − r3
]

, r ≥ rΣ(w), (9)

by which the result follows immediately.

• If ε = +1 we have ρ̃ > 0 for r < rΣ(w). Generalisation of the Einstein-Strauss
void model.

• We restrict from now on to the generalized outgoing Vaidya metric (ε = −1),

gext = −
(

1−
2M(u)

r
−

Λ(u)

3
r2
)

du2 − 2dudr + r2dΩ2. (10)

• The apparent horizons are the hypersurfaces in the exterior where B(u, r) = 0.

• The interior and exterior apparent horizons intersect on the boundary.
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Self-Similar solution

• The interior admits the explicit (self-similar) solution:

a(t) = δk t , φ(t) =
3β

2δk
a(t)−2 , ρ(t) =

3β

δk
a(t)−2,

where δk is the real solution of the polynomial equation

δ3 + kδ −
3β

2
= 0.

• Note that δk > 0, for all k = 0,±1.

• Towards the past: curvature singularity

• Towards the future: the solution is forever expanding (ȧ > 0) without acceleration
(ä = 0).

• Apparent horizon:

RAH =
1

√

δ2k + k
.

• The local mass of the interior is

m(t,R) =
β

2
R3t,

hence m(t,R) → +∞ as t → +∞.
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=∼

i− / I−(t = 0)

i+ / I+(t = ∞)

R = 0

R = 0 R
=

R
A
H

R
=

R
A
H

(a) Conformal diagram and bounded conformal dia-
gram for k = 1. The solid lines correspond to the
boundary R = 0 and the dashdotted line to the equa-
tor R = 1. The remaining dotted lines are curves
of constant R, for 0 < R < 1, while the dashed
lines represent the apparent horizon at R = RAH . In
this case a suitable matching surface is given by the
curve R = Rb < 1.
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i− / I−(t = 0)

i0

i+ / I+(t = ∞)

R = 0 R
=

R
A
H

I−(t = 0)

I+(t = ∞)

(b) Bounded conformal
diagram k = 0 and k =
−1. The dotted lines are
curves of constant R and
the dashed line is the ap-
parent horizon R = RAH .
The thick solid line cor-
responds to a Big-Bang
type (null) singularity.

Figure: Penrose diagrams for the expanding (at constant rate) interior solution. Each point

represents a 2-sphere of radius r = a(t)R. As usual, i− and i+ represent past and future timelike

infinity respectively, and i0 corresponds to spacelike infinity. Also, I−, I+ denote past and future
null infinity respectively.
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• Let R = Rb the boundary of the star. We distinguish three cases:
(i) Rb > RAH; the interior has an apparent horizon in this case.
(ii) Rb = RAH; the boundary of the star coincides with the apparent horizon.
(iii) Rb < RAH; the interior has no apparent horizon.

• The matching conditions give

u = Ck t, rΣ(u) = xΣu, xΣ =
Rbδk

Ck
, Ck =

1
√

1− kR2
b + δkRb

> 0,

• The exterior metric becomes

gext = −
(

1− λ1
u

r
− λ2

r2

u2

)

du2 − 2dudr + r2dΩ2, r > xΣu,

where

λ1 =
βR3

b

Ck
, λ2 =

βC2
k

2δ3k
.

• Curvature singularity at u = 0, for its Kretschmann scalar K = Riem
2 is given by

K =
12λ21u

2

r6
+

24λ22
u4

.

• The apparent horizons: hypersurfaces where B(u, r) = 0,

B(u, r) = h
( r

u

)

, h(x) = 1−
λ1

x
− λ2x

2.
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Proposition
The following holds:

(1) In case (i) there is no apparent horizon in the exterior region and B(u, r) < 0 for
all r > rΣ(u), u > 0.

(2) In case (ii) the apparent horizon in the exterior coincides with the apparent
horizon of the interior, as well as with the matching surface:

rAH(u) = rΣ(u) ≡ RAH = Rb.

Moreover B(u, r) < 0 for all r > rΣ(u).

(3) In case (iii) there exists xAH > xΣ such that the metric in the exterior has an
apparent horizon at r = xAHu. Moreover B(u, r) > 0 for rΣ(u) < r < xAHu and
B(u, r) < 0 for r > xAHu.

Proof.
For the proof it suffices to notice that the function h(x) attains its maximum at
x = xΣ and h(xΣ) = 1− (Rb/RAH)2.

• The model under discussion is self-similar, with the lines r = xu, x > xΣ, on the
(t, r)-plane being tangent to the homothetic vector field in the exterior. We call
such curves homothetic curves.
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Theorem
There exists x∗ > xΣ such that the homothetic curve r = xu is spacelike for x > x∗,
null for x = x∗ and timelike for xΣ < x < x∗. In case (iii) there holds x∗ > xAH.
Moreover the homothetic curve r = x∗u is the first ingoing radial null geodesics that
escapes to null-infinity.

�
�
�
�
�
�
�
�
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�
�

i−

i+

R = 0 xAH

x∗

I−(u = 0, r = 0)

I+(r = ∞)
u = 0, r > 0

Figure: Penrose diagram for the self-similar stellar solution with diffusion in case (iii).
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