Conformal geodesics in spherically symmetric vacuum spacetimes with cosmological constant

Alfonso García-Parrado Gómez-Lobo*

*Dep. Física Teórica, Universidad del País Vasco, Bilbao (Spain)

Braga, 5th September 2017.

Work done in collaboration with E. Gasperín and J. A. Valiente Kroon.

Bibliography:

A. García-Parrado, E. Gasperín and J. A. Valiente Kroon *Conformal geodesics in spherically symmetric vacuum spacetimes with cosmological constant*, https://arxiv.org/abs/1704.05639

- 1 Conformal geometry in general relativity
- 2 The computation of the conformal boundary
- 3 The role of conformal geodesics
- 4 Conformal geodesics in warped product space-times
- 6 Analysis of the conformal geodesics for the Schwarzschild solution with cosmological constant (Kottler solution)

Open issues

Let $(\tilde{\mathcal{M}}, \tilde{g})$, (\mathcal{M}, g) be 4-dimensional space-times:

- $\Phi: \tilde{\mathcal{M}} \to \mathcal{M}$ is a smooth conformal map iff $\Phi^* g = \Theta^2 \tilde{g}, \, \Theta \in C^{\infty}(\tilde{M})$. If a conformal map Φ exists then $(\tilde{\mathcal{M}}, \tilde{g})$ and (\mathcal{M}, g) are conformally related.
- When Θ ≠ 0, the light cone of conformally related space-times can be put into one-to-one correspondence ⇒ Conformally related space-times have a similar causal structure.
- If Φ is an embedding then $\Phi(\tilde{\mathcal{M}}) \subset \mathcal{M}$ is diffeomorphic to $\tilde{\mathcal{M}}$ and $\Theta \neq 0$ on $\tilde{\mathcal{M}}$. Φ is then a conformal embedding and $(\mathcal{M}, g_{\mu\nu})$ is a conformal extension of $(\tilde{\mathcal{M}}, \tilde{g}_{\mu\nu})$.

The conformal boundary of $\tilde{\mathcal{M}}$ with respect to a conformal embedding Φ is defined by

 $\partial \tilde{\mathcal{M}} \equiv \partial (\Phi(\tilde{\mathcal{M}})).$

Conformal geometry in general relativity

Figure : Left: conformal embedding of the 4-dimensional Minkowski space-time into the Einstein static universe. Right figure taken from S. W. Hawking and G. F. R. Ellis *The Large scale structure of space-time* Cambridge University Press, Cambridge (1973).

• Let $(\mathcal{M}, \tilde{g}_{\mu\nu})$ be a solution of the vacuum Einstein field equations with cosmological constant λ

$$\tilde{R}_{\mu\nu} - \frac{1}{2}\tilde{R}\,\tilde{g}_{\mu\nu} - \lambda\tilde{g}_{\mu\nu} = 0 \Longrightarrow \tilde{R}_{\mu\nu} = -\lambda\tilde{g}_{\mu\nu}, \qquad \tilde{R} = -4\lambda.$$

The solution $(\tilde{\mathcal{M}}, \tilde{g}_{\mu\nu})$ is called the physical spacetime.

- Introduce a conformal extension $(\mathcal{M}, g_{\mu\nu})$ of $(\tilde{\mathcal{M}}, \tilde{g}_{\mu\nu})$. The space-time $(\mathcal{M}, g_{\mu\nu})$ is called the unphysical space-time.
- The computation of a conformal extension of an Einstein space-time and the corresponding conformal boundary will enable us to gain a wealth of information about the global properties of the space-time.

The relation between $\tilde{g}_{\mu\nu}$ and $g_{\mu\nu}$ can be thought of as a conformal coordinate change $g = \Theta^2 \tilde{g}$ in the unphysical spacetime $(\mathcal{M}, g_{\mu\nu})$. The conformal boundary is then given by $\Theta = 0$.

Idea

For a given physical space-time $(\tilde{\mathcal{M}}, \tilde{g})$, find a coordinate system (τ, x_*) such that in the new coordinates

$$ilde{m{g}}(au,m{x}_{\star}) = rac{m{g}(au,m{x}_{\star})}{\Theta(au,m{x}_{\star})^2}.$$

Ideally, \boldsymbol{x}_* should vary within a compact spatial domain.

• A conformal Gaussian coordinate system constructed from a congruence of conformal geodesics realize this idea.

Spacelike hypersurface parametrized by $oldsymbol{x}_*$:

Definition

Given an interval $I \subseteq \mathbb{R}$, let $x(\tau)$, $\tau \in I$ denote a curve in (\mathcal{M}, \tilde{g}) and let $\beta(\tau)$ denote a 1-form along $x(\tau)$. Furthermore, let $\dot{x} \equiv dx/d\tau$ denote the tangent vector field of the curve $x(\tau)$. The *conformal geodesic equations* are then given by:

$$egin{array}{l} ilde{
abla}_{\dot{m{x}}}\dot{m{x}} = -2\langlem{eta},\dot{m{x}}
angle\dot{m{x}}+ ilde{m{g}}(\dot{m{x}},\dot{m{x}})m{eta}^{\sharp},\ ilde{
abla}_{\dot{m{x}}}m{eta} = \langlem{eta},\dot{m{x}}
anglem{eta} - rac{1}{2} ilde{m{g}}^{\sharp}(m{m{eta}},m{eta})\dot{m{x}}^{\flat} + ilde{m{L}}(\dot{m{x}},\cdot), \end{array}$$

where $\hat{\nabla}$ denotes the Levi-Civita connection of the physical metric \tilde{g} , $\tilde{\nabla}_{\dot{x}}$ denotes a derivative in the direction of \dot{x} and β^{\sharp} is the contravariant version of β with respect to \tilde{g} .

The symbol \tilde{L} denotes the Schouten tensor of \tilde{g} defined by:

$$\tilde{L}_{\mu\nu} \equiv \frac{1}{2} \bigg(\tilde{R}_{\mu\nu} - \frac{1}{6} \tilde{R} \, \tilde{g}_{\mu\nu} \bigg).$$

 $\bullet\,$ Choose a parameter $\tau\,$ for the conformal geodesic such that

 $m{g}(\dot{m{x}},\dot{m{x}})=1\;,\;\;$ (signature convention (+,-,-,-)).

• au is the unphysical proper time. Then a computation shows that

$$\tilde{\nabla}_{\dot{x}}\tilde{\nabla}_{\dot{x}}\tilde{\nabla}_{\dot{x}}\Theta = \frac{3}{\Theta}\tilde{L}(\beta^{\sharp},\dot{x}) - 3\Theta\langle\beta,\dot{x}\rangle\tilde{L}(\dot{x},\dot{x}) + \Theta(\tilde{\nabla}_{\dot{x}}\tilde{L})(\dot{x},\dot{x}).$$

The role of conformal geodesics

• From now on assume that our space-time is an Einstein space. Then one has that $\tilde{L} = -\frac{1}{6}\lambda \tilde{g}$ and hence

$$\tilde{\nabla}_{\dot{\boldsymbol{x}}}\tilde{\nabla}_{\dot{\boldsymbol{x}}}\tilde{\nabla}_{\dot{\boldsymbol{x}}}\Theta=0\;,$$

• This equation can be integrated in terms of quantities defined at Σ (initial data quantities)

$$\Theta = \Theta_{\star} + \dot{\Theta}_{\star}(\tau - \tau_{\star}) + \frac{1}{2} \ddot{\Theta}_{\star}(\tau - \tau_{\star})^2.$$

 $\dot{\Theta}_{\star}$ and $\ddot{\Theta}_{\star}$ are defined in terms of the initial data quantities Θ_{\star} (initial conformal factor), \boldsymbol{x}_{\star} (initial velocity) and $\boldsymbol{\beta}_{\star}$ (initial acceleration).

$$\dot{\Theta}_{\star} = \langle \boldsymbol{\beta}_{\star}, \dot{\boldsymbol{x}}_{\star} \rangle \Theta_{\star}, \qquad \Theta_{\star} \ddot{\Theta}_{\star} = \frac{1}{2} \tilde{\boldsymbol{g}}(\boldsymbol{\beta}_{\star}, \boldsymbol{\beta}_{\star}) - \frac{1}{6} \lambda.$$

Computation of the conformal boundary $\Theta = \Theta_{\star} + \dot{\Theta}_{\star}(\tau - \tau_{\star}) + \frac{1}{2}\ddot{\Theta}_{\star}(\tau - \tau_{\star})^2 = 0$ Conformal geodesics parametrized in terms of τ Initial data hypersurface. Compute Θ_{\star} , $\dot{\Theta}_{\star}$, $\ddot{\Theta}_{\star}$, in terms of initial (unphysical data quantities $\Theta_{\star}, x_{\star}, \beta_{\star}$. proper time)

The role of conformal geodesics

The conformal geodesics give us a procedure to analyze the properties of a conformal boundary without actually solving the conformal equations.

Procedure

- **O** Choose a set of initial data quantities Θ_{\star} , x_{\star} and β_{\star} .
- Orry to show that the congruence of conformal geodesics exists for every value of the unphysical parameter τ and develops no caustics within the region of interest.
- If the previous is true, use then the formula of Θ(τ, x*) to compute the location of the conformal boundary and its structure.
- The set of conformal geodesics define a congruence of curves. If the congruence covers the region of interest we can use it to define a new coordinate system (τ, x_{*}) in the unphysical space-time (M, g) (conformal Gaussian coordinates). In these coordinates we have

 $\boldsymbol{g}(\tau, \boldsymbol{x}_{\star}) = \Theta(\tau, \boldsymbol{x}_{\star})^2 \tilde{\boldsymbol{g}}(\tau, \boldsymbol{x}_{\star}).$

In general the computation of a congruence of conformal geodesics with the right properties is a difficult problem. However, the problem can be simplified in certain cases.

• Consider the warped product physical Einstein space-time

$$ilde{oldsymbol{g}} = D(r) \mathbf{d}t \otimes \mathbf{d}t - rac{\mathbf{d}r \otimes \mathbf{d}r}{D(r)} + f^2(r) k_{ij}(x^k) \mathbf{d}x^i \otimes \mathbf{d}x^j \;,\; i,j,k=2,3.$$

• Seek solutions of the conformal geodesic equations of the form :

$$\begin{split} \tilde{\boldsymbol{x}}' &= t'(\tilde{\tau}, r_*) \frac{\partial}{\partial t} + r'(\tilde{\tau}, r_*) \frac{\partial}{\partial r} \Longrightarrow \boldsymbol{\beta} = \boldsymbol{\beta}(-r'(\tilde{\tau}, r_*) \mathbf{d}t + t'(\tilde{\tau}, r_*) \mathbf{d}r) ,\\ \tilde{\boldsymbol{g}}(\tilde{\boldsymbol{x}}', \tilde{\boldsymbol{x}}') &= 1 \end{split}$$

where $\tilde{\tau}$ is the physical proper time, $' \equiv d/d\tilde{\tau}$ means derivative with respect to the proper physical parameter and β is a constant defined from the initial data.

The role of conformal geodesics

• Under these assumptions, the equations for the conformal geodesics are reduced to the following set

$$\begin{split} t'' &+ \frac{\partial_r D(r)}{D(r)} r't' = \frac{\beta r'}{D(r)} ,\\ r'' &- \frac{\partial_r D(r)}{2D(r)} r'^2 + \frac{1}{2} D(r) \partial_r D(r) t'^2 = D(r) \beta t'. \end{split}$$

• The condition $\tilde{{m g}}(\tilde{{m x}}',\tilde{{m x}}')=1$ is rendered in the form

$$D(r) t'^2 - \frac{r'^2}{D(r)} = 1.$$

• And the relation between the unphysical proper time and the physical proper time is

$$\tilde{\tau} = \int_{\tau_*}^{\tau} \frac{ds}{\Theta(s)}$$

The role of conformal geodesics

• The previous equations can be reduced to first order equations solvable up to quadratures

$$\begin{aligned} r' &= \pm \sqrt{(\gamma + \beta r)^2 - D(r)} ,\\ \gamma &\equiv -\beta r_\star + \sqrt{D_\star + r'_\star} , \qquad D_\star \equiv D(r_\star) > 0 , \qquad r'_\star \equiv r'(\tilde{\tau}_\star) ,\\ t' &= \frac{|\gamma + \beta r|}{|D(r)|}. \end{aligned}$$

• We choose a congruence which is orthogonal to the initial data hypersurface. This implies the conditions

$$r'(\tilde{\tau}_{\star}) = 0 \Rightarrow \gamma = -\beta r_{\star} + \sqrt{D_{\star}} , \quad t'(\tilde{\tau}_{\star}) = \frac{1}{\sqrt{|D_{\star}|}}.$$

• Hence we only need to choose an adequate value of $\beta = \beta(r_*)$ and Θ_* .

The warped product structure arises naturally for many Einstein spaces

• Schwarzschild solution (H. Friedrich 2003)

$$\tilde{g} = \left(1 - \frac{2m}{r}\right) \mathbf{d}t \otimes \mathbf{d}t - \left(1 - \frac{2m}{r}\right)^{-1} \mathbf{d}r \otimes \mathbf{d}r - r^2 \boldsymbol{\sigma}.$$

• The Reissner Nordström solution (C. Lübbe and J.A. Valiente Kroon 2013)

$$\tilde{\boldsymbol{g}} = \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right) \mathbf{d}t \otimes \mathbf{d}t - \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)^{-1} \mathbf{d}r \otimes \mathbf{d}r - r^2 \boldsymbol{\sigma}.$$

• The Kottler solution (Schwarzschild solution with cosmological constant). (A. García-Parrado, E. Gasperín, J. A. Valiente Kroon 2017)

$$ilde{oldsymbol{g}} = \left(1 - rac{2m}{r} - rac{\lambda}{3}r^2
ight) \mathbf{d}t \otimes \mathbf{d}t - \left(1 - rac{2m}{r} - rac{\lambda}{3}r^2
ight)^{-1} \mathbf{d}r \otimes \mathbf{d}r - r^2 oldsymbol{\sigma}.$$

The Kottler solution

• $\lambda > 0$ (Schwarzschild-de Sitter solution, topology $\mathbb{S}^2 \times \mathbb{S}^1 \times \mathbb{R}$).

• $\lambda < 0$ (Schwarzschild-anti de Sitter solution, topology $\mathbb{S}^2 \times \mathbb{R} \times \mathbb{R}$).

Schwarzschild de Sitter solution

• Parameters of the congruence of conformal geodesics

$$r_b \leq r_\star \leq r_c$$
, $\boldsymbol{\beta}_\star = 0$, $\Theta_\star = 1 \Longrightarrow \dot{\Theta}_\star = 0$, $\Theta(\tau) = 1 - \frac{\tau^2}{4}$.

• Congruence of conformal geodesics plotted on the Penrose diagram

Schwarzschild de Sitter solution

• Spacetime representation in conformal Gaussian coordinates

Schwarzschild anti-de Sitter solution

• Parameters of the congruence of conformal geodesics

$$\Theta_{\star} = \frac{1}{\sqrt{1+r_{\star}^2}}, \qquad \boldsymbol{\beta}_{\star} = -\frac{r_{\star}}{1+r_{\star}^2} \mathbf{d}r_{\star}$$

• Congruence of conformal geodesics plotted on the Penrose diagram

Schwarzschild anti-de Sitter solution

• Spacetime representation in conformal Gaussian coordinates

- Attempt to carry out a similar construction for the Kerr family.
- Obtain the explicit coordinate representation of the conformal metrics in conformal Gaussian coordinates. This would allow us to find the explicit coordinate representation of the unphysical spacetime.
- In the case of the Schwarzschild anti-de Sitter we have the conformal embedding of only a subset but the knowledge of the unphysical spacetime could allow us to obtain the full conformal embedding by means of an appropriate coordinate extension.