Chaotic lensing around boson stars and Kerr black holes with scalar hair


Presenting author: Pedro Cunha

In a recent letter, it was shown that the lensing of light around rotating boson stars and Kerr black holes with scalar hair can exhibit chaotic patterns. Since no separation of variables is known (or expected) for geodesic motion on these backgrounds, we examine the 2D effective potentials for photon trajectories, to obtain a deeper understanding of this phenomenon. We find that the emergence of stable light rings on the background spacetimes, allows the formation of ?pockets? in one of the effective potentials, for open sets of impact parameters, leading to an effective trapping of some trajectories, dubbed quasi-bound orbits. We conclude that pocket formation induces chaotic scattering, although not all chaotic orbits are associated to pockets. An analysis of photon orbits allows us to further establish a positive correlation between photon orbits in chaotic regions and those with more than one turning point in the radial direction; we recall that the latter is not possible around Kerr black holes. Moreover, we observe that the existence of several light rings around a horizon (several fundamental orbits, including a stable one), is a central ingredient for the existence of multiple shadows of a single hairy black hole.

Click here to access the slides.