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ABSTRACT. We prove quantitative equidistribution results for actions of
Abelian subgroups of the 2g+1 dimensional Heisenberg group acting
on compact 2g+1-dimensional homogeneous nilmanifolds. The results
are based on the study of the C∞-cohomology of the action of such
groups, on tame estimates of the associated cohomological equations
and on a renormalisation method initially applied by Forni to surface
flows and by Forni and the second author to other parabolic flows. As
an application we obtain bounds for finite Theta sums defined by real
quadratic forms in g variables, generalizing the classical results of Hardy
and Littlewood [HL14, HL26] and the optimal result of Fiedler, Jurkat
and Körner [FJK77] to higher dimension.
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1. INTRODUCTION

In the analysis of the time evolution of a dynamical system many problems
reduce to the study of the cohomological equation; in the case, for example,
of a smooth vector field X on a connected compact manifold M this means
finding a function u on M that is solution of the equation

(1.1) Xu = f ,

where f is a given function on M.
For a detailed discussion of the cohomological equation for flows and

tranformations in ergodic theory the reader may consult [Kat03].
In the 2006 paper [FF06] Forni and the second author used renormaliza-

tion techniques coupled with the study of the cohomological equation to
derive the equidistribution speed of nilflows on Heisenberg three-manifolds.
This approach had initially been used by Forni for the study of flows on
translation surfaces and subsequently by Forni and the second author [FF03]
for the study of horocycle flows, where precise asymptotics of the equidis-
tribution of these flows were obtained (see also [BF14]). Renormalization
fails for homogeneous flows on higher-step nilmanifolds as, in general, the
automorphism group of the underlying nilpotent group is rather poor, lacking
semi-simple elements. In a recent paper [FF14] Forni and the second au-
thor developped a novel “rescaling technique” to overcame this difficulty in
higher-step nilmanifold; as a consequence they obtained non-trivial estimates
on Weyl sums, estimates which have recently improved independently by
Wooley [Woo15].

The present paper moves in a different direction: the study of higher-rank
Abelian actions, a theme of research that has been the subject of several
investigations, primarily by A. Katok and co-authors ([KK95, KS97, DK10,
KRH10, DK10, KN11], . . . ). In fact, homogeneous actions of Abelian
subgroups of higher dimensional Heisenberg groups provide a setting where
renormalization methods may still be applied, yielding precise quantitative
estimates of the rate of equidistribution of the orbits once an in-depth analysis
of the cohomological equations is carried out. Thus, an important part of
this work is devoted to the study of the full cohomology of the actions of
these groups; our attention has been focused on obtaining tame estimates for
the solutions of cohomological equations with minimal loss of smoothness,
a result that has its own interest in view of future applications to the study of
some perturbations of these actions.

An immediate consequence of the quantitative estimates of the rate of
equidistribution are bounds on exponential sums for quadratic forms in
terms of certain diophantine properties of the form. To our knowledge
these bounds, which generalise the classical results of Hardy and Littlewood
[HL14, HL26] and the optimal result of Fiedler, Jurkat and Körner [FJK77],
are new.
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Cohomology in Heisenberg manifolds. In this article we study the coho-
mology of the action of an abelian subgroup P of the (2g+1)-dimensional
Heisenberg group Hg on the algebra of smooth functions on a homogeneous
manifold Hg/Γ. The linearity of the problem and the fact that the unitary
dual of Hg is classical knowledge make the use of harmonic analysis par-
ticularly suitable to our goal, as it was the case in the works of L. Flaminio
and G. Forni [FF03, FF06, FF07]. As a consequence, our results on the
cohomology of P also apply to more general Hg-modules, those for which
the action of the center of Hg has a spectral gap.

Before stating our results let us fix some notation.
Let G be a connected Lie group of Lie algebra g, and let M = G/Γ be

a compact homogeneous space of G. Then G acts by left translations on
C∞(M) via

(1.2) (h. f )(m) = f (h−1m), h ∈ G, f ∈C∞(M).

Let F be a closed G-invariant subspace of C∞(M). The space F is a tame
graded Fréchet space [Ham82, Def. II.1.3.2] topologized by the family of
increasing Sobolev norms ‖ · ‖s, defining L2 Sobolev spaces W s(M).

For any connected Lie subgroup P < G with Lie algebra p, the action
by translations of P on G/Γ turns F into a p-module. Therefore we may
consider the Chevalley-Eilenberg cochain complex A∗(p,F) := Λ∗p′⊗F of
F-valued alternating forms on p, endowed with the usual differential “d”. By
cohomology of the p-module F we simply mean the Lie-algebra cohomology
H∗(p,F) of this cochain complex. When F =C∞(M) we also refer to this
cohomology as the cohomology of the action of P on M.

A natural question that arises when we consider a Lie group or Lie algebra
cohomology with values in a topological module, is whether the reduced
cohomology coincides with ordinary cohomology; that is whether the spaces
B∗(p,F) of co-boundaries are closed in the spaces Z∗(p,F) of cocycles.
Following A. Katok [Kat01], we give the following definition.

Definition 1.1. The p-module F is cohomologically C∞-stable in degree k
if the space Bk(p,F) of F-valued co-boundaries of degree k is closed in the
C∞ topology.

Let Zk(p,F) denote the space of closed currents of dimension k, that is the
space of all continuous linear functionals on Ak(p,M) vanishing on Bk(p,F).
By the Hahn-Banach Theorem, Bk(p,F) is a closed subspace of Ak(p,F) if
and only if it is equal to the intersection of the kernels of all D ∈ Zk(p,F).

We recall that a tame linear map φ : F1→ F2 between tame graded Fréchet
spaces satisfies a tame estimate of degree r with base b if, denoting by ‖ · ‖s
the norms defining the grading, we have ‖φ( f )‖s ≤C‖ f‖s+r for all s ≥ b
and f ∈ F1; the constant C may depends on s.

The tame grading of F implies that A∗(p,F) is a tame graded Fréchet
cochain complex and that the differentials are tame maps of degree 1. Thus,
besides C∞-stability, another question that arises naturally is whether, for
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a given a co-boundary ω , there exists a primitive Ω whose norm is tamely
estimated by the norm of ω .

Definition 1.2. We say that the p-module F is tamely cohomologically C∞-
stable in degree k≥ 1 if there exists a tame map d−1 : Bk(p,F)→ Ak−1(p,F)
assigning to every co-boundary ω ∈ Bk(p,F) a primitive of ω .

A related question, which is fundamental in perturbation theory, is whether
the chochain complex Ak(p,F) has a tame splitting [Ham82] (see [KK05,
DK11]). Recall that a graded Fréchet space F1 is a tame direct summand of
a graded Fréchet space F2 if there are tame maps L : F1→ F2 and M : F2→
F1 such that M ◦ L is the identity map of F1 [Ham82, Def. II.1.3.1]. In
this situation we also say that the short exact sequence 0→ F1 → F2 →
F2/L(F1)→ 0 splits tamely.

Definition 1.3. We say that the p-module F has tame splitting in degree k if
the space Bk(p,F) is a tame direct summand of Ak(p,F).

Let Hg be the Heisenberg group of dimension 2g+ 1. Any compact
homogeneous space M = Hg/Γ is a circle bundle p : M→ Hg/(ΓZ(Hg))
over the 2g-dimensional torus T2g = Hg/(ΓZ(Hg)), with fibers given by the
orbits of the center Z(Hg) of Hg. The space of C∞ functions on M splits as a
direct sum of the Hg-invariant subspace π∗(C∞(T2g)) and the Hg-invariant
subspace F0 = C∞

0 (M) formed by the smooth functions on M having zero
average on the fibers of the fibration p. The following theorem is a particular
case of Theorem 3.16 below.

Definition 1.4. A connected Abelian subgroup of Hg without central ele-
ments will be called an isotropic subgroup of Hg. A Legendrian subgroup of
Hg is an isotropic subgroup of Hg of maximal dimension g.

Theorem 1.5. Let P be a d-dimensional isotropic subgroup of Hg with Lie
algebra p. The p-module F0 is tamely cohomologically C∞-stable in all
degrees. In fact, for all k = 1, . . . ,d there are linear maps

d−1 : Bk(p,F0)→ Ak−1(p,F0)

associating to each ω ∈ Bk(p,F0) a primitive of ω and satisfying tame
estimates of degree (k+1)/2+ ε for any ε > 0.

We have Hk(p,F0) = 0 for k < d; in degree d, we have that Hd(p,F0)
is infinite dimensional if d < g or one-dimensional if d = g (i.e. if p is a
Legendrian subspace) in each irreducible p-sub-module of F0.

The p-module F0 has tame splitting in all degrees: for k = 0, . . . ,d and
any ε > 0, there exist a constant C and linear maps

Mk : Ak(p,F0)→ Bk(p,F0)

such that the restriction of Mk to Bk(p,F0) is the identity map and the
following estimates hold

‖Mk
ω‖s ≤C‖ω‖s+w, ∀ω ∈ Ak(p,F0)
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where w = (k+3)/2+ ε , if k < d and w = d/2+ ε if k = d.

Let P < Hg be a subgroup as in the theorem above and let P̄ be group
obtained by projecting P on Hg/Z(Hg) ≈ R2g. As before we set T2g =
Hg/(ΓZ(Hg)). The P-module π∗(C∞(T2g)) is naturally isomorphic to the P̄-
module C∞(T2g). It should be considered as folklore that the cohomology of
the action of a subgroup P̄ on a torus depends on the Diophantine properties
of P̄, considered as vector space. The Diophantine condition p̄ ∈ DCτ(Γ̄)
mentioned in the theorem below will be precised in section 3.1.

Theorem 1.6. Let P be an isotropic subgroup of Hg, let M := Hg/Γ be a
compact homogeneous space and let F :=C∞(M). Let P̄ be the projection of
P into Hg/Z(Hg)≈ R2g, let p̄ its Lie algebra, and let Γ̄ = Γ/(Γ∩Z(Hg))≈
Z2g. Then action of P on M is tamely cohomologically C∞-stable and has
a tame splitting in all degrees if and only if p̄ ∈ DCτ(Γ̄) for some τ > 0. In
this case we have

Hk(p,F) = Λ
kp if k < dim p, Hk(p,F) = Λ

kp⊕Hk(p,F0) if k = dimp

Equidistribution of isotropic subgroups on Heisenberg manifolds. Let
M = Hg/Γ be the standard Heisenberg nilmanifold (see Section 2 for details
on the definitions and notations). Let (X1, . . . ,Xg,Ξ1, . . . ,Ξg,T ) be a fixed
rational basis of hg =Lie(Hg) satisfying the canonical commutation relations.
Then the symplectic group Sp2g(R) acts on Hg by automorphisms1. For
1 ≤ d ≤ g, let Pd be the subgroup generated by (X1, . . . ,Xd) and, for any
α ∈ Sp2g(R), set Xα

i := α−1(Xi), 1≤ i≤ d. We define a parametrization of
the subgroup α−1(Pd) according to

Pd,α
x := exp(x1Xα

1 + · · ·+ xdXα
d ), x = (x1, . . . ,xd) ∈ Rd.

Given a Jordan region U ⊂Rd and a point m∈M, we define a d-dimensional
p-current Pd,α

U m by

(1.3)
〈
Pd,α

U m,ω
〉

:=
∫

U
f (Pd,α

x m)dx

for any degree d p-form ω = f dXα
1 ∧ ·· · ∧ dXα

d , with f ∈ C∞
0 (M) (here

C∞
0 (M) denotes the space of smooth functions with zero average along the

fibers of the central fibration of M).
It is well-known that the Diophantine properties of a real number may be

formulated in terms of the speed of excursion, into the cusp of the modular
surface, of a geodesic ray having that number as limit point on the boundary
of hyperbolic space. This observation allows us to define the Diophantine
properties of the subgroup Pd,α in terms of bounds on the height of the
projection, in the Siegel modular variety Σg = Kg\Sp2g(R)/Sp2g(Z), of the
orbit of α under the action of some one-parameter semi-group of the Cartan

1by acting on the left on the components of elements of hg in the given basis.
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subgroup of Sp2g(R) (here Kg denotes the maximal compact subgroup of
Sp2g(R)). We refer to Section 4.4 for the definition of height function.

Let {exp tδ̂ (d)}t∈R be the Cartan subgroup of Sp2g(R) defined by the

formula exp(tδ̂ (d))Xi = etXi, for i = 1, . . . ,d and exp(tδ̂ (d))Xi = Xi, for
i= d+1, . . . ,g. Roughly, the definition 4.10 states that α ∈ Sp2g(R) satisfies

a δ̂ (d)-Diophantine condition of type σ , if the height of the projection of
exp(−tδ̂ (d))α in the Siegel modular variety Σg is bounded by e2td(1−σ); if,
for any ε > 0, the height considered above is bounded by e2tdε , then we say
that α ∈ Sp2g(R) satisfies a δ̂ (d)-Roth condition; finally we say that α is

of bounded type if the height of exp(−δ̂ )α , stays bounded as δ̂ ranges in a
positive cone a+ in the Cartan algebra of diagonal symplectic matrices (see
Def. 4.10).

As the height function is defined on the Siegel modular variety Σg, the
Diophantine properties of α depend only on its class [α] in the quotient
space Mg = Sp2g(R)/Sp2g(Z).

The definitions above agree with the usual definitions in the g = 1 case.
Several authors (Lagarias [Lag82], Dani [Dan85], Kleinbock and Margulis
[KM99], Chevallier [Che13]) proposed, in different contexts, various gener-
alizations of the g = 1 case: we postpone to Remark 4.11 the discussion of
these generalizations.

We may now state our main equidistribution result.

Theorem 1.7. Let Pd < Hg be an isotropic subgroup of dimension d ≤ g.
Set Q(T ) = [0,T ]d . For any s > 1

4d(d +11)+g+1/2 and any ε > 0 there
exists a constant C =C(P,α,s,g,ε)> 0 such that, for all T � 1 and all test
p-forms ω ∈ Λdp⊗W s

0 (M),
• there exists a full measure set Ωg(wd) ⊂Mg such that if [α] ∈

Ωg(wd) then∣∣∣〈Pg,α
Q(T )m,ω

〉∣∣∣≤C (logT )d+1/(2g+2)+ε T d/2 ‖ω‖s

• if [α]∈Mg satisfies a δ̂ (d)-Diophantine condition of exponent σ > 0
then ∣∣∣〈Pd,α

Q(T )m,ω
〉∣∣∣≤C T d(1−σ ′/2) ‖ω‖s ,

for all σ ′ < σ ;
• if [α] ∈Mg satisfies a δ̂ (d)-Roth condition, then∣∣∣〈Pd,α

Q(T )m,ω
〉∣∣∣≤C T d/2+ε ‖ω‖s ,

• if [α] ∈Mg is of bounded type, then∣∣∣〈Pd,α
Q(T )m,ω

〉∣∣∣≤C T d/2 ‖ω‖s

The exponent of the logarithmic factor in the first case is certainly not
optimal. When d = 1, a more precise result is stated in Proposition 5.9 which
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coincides with the optimal classical result for d = g = 1 (Fiedler, Jurkat and
Körner [FJK77]).

The method of proof is, to our knowledge, the first generalization of the
methods of renormalization of Forni [For02] and of Flaminio and Forni
[FF06, FF07] to actions of higher dimensional Lie groups. A different direc-
tion is the one taken by Flaminio and Forni in [FF14], where equidistribution
of nilflows on higher step nilmanifolds requires a sublter rescaling technique,
due to the lack of a renormalization flow.

A limitation of the inductive scheme that we adopted is that we are limited
to consider averages on cubes Q(T ) (the generalization to pluri-rectangles is
however feasible, but more cumbersome to state). For more general regions,
growing by homotheties, we can obtain weak estimates where the power
T d/2 is replaced by T d−1. However, N. Shah’s ideas [Sha09] suggest that
equi-distributions estimates as strong as those stated above are valid for
general regions with smooth boundary.

Application to higher-dimensional Theta sums. In their fundamental
1914 paper [HL14] Hardy and Littlewood introduced a renormalization
formula to study the exponential sums ∑

N
n=0 e(n2x/2+ξ n), usually called

finite theta sums, where N ∈ N and e(t) := exp(2πit). Their algorithm
provided optimal bounds for these sums when x is of bounded type.

Since then, Hardy and Littlewood’s renormalization method has been ap-
plied or improved by several authors obtaining finer estimates on finite theta
sums (Berry and Goldberg [BG88], Coutsias and Kazarinoff [CK98], Fedo-
tov and Klopp [FK09]). Optimal estimates have been obtained by Fiedler,
Jurkat and Körner [FJK77]. Differently from the previously quoted authors,
who relied heavily on the continued fractions properties of the real number
x, Fiedler, Jurkat and Körner’s method was based on an approximation of x
by rational numbers with denominators bounded by 4N.

In this paper we consider the g-dimensional generalization, the finite theta
sums

(1.4) ∑
n∈Zg∩[0,N]g

e(Q[n]+ `(n))

where Q[x] := x>Qx is the quadratic form defined by a symmetric g×g real
matrix Q, and `(x) := `>x is the linear form defined by a vector ` ∈ Rg. In
the spirit of Flaminio and Forni [FF06], our method consists into reducing
the sum (1.4) to a Birkhoff sum along an orbit (depending on `) of some
Legendrian subgroup (depending on Q) in the standard (2g+1)-dimensional
Heisenberg nilmanifold.

The occurrence of Heisenberg nilmanifolds is not a surprise: in fact the
connection between the Heisenberg group and the theta series is well known
and very much exploited [AT75, Aus77, Tol78, FF06, Mum07a, Mum07b].

The application to g-dimensional finite theta sums (1.4) is the following
corollary of Theorem 5.11.
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Corollary 1.8. Let Q[x] = x>Qx be the quadratic form defined by the
symmetric g×g real matrix Q, let α =

(
I 0
Q I

)
∈ Sp2g(R), and let `(x) = `>x

be the linear form defined by ` ∈ Rg. Set

Θ(Q, `;N) := N−g/2
∑

n∈Zg∩[0,N]g
e(Q[n]+ `(n)) .

• There exists a full measure set Ωg ⊂Mg such that if [α] ∈Ωg and
ε > 0 then

Θ(Q, `;N) = O
(
(logN)g+1/(2g+2)+ε

)
• If [α] ∈Mg satisfies a δ̂ (g)-Roth condition, then for any ε > 0.

Θ(Q, `;N) = O (Nε)

• If [α] ∈Mg is of bounded type, then

Θ(Q, `;N) = O (1)

The Diophantine conditions in terms of the symmetric matrix Q are
discussed in Remark 4.11.

As we mentioned above, dynamical methods have already been used
to study the sums Θ(Q, `;N). Götze and Gordin [GG03], generalizing
[Mar99a], show that some smoothings of Θ(Q, `;N) have a limit distribution.
See also Marklof [Mar99b, Mar03].

Geometrical methods, similar to ours, to estimate finite theta sums are also
used by Griffin and Marklof [GM14] and Cellarosi and Marklof [CM15].
They focus on the the distributions of these sums as Q and ` are uniformly
distributed in the g = 1 case. As they are only interested in theta sums,
they may consider a single irreducible representation ρ of the Heisenberg
group and a single intertwining operator between ρ and L2(M). The other
more technical difference is that as Q and ` vary, it is more convenient to
generalize the ergodic sums (1.3) to the case when ω is transverse current.

Estimates of theta sums are also crucial in the paper of Götze and Mar-
gulis [GM10], which focuses on the finer aspects of the “quantitative Op-
penheim conjecture”. There is question of estimating the error terms when
counting the number of integer lattice points of given size for which an
indefinite irrational quadratic form takes values in a given interval. This is
clearly a subtler problem than the one considered here.

Article organization. In Section 2, we introduce the necessary background
on the Heisenberg and symplectic groups. In section 3 we prove the results
about the cohomology of isotropic subgroups of the Heisenberg groups.
Section 4 deals with the relation between Diophantine properties and dynam-
ics on the Siegel modular variety. Finally in section 5 we prove the main
equidistribution result and the applications to finite theta sums.

Applications to the rigidity problem of higher-rank Abelian actions on
Heisenberg nilmanifolds, as a consequence of the tame estimates for these
actions, will be the subject of further works.
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2. HEISENBERG GROUP AND SIEGEL SYMPLECTIC GEOMETRY

2.1. The Heisenberg group and the Schrödinger representation.

The Heisenberg group and Lie algebra. Let ω denote the canonical sym-
plectic form on R2g ≈ Rg×Rg, i.e. the non-degenerate alternate bilin-
ear form ω((x,ξ ),(x′,ξ ′)) = ξ · x′ − ξ ′ · x, where we use the notations
(x,ξ ) ∈ Rg ×Rg and ξ · x := ξ1x1 + · · ·+ ξgxg. The Heisenberg group
over Rg (or the real (2g + 1)-dimensional Heisenberg group) is the set
Hg = Rg×Rg×R equipped with the product law

(2.1) (x,ξ , t) · (x′,ξ ′, t ′) = (x+ x′,ξ +ξ
′, t + t ′+ 1

2ω((x,ξ ),(x′,ξ ′))) .

It is a central extension of R2g by R, as we have an exact sequence

0→ Z(Hg)→ Hg→ R2g→ 0 ,

with Z(Hg) = {(0,0, t)} ≈ R.
The Lie algebra of Hg is the vector space hg =Rg×Rg×R equipped with

the commutator

[(q, p, t),(q′, p′, t ′)] = (0,0, p ·q′− p′ ·q) .

Let T = (0,0,1) ∈ Z(hg). If (Xi) is a basis of Rg, and (Ξi) the symplec-
tic dual basis, we obtain a basis (Xi,Ξ j,T ) of hg satifying the canonical
commutation relations:

(2.2) [Xi,X j] = 0, [Ξi,Ξ j] = 0, [Ξi,X j] = δi jT, 1≤ i, j ≤ g.

A basis (Xi,Ξ j,T ) of hg satisfying the relations (2.2) will be called a
Heisenberg basis of hg. The Heisenberg basis (X0

i ,Ξ
0
j ,T ) where X0

i and Ξ0
j

are the standard bases of Rg, will be called the standard Heisenberg basis.
Given a Lagrangian subspace l⊂Rg×Rg, there exists a Heisenberg basis

(Xi,Ξ j,T ) such that (Xi) spans l; in this case the span l′ =
〈
Ξ j
〉

is also
Lagrangian and we say that the basis (Xi,Ξ j,T ) is adapted to the splitting
l× l′×Z(hg) of hg.

Standard lattices and quotients. The set Γ := Zg×Zg× 1
2Z is a discrete

and co-compact subgroup of the Heisenberg group Hg, which we shall call
the standard lattice of Hg. The quotient

M := Hg/Γ
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is a smooth manifold that will be called the standard Heisenberg nilmanifold.
The natural projection map

(2.3) p : M→ Hg/(ΓZ(Hg))≈ (Hg/Z(Hg))/(Γ/Γ∩Z(Hg))

maps M onto a 2g-dimensional torus T2g := R2g/Z2g. All lattices of Hg

were described by Tolimieri in [Tol78]. Henceforth we will limit ourselves
to consider only a standard Heisenberg nilmanifold, our results extending
trivially to the general case. Observe that expT is the element of Z(Hg)
generating Γ∩Z(Hg).

Unitary Hg-modules and Schrödinger representation. The Schrödinger
representation is a unitary representation of ρ : Hg→U(L2(Rg,dy)) of the
Heisenberg group into the group of unitary operators on L2(Rg,dy); it is
explicitly given by

(ρ(x,ξ , t)ϕ)(y) = eit−iξ ·y−1
2 iξ ·x

ϕ(y+ x), (ϕ ∈ L2(Rg), (x,ξ , t) ∈ Hg).

(see [Fol89]). Composing the Schrödinger representation with the auto-
morphism (x,ξ , t) 7→ (|h|1/2x,ε|h|1/2ξ ,ht) of Hg, where h 6= 0 and ε =
sign(h) =±1, we obtain the Schrödinger representation with parameters h:
for all ϕ ∈ L2(Rg,dy)

(2.4) (ρh(x,ξ , t)ϕ)(y) = eiht−iε|h̄|1/2ξ ·y−1
2 ihξ ·x

ϕ(y+ |h̄|1/2x).

According to the Stone-von Neumann theorem [Mac49], the unitary ir-
reducible representations π : Hg →U(H ) of the Heisenberg group on a
Hilbert space H are

• either trivial on the center; then they are equivalent to a one-dimen-
sional representation of the quotient group Z(Hg)\Hg, i.e. equivalent
to a character of R2g

• or infinite dimensional and unitarily equivalent to a Schrödinger
representation with some parameter h 6= 0.

Infinitesimal Schrödinger representation. The space of smooth vectors
of the Schrödinger representation ρh : Hg → U(L2(Rg,dy)) is the space
S (Rg) ⊂ L2(Rg,dy) of Schwartz functions ([Sch66]). By differentiating
the Schrödinger representation ρh we obtain a representation of the Lie
algebra hg on S (Rg) by essentially skew-adjoint operators on L2(Rg,dy);
this representation is called the infinitesimal Schrödinger representation with
parameter h. With an obvious abuse of notation, we denote it by the same
symbol ρh; the action of X ∈ hg on a function f will be denoted ρh(X) f or
X . f when no ambiguity can arise. Differentiating the formulas (2.4) we see
that, for all k = 1,2, . . . ,g, we have

ρh(X0
k ) = |h|

1/2 ∂

∂yk
, ρh(Ξ

0
k) =−iε|h|1/2 yk, ρh(T ) = ih,
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where (yi) are the coordinates in Rg relative to the standard basis (X0
i ) and

ε = sign(h). More generally, by the Stone-von Neumann theorem quoted
above, given any Heisenberg basis (Xi,Ξ j,T ) of hg, the formulas

(2.5) ρh(Xk) = |h|1/2 ∂

∂yk
, ρh(Ξk) =−iε|h|1/2 yk, ρh(T ) = ih,

define, via the exponential map, a Schrödinger representation ρh with param-
eter h on L2(Rg,dy) such that:

ρh(ex1X1+···+xgXg) f (y) = f (y+ |h|1/2x),

ρh(eξ1Ξ1+···+ξgΞg) f (y) = e−iε|h|1/2ξ ·y f (y),

ρh(etT ) f (y) = eith f (y).

(2.6)

2.2. Siegel symplectic geometry.

Symplectic group and moduli space. Let Sp2g(R) be the group of sym-
plectic automorphisms of the standard symplectic space (R2g,ω). The group
of automorphisms of Hg that are trivial on the center is the semi-direct prod-
uct Aut0(Hg) = Sp2g(R)nR2g of the symplectic group with the group of
inner automorphisms Hg/Z(Hg)≈ R2g.

The group of automorphisms of Hg acts simply transitively on the set of
Heisenberg bases, hence we may identify the set of Heisenberg bases of hg

with the group of automorphisms of Hg. However since we are interested in
the action of subgroups defined in terms of a choice of a Heisenberg basis
and since the dynamical properties of such action are invariant under inner
automorphisms, we may restrict our attention to bases which are obtained
applying an automorphisms α ∈ Sp2g(R) to the standard Heisenberg basis.

Explicitly, the symplectic matrix written in block form α =
(

A B
C D

)
∈

Sp2g(R), with the g×g real matrices A,B,C and D satisfying C>A = A>C,
A>D−C>B = 1 and D>B = B>D, acts as the automorphism

(x,ξ , t) 7→ α(x,ξ , t) := (Ax+Bξ ,Cx+Dξ , t) .

Siegel symplectic geometry. The stabilizer of the standard lattice Γ < Hg

inside Sp2g(R) is exactly the group Sp2g(Z). We call the quotient space
Mg = Sp2g(R)/Sp2g(Z) the moduli space of the standard Heisenberg mani-
fold. We may regard Sp2g(R) as the deformation (or Teichmüller) space of
the standard Heisenberg manifold M = Hg/Γ and Mg as the moduli space of
the standard nilmanifold, in analogy with the 2-torus case.

The Siegel modular variety, the moduli space of principally polarized
abelian varieties of dimension g, is the double coset space

Σg := Kg\Sp2g(R)/Sp2g(Z),

where Kg is the maximal compact subgroup Sp2g(R)∩SO2g(R) of Sp2g(R),
isomorphic to the unitary group Ug(C). Thus, Mg fibers over Σg with
compact fibers Kg.
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The quotient space Kg\Sp2g(R)/±12g may be identified to Siegel upper
half-space in the following way. Recall that the Siegel upper half-space of
degree/genus g [Sie64] is the complex manifold

Hg := {Z ∈ Symg(C) |ℑ(Z)> 0}
of symmetric complex g× g matrices Z = X + iY with positive definite
symmetric imaginary part ℑ(Z) = Y and arbitrary (symmetric) real part X .

The symplectic group Sp2g(R) acts on the Siegel upper half-space Hg as
generalized Möbius transformations. The left action of the block matrix
α =

(
A B
C D

)
∈ Sp2g(R) is defined as

(2.7) Z 7→ α(Z) := (AZ +B)(CZ +D)−1 .

This action leaves invariant the Riemannian metric ds2 = tr(dZY−1dZY−1).
As the the kernel of this action is given by ±12g and the stabilizer of the

point i := i1g ∈ Hg coincides with Kg, the map

α ∈ Sp2g(R) 7→ α
−1(i) ∈ Hg

induces an identification Kg\Sp2g(R)/±12g ≈Hg and consequently an iden-
tification of the Siegel modular variety Σg ≈ Sp2g(Z)\Hg.

Notation 2.1. For α ∈ Sp2g(R) we denote by [α] :=α Sp2g(Z) its projection
on the moduli space Mg. We denote by [[α]] := Kg α Sp2g(Z) the projection
of α to the Siegel modular variety Σg. We remark that under the previous
identification [[α]] coincides with the point Sp2g(Z)α−1(i) ∈ Sp2g(Z)\Hg.

3. COHOMOLOGY WITH VALUES IN Hg-MODULES

Here we discuss the cohomology of the action of a subgroup P ⊂ Hg

on a Fréchet Hg-module F , that is to say the Lie algebra cohomology of
p= Lie(P) with values in the Hg-module F . We assume that P is a connected
Abelian Lie subgroup of Hg contained in a Legendrian subgroup L.

The modules interesting for us are, in particular, those arising from the
regular representation of Hg on the space C∞(M) of smooth functions on a
(standard) nilmanifold M := Hg/Γ. As mentioned in the introduction, the
fact that Hg acts on M by left translations, implies that the space F =C∞(M)
is a p-module: in fact for all V ∈ p and f ∈ F one defines (cf. formula (1.2))

(V. f )(m) =
d
dt

f (exp(−tV ).m)

∣∣∣∣
t=0

, (m ∈M) .

As P is an Abelian group, the differential on the cochain complex A∗(p,F) =
Λ∗p⊗F of F-valued alternating forms on p is given, in degree k, by the
usual formula

dω(V0, . . . ,Vk) =
k

∑
j=0

(−1) j Vj.ω(V0, . . . ,V̂j, . . . ,Vk) .

Notation 3.1. When F is the space of C∞-vectors of a representation π of
Hg we may denote the complex A∗(p,F) also by the symbol A∗(p,π∞).
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In order to study the cohomology of the complex A∗(p,C∞(M)), it is
convenient to observe that the projection p of M onto the quotient torus T2g

(see (2.3)) yields a Hg-invariant decomposition of all the interesting function
spaces on M into functions with zero average along the fibers of p — we
denote such function spaces with a suffix 0 — and functions that are constant
along such fibers; these latter functions can be thought of as pull-back of
functions defined on the quotient torus T; hence we write, for example,

(3.1) C∞(M) =C∞
0 (M)⊕ p∗(C∞(T))≈C∞

0 (M)⊕C∞(T),

and we have similar decompositions for L2(M) and — when a suitable
Laplacian is used to define them — for the L2-Sobolev spaces W s(M).

If we denote by P̄ the projection of P into T2g and by p̄ its Lie algebra,
we obtain that we may split the complex A∗(p,C∞(M)) into the sum of
A∗(p,C∞

0 (M)) and A∗(p, p∗(C∞(T2g))) ≈ A∗(p̄,C∞(T2g)). The action of P̄
on T2g being linear, the computation of the cohomology of this latter complex
is elementary and folklore when dim P̄ = 1. For lack of references we review
it in the next section 3.1 for any dim P̄. In section 3.2 we shall consider the
cohomology of C∗(p,C∞

0 (M)).

Remark 3.2. To define the norm of the Hilbert Sobolev spaces W s(M), we
fix a basis (Vi) of the Lie algebra hg, set ∆ = −∑V 2

i and define ‖ f‖2
s =

〈 f ,(1+∆)s f 〉 where 〈·, ·〉 is the ordinary L2 Hermitean product. This has
the advantage that for any Hilbert sum decomposition L2(M) =

⊕
i Hi of

L2(M) into closed Hg-invariant subspaces we also have a Hilbert sum decom-
position W s(M) =

⊕
iW

s(Hi) of W s(M) into closed Hg-invariant subspaces
W s(Hi) :=W s(M)∩Hi.

Currents. Let F be any tame Fréchet hg-module, graded by increasing
norms (‖ · ‖s)s≥0, defining Banach spaces W s ⊂ F .

The space of continuous linear functionals on Ak(p,F) = Λkp⊗F will
be called the space of currents of dimension k and will be denoted Ak(p,F ′)
where F ′ is the strong dual of F ; the notation is justified by the fact that the
natual pairing (Λkp,Λ

kp) between k vectors and k-forms allows us to write
Ak(p,F ′) ≈ Λkp⊗F ′. Endowed with the strong topology, Ak(p,F ′) is the
inductive limit of the spaces Λkp⊗ (W s)′.

The boundary operators ∂ : Ak(p,F ′)→ Ak−1(p,F ′) are, as usual, the
adjoint of the differentials d, hence they are defined by 〈∂T,ω〉= 〈T,dω〉.
A closed current T is one such that ∂T = 0. We denote by Zk(p,F ′) the
space of closed currents of dimension k and by Zk(p,(W s)′) the space of
closed currents with coefficients in (W s)′.

3.1. Cohomology of a linear Rd action on a torus. Let Λ be a lattice
subgroup of R` and let R` act on the torus T` = R`/Λ by translations. We
consider the restriction of this action to a subgroup Q <R` isomorphic to Rd ,
with Lie algebra q. Then the Fréchet space C∞(T`) is a q-module. In this sec-
tion we consider the cohomology of the associated complex A∗(q,C∞(T`)).
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Let Λ⊥ = {λ ∈ (R`)′ |λ ·n = Z ∀n ∈ Λ} denotes the dual lattice of Λ. We
say that the subspace q satisfies a Diophantine condition of exponent τ > 0
with respect to the lattice Λ, and we write q ∈ DCτ(Λ), if

(3.2) ∃C > 0 such that sup
V∈q\{0}

|λ ·V |
‖V‖

≥C‖λ‖−τ , ∀λ ∈ Λ⊥ \{0}.

We set
µ(q,Λ) = inf{τ : q ∈ DCτ(Λ)} .

Remark 3.3. The Diophantine condition considered here is dual to the
Diophantine condition on subspaces of (R`)′ ≈ R` considered by Moser
in [Mos90]. In fact, if we set q⊥ = {λ ∈ (R`)′ : kerλ ⊃ q}, the condition
(3.2) is equivalent to

∃C > 0 such that dist(λ ,q⊥)≥C‖λ‖−τ , ∀λ ∈ Λ⊥ \{0}.
Thus, by Theorem 2.1 of [Mos90], the inequalities (3.2) are possible only
if τ ≥ `/d−1, and the set of subspaces q⊥ with µ(q,Λ) = `/d−1 has full
Lebesgue measure in the Grassmannian Gr(Rd;R`).

We say that q is resonant (w.r. to Λ) if, for some λ ∈ Λ⊥ \{0}, we have
q⊂ kerλ ; in this case the closure of the orbits of Q on R`/Λ are contained
in lower dimensional tori, the orbits of the rational subspace kerλ , and we
may understand this case by considering a lower dimensional ambient space
R`′ with `′ < `.

Thus we may limit ourselves to non-resonant q; in this case, if q is not
Diophantine, we have µ(q,Λ) = +∞ and we say that q is Liouvillean (w.r. to
Λ).

Theorem 3.4 (Folklore). Let q ∈ Gr(Rd;R`) be a non-resonant subspace
with respect to the lattice Λ < R`. Then the action of Q = expq on the torus
T` :=R`/Λ is cohomologically C∞-stable if and only if q∈DCτ(Λ) for some
τ > 0. In this case we have

H∗(q,C∞(T`))≈ Λ∗q ,

the cohomology classes being represented by forms with constant coefficients.
Furthermore, the q-module C∞(T`) is tamely cohomologically C∞-stable and
has tame splitting in all degrees.

Proof. Without loss of generality we may assume Λ = Z`. The s-Sobolev
norm of a function f ∈C∞(T`) with Fourier series representation f (x) =
∑n∈Z` f̂ (n)e2πin·x is given by

‖ f‖2
s = ∑

n∈Z`

(
1+‖n‖2)s | f̂ (n)|2 .

We have a direct sum decomposition C∞(T`) =C〈1〉⊕C∞
0 (T

`) , where C〈1〉
is the space of constant funtions and C∞

0 (T
`) is the space of zero mean smooth

functions on T`. An analogous orthogonal decomposition W s(T`) =C〈1〉⊕
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W s
0 (T

`) holds for Sobolev spaces. Hence every ω ∈ Zk(q,C∞(T`)) splits
(tamely) into a sum ω =ω0+ωc of a form ω0 ∈ Zk(q,C∞

0 (T
`)) and a constant

coefficient form ωc ∈ Λkq. Consequently, the cohomology H∗(q,C∞(T`))
splits into the sum of cohomology classes represented by forms with constant
coefficients and H∗(q,C∞

0 (T
`)). We now show that, under the assumption

(3.2) on q, we have H∗(q,C∞
0 (T

`)) = 0.
By Fourier analysis, C∞

0 (T
`) splits into a L2-orthogonal sum of one-di-

mensional modules Cn ≈ C, n ∈ Z` \{0}; the space q acts on Cn by

V.z = i(n ·V )z, ∀z ∈ Cn, ∀V ∈ q;

hence, for ω ∈ Λkq⊗Cn and V0, . . . ,Vk ∈ q ,

dω(V0, . . . ,Vk) =
k

∑
j=0

i(n ·Vj)ω(V0, . . . ,V̂j, . . . ,Vk) .

Let X1,X2, . . . ,Xd be a basis of q, and define the co-differential d∗ by

d∗η(V1, . . . ,Vk) :=−
d

∑
m=1

i(n ·Xm)η(Xm,V1, . . . ,Vk).

We have H = d∗ ◦ d + d ◦ d∗ =
(
∑

d
m=1 |n ·Xm|2

)
IdΛ*q. It follows that if

ω ∈ Λkq⊗Cn is closed then ω = dΩ with

Ω = H−1d∗ω.

We conclude that the map d−1 := H−1d∗ is a right inverse of d on the space
Zk(q,Cn) of closed forms. From the definitions of the maps d∗ and H we
obtain the estimate

‖d−1ω‖0 ≤
( d

∑
m=1
|n ·Xm|2

)− 1
2‖ω‖0, ∀ω ∈ Zk(q,Cn).

It is easily seen that the Diophantine condition (3.2) is equivalent to the
existence of a constant C > 0 such that ∑

d
m=1 |n ·Xm|2 > C‖n‖−2τ for all

n ∈ Z`. Hence, for some constant C > 0 we have ‖d−1ω‖0 ≤C−1‖n‖τ‖ω‖0,
and therefore

‖d−1ω‖s ≤C−1‖ω‖s+τ

for all s ∈ R and all ω ∈ Zk(q,Cn).
Since the Sobolev space (W s

0 (T
`),‖ · ‖s) is equal to the Hilbert direct sum⊕

n 6=0(Cn,‖ · ‖s), the map d−1 extends to a tame map

d−1 : Zk(q,C∞
0 (T

`))→ Ak−1(q,C∞
0 (T

`)).

satisfying a tame estimate of degree τ with base 0 and associating a primitive
to each closed form.

Combining these results with the previous remark on constant coefficient
forms, we conclude that under the Diophantine assumption (3.2) the q-
module C∞(T`) is tamely cohomologically C∞-stable and has a tame splitting
in all degrees.
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The “only if” part of the statement may be proved as in the case dimQ = 1
(see Katok [Kat03, page 71]). �

3.2. Cohomology with values in C∞
0 (M). The previous section settles the

study of the cohomology of the action of a abelian subgroup P⊂ Hg with
values in the Hg-sub-module p∗(C∞(T)). We are left to consider the action
P with values in the Hg-sub-module C∞

0 (M).
Since the center Z(Hg) has spectrum 2πZ \ {0} on L2

0(M), the space
L2

0(M) splits as a Hilbert sum of Schrödinger Hg-modules Hi equivalent to
ρh, with h ∈ 2πZ \ {0}. The same remark applies to the Sobolev space
W s

0 (M), which splits as a Hilbert sum of the (non-unitary) Hg-modules
W s

0 (Hi) = Hi∩W s
0 (M).

The space C∞(M)∩Hi can be characterized as the space C∞(Hi) of C∞

vectors in the Hg-module Hi; it is a tame graded Fréchet space topologized
and graded by the increasing family of Sobolev norms. This leads us to
consider the action of P with values in the space of smooth vectors of a
Schrödinger Hg-module.

Thus let P be an isotropic subgroup of Hg of dimension d. Fix a Legen-
drian subgroup L such that P≤ L < Hg. Let |h|> h0 > 0.

Since the group of automorphisms of Hg acts transitively on Heisenberg
bases, we may assume that we have fixed a Heisenberg basis (Xi,Ξ j,T )
of hg such that (X1, . . . ,Xd) forms a basis of p and (X1, . . . ,Xg) is a basis
of Lie(L). This yields isomorphisms L ≈ Rg and P ≈ Rd , with the latter
group embedded in Rg via the first d coordinates. With these assumptions,
the formulas yielding the representation ρh on L2(Rg) are given by the
equations (2.6). The space ρ∞

h of C∞ vectors for the representation ρh is
identified with S (Rg) on which hg acts by the formulas (2.5).

Homogeneous Sobolev norms. The infinitesimal representation extends to
a representation of the enveloping algebra U(hg) of hg; this allows us to
define the “sub-Laplacian” as the image via ρh of the element

Hg =−(X2
1 + · · ·+X2

g +Ξ
2
1 + · · ·+Ξ

2
g) ∈ U(hg).

Formulas (2.5) yield

(3.3) ρh(Hg) = |h|

(
|x|2−

g

∑
k=1

∂ 2

∂x2
k

)
= |h|ρ1(Hg) .

Since Hg is a positive operator with (discrete) spectrum bounded below by
g|h|, we define the space W s(ρh,Rg) of functions of Sobolev order s as the
Hilbert space of vectors ϕ of finite homogeneous Sobolev norm

(3.4) 9ϕ92
s,h :=

〈
(ρh(Hg))

s
ϕ,ϕ

〉
This makes explicit the fact that the space ρ∞

h of C∞ vectors for the
representation ρh coincides with S (Rg).

The homogeneous Sobolev norms (3.4) are not the standard ones (later
on we shall make a comparison with standard Sobolev norms). They have
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however the advantage that the norm on W s(ρh,Rg) is obtained by rescaling
by the factor |h|s/2 the norm on W s(ρ1,Rg). For this reason we can limit
ourselves to study the case h = 1; later we shall consider the appropriate
rescaling. Thus we denote ρ = ρ1 and, to simplify, we write Hg for ρ(Hg)
and W s(Rg) for W s(ρ1,Rg): also we set

9ϕ9s := 9ϕ9s,1 = ‖H
s/2
g ϕ‖0 .

The cochain complex A∗(p,ρ∞). It will be convenient to use the identifi-
cation Rg ≈ Rd×Rg−d and, accordingly, to write ϕ(x,y), with x ∈ Rd and
y ∈ Rg−d , for a function ϕ defined on Rg. We also write dx = dx1 · · ·dxd .
Then, by the formula (2.4), the group element q∈P≈Rd acts on ϕ ∈S (Rg)
according to

ϕ(x,y) 7→ ϕ(x+q,y).
Thus the complex A∗(p,ρ∞) is identified with the complex of differen-
tial forms on p ≈ Rd with coefficients in S (Rg). It will be also con-
venient to define the operators H ′d =

(
|x|2−∑

d
k=1

∂ 2

∂x2
k

)
on S (Rd) and

H ′′g−d =
(
|y|2−∑

g−d
k=1

∂ 2

∂y2
k

)
on S (Rg−d); they may be also considered as

operators on S (Rg), and then Hg = H ′d +H ′′g−d .

Lemma 3.5. Consider S (Rg) as a Hg-module with parameter h= 1. Define
the distribution Ig ∈S ′(Rg) by

Ig( f ) :=
∫
Rg

f (x)dx

for f ∈ S (Rg). Then, for any s > g/2, Ig extends to a bounded linear
functional on W s(Rg), that is Ig ∈W−s(Rg).

Proof. Using Cauchy-Schwartz inequality we have

|Ig( f )|2 ≤
∫
Rg
|(g+ |x|2)|−s dx ·

∫
Rg
(g+ |x|2)s| f (x)|2 dx

As g+ |x|2 ≤ 2Hg, the second integral is bounded by a constant times 9 f 92
s ,

and the result follows. �

For the next lemma we adopt the convention that R0 = {0} and S (R0) =
W s(R0) = C with the usual norm.

Lemma 3.6. For 1 ≤ d ≤ g, consider the map Id,g : S (Rg) 7→S (Rg−d)
defined by

(Id,g f )(y) :=
∫
Rd

f (x,y)dx

We consider S (Rg) and S (Rg−d) as Hg and Hg−d-modules, respectively,
with parameter h = 1. Then, for any ε > 0 and s≥ 0, the map Id,g extends
to a bounded linear map from W s+d/2+ε(Rg) to W s(Rg−d), i.e.

9Id,g f 9s ≤C 9 f 9s+d/2+ε



18 SALVATORE COSENTINO AND LIVIO FLAMINIO

for some constant C =C(s,ε,d,g). In particular this proves the inclusion
Id,g(S (Rg))⊂S (Rg−d).

Proof. For d = g we have Ig,g = Ig and the result is a restating of the
previous lemma.

Now suppose d < g. The operators H ′d and H ′′g−d , considered as opera-
tors on L2(Rd) and L2(Rg−d), have discrete spectrum (they are independent
d-dimensional and (g−d)-dimensional harmonic oscillators); thus identify-
ing L2(Rg)≈ L2(Rd)⊗L2(Rg−d) their joint spectral measure on L2(Rg) is
the product of the spectral measures on L2(Rd) and L2(Rg−d) respectively.
Clearly Hg ≥ H ′d and Hg ≥ H ′′g−d .

Let (vm) and (wn) be orthonormal bases of L2(Rd) and L2(Rg−d) of
eigenevectors of H ′d and H ′′g−d with eigenvalues (λm) and (µn), respectively.
We may choose these bases so that {vm} ⊂S (Rd) and {wn} ⊂S (Rg−d).

Writing for f ∈S (Rg) , f = ∑ fmnvm⊗wn and letting dm = Id(vm) we
have Id,g f = ∑n(∑m(dm) fmn)wn. It follows that

9Id,g f 92
s = ∑

n
µ

s
n

∣∣∣∑
m

dm fmn

∣∣∣2
≤
(
∑
m
|dm|2λ

−d/2−ε
m

)(
∑
m,n

µ
s
nλ

d/2+ε
m | fmn|2

)
The first term in this product equals ‖Id‖2

−(d/2+ε), which is bounded by
Lemma 3.5; the second term is majorated by 9 f 92

s+d/2+ε
, since Hg ≥ H ′d

and Hg ≥ H ′′g−d .
�

The proof of the following corollary is immediate.

Corollary 3.7. We use the notation of the previous Lemma. Suppose d < g.
For all t ≥ 0 and all s > t +d/2 the map

D ∈W−t(Rg−d) 7→ D◦Id,g ∈W−s(Rg)

is continuous. In particular, if f ∈W s(Rg) with s > d/2 then Id,g( f ) = 0 if
and only if T ◦Id,g( f ) = 0 for all T ∈ L2(Rg−d)′.

Let ϕd ∈S (Rd) be the ground state of Hd normalized by the condition
Id(ϕd) = 1, namely

ϕd(x) := (2π)−d/2e−|x|
2/2, (x ∈ Rd);

we have 9ϕd9s = π−d/4ds/2.

Lemma 3.8. For 1≤ d < g, let Ed,g : S (Rg−d) 7→S (Rg) be defined by

(Ed,g f )(x,y) := ϕd(x) f (y)

We consider S (Rg) and S (Rg−d) as Hg and Hg−d-modules, respectively,
with parameter h= 1. Then, for any s≥ 0, the map Ed,g extends to a bounded
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linear map from W s(Rg−d) to W s(Rg), i.e.

9Ed,g f 9s ≤C 9 f 9s .

for some constant C =C(s,d).

Proof. Consider H ′d = and H ′′g−d as operators on S (Rg). For all integers
n, from the binomial identity for (H ′d +H ′′g−d)

n, we obtain 9Ed,g f 92
n =

∑ j
(n

j

)
9ϕd 92

j 9 f 92
n− j ≤ 2n 9ϕ2

d 9n 9 f 92
n, where for the last inequality we

used H ′d ≥ 1 and H ′′g−d ≥ 1. This proves the lemma for integer s; the general
claim follows by interpolation. �

Lemma 3.9. Let d = 1. Let f be an element of the Hg-module S (Rg) with
parameter h = 1. Suppose that I1,g f = 0. Set

(P f )(x,y) :=
∫ x

−∞

f (t,y)dt.

For all t ≥ 0 and all ε > 0 there exists a constant C =C(t,ε) such that

(3.5) 9P f 9t ≤C 9 f 9t+1+ε .

In particular this proves that P(S (Rg))⊂S (Rg−d).

Proof. When g = 1 the Lemma a variation on the statement of Lemma 6.1
in [FF06], which can be easily proved by use of the Cauchy-Schwartz
inequality as in Lemma 3.5.

Suppose now that g > 1 and consider the decomposition Hg = H ′1 +H ′′g−1.
The condition I1,g f = 0 implies that I1,g (H ′′g−1)

w f = 0 for any w ≥ 0;
furthermore P(H ′′g−1)

w f = (H ′′g−1)
wP f . Using the result for the case g = 1

and the definition of the norm ‖ · ‖0 we have for all t ≥ 0 and all ε > 0

‖(H1)
t/2 (H ′′g−1)

w/2 P f‖0 ≤C(t,ε)‖(H ′1)(t+1+ε)/2 (H ′′g−1)
w/2 f‖0.

For integer values of the Sobolev order, using the above inequality and the
binomial formula, we may write, for any ε > 0 and n ∈ N,

9P f 92
n = 〈P f ,Hn

g P f 〉0 =
n

∑
k=0

(
n
k

)
‖(H ′1)k/2 (H ′′g−1)

(n−k)/2 P f‖2
0

≤ C(ε,n)
n

∑
k=0

(
n
k

)
‖(H ′1)(k+1+ε)/2 (H ′′g−1)

(n−k)/2 f‖2
0

≤ C(ε,n)‖(Hg)
n/2 (H ′1)

(1+ε)/2 f‖2
0

≤ C(ε,n)‖H(n+1+ε)/2
g f‖2

0 =C(ε,n) 9 f 92
n+1+ε .

The general inequality follows by interpolation of the family of norms
9 ·9n. �
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Sobolev cocycles and coboundaries. Having fixed a Euclidean product on
hg, we obtain, by restriction, a Euclidean product on p⊂ hg and, by duality
and extension to the exterior algebra, a Euclidean product on Λkp′. The
spaces Ak(p,ρ∞)≈Λkp′⊗S (Rg) of cochains of degree k are endowed with
the Hermitian products obtained as tensor product of the Euclidean product
on Λkp′ and the Hermitian products ‖ · ‖s or 9 ·9s on S (Rg). Completing
with respect to these norms, we define the Sobolev spaces Λkp′⊗W s(Rg) of
cochains of degree k, and use the same notations for the norms.

It is clear that, for k < d, the cohomology groups are Hk(p,S (Rg)) = 0.
Here we estimate the Sobolev norm of a primitive Ω ∈ Ak−1(p,S (Rg))
of a coboundary ω = dΩ ∈ Bk(p,S (Rg)) = Zk(p,S (Rg)) in terms of the
Sobolev norm of ω .

Proposition 3.10. Let s ≥ 0 and 1 ≤ k < d ≤ g. Consider S (Rg) as a
Hg-module with parameter h = 1. For every ε > 0 there exists a constant
C =C(s,ε,g,d)> 0 and a linear map

d−1 : Zk(p,S (Rg))→ Ak−1(p,S (Rg))

associating to every ω ∈ Zk(p,S (Rg)) a primitive Ω = d−1ω ∈
Ak−1(p,S (Rg)) satisfying the estimate

(3.6) 9Ω9s ≤C 9ω 9s+(k+1)/2+ε .

Proof. We denote points of Rg ≈ p×Rg−d ≈ R×Rd−1×Rg−d as triples
(t,x,y) with t ∈ R, x ∈ Rd−1 and y ∈ Rg−d . For 0≤ k ≤ d ≤ g, one defines
linear maps

Ak(Rd,S (Rg))
I−−−−−→←−−−−
E

Ak−1(Rd−1,S (Rg−1))

as follows. For a monomial ω = f (t,x,y)dt ∧dxa ∈ Ak(Rd,S (Rg)), where
a a multi-index in the set {1,2, . . . ,d−1}, we define

(3.7) I ω :=
(∫

∞

−∞

f (t,x,y)dt
)

dxa = (I1,g f )dxa ;

if dt does not divide ω we define instead I ω = 0. For a monomial ω =
f (x,y)dxa ∈ Ak−1(Rd−1,S (Rg−1)), we define

(3.8) E ω := ϕ(t) f (x,y)dt ∧dxa = (E1,g f )dt ∧dxa .

By Lemma 3.6 we obtain that for any t ≥ 0 and ε > 0 we have:

(3.9) 9I ω9t ≤C 9ω9t+1/2+ε , C =C(t,ε,g).

It follows from this inequality that the image of I lies
in Ak−1(Rd−1,S (Rg−1)). For the map E the inclusion
E (Ak−1(Rd−1,S (Rg−1)))⊂Ak(Rd,S (Rg)) is obvious, and by Lemma 3.8
we have, for any s≥ 0,

(3.10) 9E η9s ≤C 9η9s, C =C(s,d).
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From (3.9) and (3.10) it follows that, for any s≥ 0,

(3.11) 9E I ω9s ≤C 9ω 9s+1/2+ε .

The maps I and E commute with the differential d. It is well known that
I and E are homotopy inverses of each other. In fact, it is clear that I E is
the identity.

We claim that the usual homotopy operator

K : Ak(Rd,S (Rg))→ Ak−1(Rd,S (Rg))

satisfying 1−E I = dK −K d also satisfies tame estimates. Indeed, for a
monomial ω not divisible by dt, K is defined as K ω = 0; for a monomial
ω = f (t,x,y)dt ∧dxa it is defined as K ω = g(t,x,y)dxa where

g(t,x,y) =
∫ t

−∞

[
f (r,x,y)−ϕ(r)

(
∫
R

f (u,x,y)du
)]

dr

= P( f −E1,g I1,g f ) .
(3.12)

Then by Lemma 3.9 and (3.11) we have that for all s≥ 0:

(3.13) 9K ω9s ≤C(s,ε,g,d) 9ω9s+3/2+ε ,

unless I ω = 0, in which case we have

(3.14) 9K ω9s ≤C(s,ε,g,d) 9ω 9s+1+ε .

This prove the claim.
Let ω ∈ A1(Rd,S (Rg)) be closed and 1 < d ≤ g. Then I ω = 0 (by

homotopying the integral in (3.7) with an integral with x→ ∞) and therefore
Ω = K ω ∈ A0(Rd,S (Rg))≈S (Rg+1) is a primitive of ω , i.e. dΩ = ω ,
and by (3.14) it satisfies the estimate 9Ω9s ≤C(s) ·9ω9s+1+ε for all s >
1/2. Thus the proposition is proved in this case.

Assume, by induction, that the Proposition is true for all g≥ 1, all d ≤ g
and all k ≤min{n,d}−1. Let ω ∈ An(Rd,S (Rg)), with n < d, be closed.
Then the (n−1)-form I ω ∈ An−1(Rd−1,S (Rg−1)) is also closed. By the
induction assumption, I ω = dη for a primitive η ∈ An−2(Rd−1,S (Rg−1))
satisfying the estimate

(3.15) 9η9s ≤C 9I ω 9s+n/2+ε .

Since E I ω = E dη and E commutes with d, we obtain that a primitive of
ω is given by d−1ω := Ω := K ω +E η . Therefore, from lemma 3.6 and
the estimates (3.9), (3.10), (3.13) and (3.15), we have, for some constants
C’s which only depend on s≥ 0 and ε > 0,

9Ω9s ≤ 9K ω 9s +9E η9s

≤C′ 9ω 9s+3/2+ε +C′′ 9η9s

≤C′ 9ω 9s+3/2+ε +C′′′9I ω9s+n/2+ε/2

≤C′ 9ω 9s+3/2+ε +C′′′′9ω9s+n/2+1/2+ε

≤C 9ω 9s+(n+1)/2+ε .

(3.16)



22 SALVATORE COSENTINO AND LIVIO FLAMINIO

Thus the estimate (3.6) holds also for k = n. This concludes the proof. �

We are left to consider the space Hk(p,S (Rg)) when k = d := dimp.
The map Id,g extends to a map

(3.17) Id,g : Ad(p,S (Rg))→S (Rg−d)

by setting for a form ω = f (x,y)dx1∧·· ·∧dxd

(Id,g ω)(y) :=
∫
Rd

f (x,y)dx .

Proposition 3.11. Let s ≥ 0 and 1 ≤ d ≤ g. Consider S (Rg) as a Hg-
module with parameter h = 1 and let ω ∈ Ad(p,S (Rg)). The form ω is
exact if and only if Id,gω = 0. Furthermore, for every ε > 0 there exists a
constant C =C(s,ε,g,d)> 0 and a linear map

d−1 : kerId,g ⊂ Ad(p,S (Rg))→ Ad−1(p,S (Rg))

associating to every ω ∈ kerId,g a primitive Ω of ω satisfying the estimate

(3.18) 9Ω9s ≤C 9ω 9s+(d+1)/2+ε .

Proof. The “only if” part of the statement is obvious. For d = 1 and any
g≥ 1, this is Lemma 3.9. Indeed, a primitive of the 1-form ω = f (x,y)dx
is the 0-form Ω := (P f )(x,y), and the estimate for the norms comes from
(3.5).

Assume, by recurrence, that the Proposition is true for all g′ < g and all
d ≤ g′. Let ω ∈ Ad(Rd,S (Rg)) be a d-form such that Id,gω = 0. Con-
sider I ω ∈ Ad−1(Rd−1,S (Rg−1)), where I is the operator defined in the
previous proof (see (3.7)). It is clear from the definitions that Id,g(ω) = 0
implies Id−1,g−1I ω = 0. By recurrence, I ω = dη for a primitive η ∈
Ak−1(Rk,S (Rg)) satisfying the estimate

(3.19) 9η9s ≤C 9I ω9s+d/2+ε

As in the previous proof, one verifies that the form d−1ω := Ω := K ω +
E η ∈ Ad−1(Rd,S (Rg)) is a primitive of ω (where the operators E and
K are defined in previous proof, see (3.8) and (3.12)). Therefore, from
Lemma 3.6 and the estimates (3.9), (3.10), (3.13) and (3.19), we have, for
some constants C’s which only depend on s≥ 0 and ε > 0,

9Ω9s ≤ 9K ω 9s +9E η9s

≤C′ 9ω 9s+3/2+ε +C′′ 9η9s

≤C′ 9ω 9s+3/2+ε +C′′′9I ω9s+d/2+ε/2

≤C′ 9ω 9s+3/2+ε +C′′′′9ω9s+d/2+1/2+ε

≤C 9ω 9s+(d+1)/2+ε .

(3.20)

The proof is complete. �
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Proposition 3.12. Let s ≥ 0 and 1 ≤ d ≤ g. Consider S (Rg) as a Hg-
module with parameter h = 1. For any k = 0, . . . ,d, the space of cobound-
aries Bd(p,S (Rg)) is a tame direct summand of Ak(p,S (Rg)). In fact,
there exist linear maps

Mk : Ak(p,S (Rg))→ Bk(p,S (Rg))

satisfying the following properties:
• the restriction of Mk to Bk(p,S (Rg)) is the identity map;
• the map Mk satisfies, for any ε > 0, tame estimates of degree (k+

3)/2+ ε if k < d and of degree d/2+ ε if k = d.

Proof. For ω = f dx1∧·· ·∧dxd ∈ Ad(p,S (Rg)) let

Md(ω) = ω− (Ed,g ◦Id,g f )dx1∧·· ·∧dxd.

The Lemmas 3.6 and 3.8 show that Md is a linear tame map of degree d/2+ε ,
for every ε > 0. Clearly for ω ∈ Bd(p,S (Rg)) we have Md(ω) = ω . Since
the map Md maps Ad(p,S (Rg)) into Bd(p,S (Rg)), we have proved that
Bd(p,S (Rg)) is a direct summand of Ad(p,S (Rg)).

Now consider the case k < d. We have Bk(p,S (Rg)) = Zk(p,S (Rg)).
For ω ∈ Ak(p,S (Rg)) let

Mk(ω) = ω−d−1 ◦d(ω).

The map Mk is a linear tame map of degree (k+3)/2+ ε , for every ε > 0.
Clearly for ω ∈ Zk(p,S (Rg)) we have M(ω)=ω . Furthermore d◦M = 0.

Thus the map Mk sends Ak(p,S (Rg)) into Zk(p,S (Rg)). We have proved
that Zd(p,S (Rg)) is a direct summand of Ad(p,S (Rg)). �

P-invariant currents of dimension dimP. Recall that the space of currents
of dimension k is the space Ak(p,S (Rg)) of continuous linear functionals on
Ak(p,S (Rg)) and that Ak(p,S (Rg)) is identified with Λkp⊗S ′(Rg). For
any s≥ 0, the space Λkp⊗W−s(Rg) is identified with the space of currents
of dimension k and Sobolev order s.

It is clear, from Lemma 3.5, that Ig = Ig,g ∈W−s(Rg) for any s > g/2,
i.e. it is a closed current of dimension g and Sobolev order g/2+ ε , for any
ε > 0.

For d < g and t > 0, consider the currents D◦Id,g with D ∈W−t(Rg−d).
It follows from Lemma 3.6 that such currents belong to Λdp⊗W−s(Rg) for
any s > t +d/2 and it is easily seen that they are closed.

In fact, we have the following proposition, whose proof follows immedi-
ately from Lemma 3.6 and Proposition 3.11.

Proposition 3.13. For any s > dimP/2, the space of P-invariant currents of
dimension d := dimP and order s is a closed subspace of Λdp⊗W−s(Rg)
and it coincides with the space of closed currents of dimension d. It is

• a one dimensional space spanned by Ig, if dimP = g;
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• an infinite-dimensional space generated by

Id(p,S (Rg)) = {D◦Id,g | D ∈ L2(Rg−d)′}.

if dimP < g. We have Id(p,S (Rg))⊂W−d/2−ε(Rg), for all ε > 0.

Let ω ∈ Λdp′⊗W s(Rg) with s > (d +1)/2. Then ω admits a primitive Ω

if and only if T (ω) = 0 for all T ∈ Id(p,S (Rg)); under this hypothesis we
may have Ω ∈ Λd−1p′⊗W t(Rg) for any t < s− (d +1)/2.

Bounds uniform in the parameter h. Here we observe that the estimates
in Propositions 3.10 and 3.11 are uniform in the Planck constant h, provided
that this constant is bounded away from zero.

Proposition 3.14. Let s≥ 0 and 1≤ k≤ d ≤ g, and consider the Hg-module
S (Rg) with parameter h such that |h| ≥ h0 > 0. Let Bk = Zk(Rd,S (Rg))
if k < d and Bd = kerId,g if k = d. For every ε > 0 there exists a constant
C =C(s,ε,g,d,h0)> 0 and a linear map

d−1 : Bk→ Ak−1(p,S (Rg))

associating to every ω ∈ B a primitive Ω = d−1ω ∈ Ak−1(p,S (Rg)) satis-
fying the estimate

(3.21) 9Ω9s ≤C 9ω 9s+(k+1)/2+ε .

Furthermore, for any ε > 0 there exists a constant C′ =C′(s,ε,g,d,h0)> 0
such that the splitting linear maps of Proposition 3.12

Mk : Ak(p,S (Rg))→ Bk(p,S (Rg))

satisfy tame estimates

9Mk(ω)9s ≤C′ 9ω9s+w

where w = (k+3)/2+ ε , if k < d, and w = d/2+ ε if k = d.

Proof. From (2.5) we see that the boundary operators in the Schrödinger
representation with Planck constant h are h̄d := ρh(d) = |h|1/2 d. Therefore,
if ω = dΩ, then ω = h̄dΩ′ with Ω′ = |h|−1/2 Ω. Consequently, by (3.3), the
estimates (3.6) and (3.18) imply

9Ω
′9s,h = |h|−1/2 9Ω9s,h = |h|s/2−1/2 9Ω9s

≤C |h|s/2−1/2 9ω9s+(k+1)/2+ε

=C |h|−(k+1+ε)/2 9ω9s+(k+1)/2+ε,h

≤C′ 9ω 9s+t+ε,h .

(3.22)

for some C′ depending also on h0. The second statement is proved in an
analogous manner. �
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Comparison with the usual Sobolev norms. The standard Sobolev norms
associated with a Heisenberg basis (Xi,Ξ j,T ) of hg were defined in Re-
mark 3.2. For a Hg-module S (Rg) with parameter h, the image of the Lapla-
cian −(X2

1 + · · ·+X2
g +Ξ2

1+ · · ·+Ξ2
g+T 2)∈U(hg) under ρh is ∆g =Hg+h2.

Thus
‖ f‖2

s = 〈 f ,(1+∆g)
s f 〉= 〈 f ,(1+h2 +Hg)

s f 〉
Here we claim that the uniform bound as in Proposition 3.14 continues to
hold with respect to the usual Sobolev norms. This is a consequence of
the following easy lemma which applies to S (Rg) but also to any tensor
product of S (Rg) with some finite dimesional Euclidean space.

Lemma 3.15. Let L : S (Rg)→S (Rg) be a linear map satisfying, for some
t ≥ 0 and every s≥ 0, the estimate

9L( f )9s ≤C(s)9 f 9s+t

Then for every s≥ 0 we have

‖L( f )‖s ≤C1(s)‖ f‖s+t ,

where C1(s) = maxu∈[0,s+1]C(u).

Proof. For integer s = n, using the binomial formula, we get, with C′(n) :=
max j∈[0,n]C( j)2,

‖L( f )‖2
n :=

〈
L( f ),(Hg +1+h2)n L( f )

〉
0

=
n

∑
j=0

(
n
j

)
‖(1+h2)(n− j)/2H j/2

g L( f )‖2
0

≤C′(n)
n

∑
j=0

(
n
k

)
‖(1+h2)(n− j)/2H( j+t)/2

g f‖2
0

=C′(n)‖(1+∆g)
nHt/2

g f‖2
0

≤C′(n)‖ f‖2
n+t .

For non integer s the lemma follows by interpolation. �

3.3. Proofs of Theorems 1.5 and 1.6. We are now in a position to inte-
grate over Schrödinger representations, and obtain our main result on the
cohomology of P < Hg with values in Fréchet Hg-modules.

Theorem 3.16. Let P be a d-dimensional isotropic subgroup of Hg, and
let F∞ be the Fréchet space of C∞-vectors of a unitary Hg-module F. Let
F =

∫
Fα dα be the direct integral decomposition of F into irreducible sub-

modules. Suppose that

(1) F does not contain any one-dimensional sub-modules;
(2) A generator of the center Z(Hg) acting on F has a spectral gap.
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Then the reduced and the ordinary cohomology of the complex A∗(p,F∞)
coincide. In fact, for all k = 1, . . . ,d, there are linear maps

d−1 : Bk(p,F∞)→ Ak−1(p,F∞)

associating to each ω ∈ Bk(p,F∞) a primitive of ω and satisfying tame
estimates of degree (k+1)/2+ ε for any ε > 0.

We have Hk(p,F∞) = 0 for k < d; in degree d, we have that Hd(p,F∞) is
finite dimensional only if d = g and the measure dα has finite support.

For any k = 0, . . . ,d and any ε > 0, there exist a constant C and a linear
map

Mk : Ak(p,F∞)→ Bk(p,F∞)

such that the restriction of Mk to Bk(p,F∞) is the identity map and the
following estimate holds:

‖Mk
ω‖s ≤C‖ω‖s+w, ∀ω ∈ Ak(p,F∞)

where w = (k+3)/2+ε , if k < d and w = d/2+ε if k = d. Hence the space
of coboundaries Bk(p,F∞) is a tame direct summand of Ak(p,F∞).

(The hypotheses 1 and 2 of the above theorem could be stated more briefly
by saying that F satisfies the following property: any non-trivial unitary
Hg-module weakly contained in F is infinite dimensional).

Proof. Let F∞ be the Fréchet space of C∞-vectors of a unitary Hg-module
(ρ,F). Let F =

∫
Fαdα be the direct integral decomposition of F into

irreducible sub-modules (ρα ,Fα) . The hypothesis of Theorem 3.16 imply
that there exists h0 > 0 such that for almost every α the Hg-module Fα is
unitarily equivalent to a Schrödinger module with parameter h satisfying
|h| ≥ h0.

For any s ∈ R, we also have a decomposition of the Sobolev spaces
W s(F,ρ) as direct integrals

∫
W s(Fα ,ρα)dα; this is because the operator

1+∆g defining the Sobolev norms is an element of the enveloping algebra
U(hg), and because the spaces Fα are U(hg)-invariant. It follows that any
form ω ∈ Ak(p,F∞) has a decomposition ω =

∫
ωα dα with ω ∈ Ak(p,F∞

α )
and

(3.23) ‖ω‖2
W s(F,ρ) =

∫
‖ωα‖2

W s(Fα ,ρα )
dα.

For the same reason mentioned above, we have

(3.24) dω =
∫
(dωα)dα

Hence ω is closed if and only if ωα is closed for almost all α , i.e.
Zk(p,W s(F,ρ)) =

∫
Zk(p,W s(Fα ,ρα))dα .

For k < d we set Bk
α = Zk(p,F∞

α ). For k = d we set Bd
α = ker Id,g,α , where

Id,g,α : Ad(p,F∞
α )→S (Rg−d) are the tame maps defined, for each α , as in

(3.17).
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By Proposition 3.14 and Lemma 3.15, we have a constant C =
C(s,ε,g,d,h0) and, for each α , a linear map

d−1,α : Bk
α → Ak−1(p,F∞

α )

associating to each ω ∈ Bk
α(p,F

∞
α ) a primitive Ω = d−1ω of ω satisfying the

estimates

(3.25) ‖d−1,αω‖W s(Fα ,ρα ) ≤C‖ω‖W s+(k+1)/2+ε (Fα ,ρα )
.

Let Bk be the graded Fréchet subspace of Ak(p,F∞) defined as
∫

Bk
α dα .

Clearly for k < d we have Bk = Zk(p,F∞) and, in degree d, we have Bd ⊃
Bd(p,F∞).

The above estimate shows that it is possible to define a linear map d−1 :
Bk→ Ak−1(p,F∞), by setting, for ω =

∫
ωα dα ∈ Bk,

d−1ω :=
∫

d−1,αωα dα.

By (3.23) and (3.24), the estimates (3.25) are still true if we replace d−1,α
by d−1.

This shows that d−1 is a tame map of degree (k+1)/2+ ε , for all ε > 0
associating to each ω ∈ Bk a primitive of ω .

Thus Hk(p,F∞) = 0 if k < d. For k = d, we have Hd(p,F∞) =∫
Hd(p,F∞

α )dα . By Proposition 3.11, we have Hd(p,F∞
α ) ≈ S (Rg−d),

hence the top degree cohomology is infinite dimensional if d < g, and one-
dimensional if d = g. This shows that Hd(p,F∞) is finite dimensional if and
only if d = g and the measure dα has finite support.

Finally for each α , we have tame maps Mk
α given by Proposition 3.12.

Setting Mk =
∫

Mk
α dα we obtain the maps Mk satisfying the conclusion of

the Theorem. �

Proof of theorem 1.5. The proof is immediate as the space F = L2
0(M)

formed by the L2 functions on M of average zero along the fibers of the
central fibration of M satisfy the hypothesis of the theorem above. In fact
L2

0(M) is a direct sum of irreducible representations of Hg on which the
generator Z of the center Z(Hg) acts as scalar multiplication by 2πn, with
n ∈ Z\{0}.

Proof of theorem 1.6. The theorem follows from the theorem above and
the “folklore” theorem 3.4, as explained at the beginning of Section 3.

4. SOBOLEV STRUCTURES AND BEST SOBOLEV CONSTANT

4.1. Sobolev bundles.
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Sobolev spaces. The group Sp2g(R) < Aut(Hg) ≈ Aut(hg) acts (on the
right) on the enveloping algebra U(hg) in the following way: we identify
U(hg) with the algebra of right invariant differential operators on Hg; if
V ∈ U(hg) and α ∈ Sp2g(R), the action of α on V yields the differential
operator Vα defined by

(4.1) Vα( f ) := α
∗V
(
(α−1)∗ f

)
, f ∈C∞(Hg).

Let ∆=−(X2
1 + · · ·+X2

g +Ξ2
1+ · · ·+Ξ2

g+T 2)∈U(hg) denote the Laplacian
on Hg defined via the “standard” basis (Xi,Ξ j,T ) (cf. sect. 2.1). Then
∆α = −((α−1X1)

2 + · · ·+(α−1Ξg)
2 +T 2), i.e. ∆α is the Laplacian on Hg

defined by the basis (α−1(Xi),α
−1(Ξ j),T ).

Let Γ′ be any lattice of Hg and M′ := Hg/Γ′ the corresponding nilmanifold.
For each α ∈ Sp2g(R), the operator ∆α is an elliptic, positive and essentially
self-adjoint operator on L2(M′). Recall that L2

0(M
′) denotes the space of ell-

two functions on M′ with zero average along the fibers of the toral projection.
Its norm is defined via the ell-two Hermitian product 〈·, ·〉 with integration
done with respect to the normalised Haar measure. Setting Lα = 1+∆α we
define the Sobolev spaces

(4.2) W s
α(M

′) := L−s/2
α L2

0(M
′),

which are Hilbert spaces equipped with the inner product

〈 f1, f2〉s,α := 〈Ls/2
α f1,L

s/2
α f2〉= 〈 f1,Ls

α f2〉.
For simplicity, we denote by W s(M′) the Sobolev spaces defined via the
operator 1+∆. The space W−s

α (M′) is canonically isomorphic to the dual
Hilbert space of W s

α(M
′).

Remark 4.1. It is useful to notice that, since the Laplacian ∆ is invariant
under the above action of the maximal compact subgroup Kg of Sp2g(R), the
Sobolev space W−s

α (M′) depends only on the class Kgα ∈ Hg in the Siegel
upper half-space.

Let Γ be the standard lattice of Hg and M := Hg/Γ. For α ∈ Sp2g(R),
let Γα := α(Γ) and Mα := Hg/Γα the corresponding nilmanifold. The au-
tomorphim α induces a diffeomorphism (denoted with the same symbol)
according to the formula

α : M→Mα , hΓ 7→ α(h)Γα , ∀h ∈ Hg .

It is immediate that the pull-back map α∗ : C∞(Mα)→C∞(M) satisfies

α
∗(∆ f ) = ∆α(α

∗ f ), f ∈C∞(Mα);

since α∗ preserves the volume, we obtain an isometry

α
∗ : W s(Mα)→W s

α(M).

Observe that, as topological vector spaces, the spaces W s
α(M), (with

α ∈ Sp2g(R)), are all isomorphic to W s(M). Only their Hilbert structure
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varies as α ranges in Sp2g(R). In fact we have the following lemma, whose
proof is omitted.

Lemma 4.2. For every R > 0 there exists a constant C(s)> 0 such that for
all α,β ∈ Sp2g(R) with dist(α,β )< R we have

‖ϕ‖s,α ≤C(s)(1+dist(α,β )2)|s|/2 · ‖ϕ‖s,β .

Here, dist(·, ·) is some left-invariant distance on Sp2g(R).

Lemma 4.3. Let s≥ 0. For γ ∈ Sp2g(Z) and α ∈ Sp2g(R), the pull-back map
γ∗ is an isometry of W s

α(M) onto W s
αγ(M). Hence γ∗ : W−s

αγ (M)→W−s
α (M)

is an isometry.

Proof. By the above, we have isometries (αγ)∗ : W s(Mαγ)→W s
αγ(M) and

α∗ : W s(Mα)→W s
α(M). However, Mαγ = Mα , since Γαγ = Γα . It follows

that γ∗ = (αγ)∗(α∗)−1 is an isometry of W s
α(M) onto W s

αγ(M). �

The Sobolev bundle over the moduli space and its dual. For s≥ 0, let us
consider W s(M) as a topological vector space. The group Sp2g(Z) acts on
the right on the trivial bundles Sp2g(R)×W s(M)→ Sp2g(R) according to

(α,ϕ) 7→ (α,ϕ)γ := (αγ,γ∗ϕ),

for all γ ∈ Sp2g(Z), and all (α,ϕ) ∈ Sp2g(R)×W s(M). By Lemma 4.3, the
norms

‖(α,ϕ)‖s := ‖ϕ‖s,α

are Sp2g(Z)-invariant. In fact, by that lemma we have ‖γ∗ϕ‖s,αγ = ‖ϕ‖s,α .
Consequently, we obtain a quotient flat bundle of Sobolev spaces over the
moduli space:

(Sp2g(R)×W s(M))/Sp2g(Z)→Mg = Sp2g(R)/Sp2g(Z) ;

the fiber over [α] ∈Mg may be locally identified with the space W s
α(M)

normed by ‖ · ‖s,α . We denote this bundle by Ws and the class of (α,ϕ) by
[α,ϕ].

By the duality paring, we also have a flat bundle of distributions W−s

whose fiber over [α] ∈Mg may be locally identified with the space W−s
α (M)

normed by ‖ · ‖−s,α . Observe that for this bundle (α,D)≡ (αγ−1,γ∗D) for
all γ ∈ Sp2g(Z) and (α,D) ∈ Sp2g(R)×W−s(M). We denote the class of
(α,D) by [α,D ].

4.2. Best Sobolev constant.

The best Sobolev constant. The Sobolev embedding theorem implies that
for any α ∈ Sp2g(R) and any s > g+1/2 there exists a constant Bs(α)> 0
such that any f ∈W s

α(M) has a continuous representative such that

(4.3) ‖ f‖∞ ≤ Bs(α) · ‖ f‖s,α .
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For any Sobolev order s > g+1/2, the best Sobolev constant is defined as
the function on the group of automorphisms Sp2g(R) given by

(4.4) Bs(α) := sup
f∈W s

α (M)\{0}

‖ f‖∞

‖ f‖s,α

Lemma 4.4. The best Sobolev constant Bs is a Sp2g(Z)-modular function
on Hg, i.e. Bs(α) = Bs(καγ) for all α ∈ Sp2g(R), all γ ∈ Sp2g(Z) and all
κ ∈ Kg.

Proof. The Kg invariance is an immediate consequence of Remark 4.1. By
Lemma 4.3, the the pull-back map γ∗ is an isometry of W s

α(M) onto W s
αγ(M).

As the map γ∗ is also an isometry for the sup-norm, the lemma follows. �

Thus, we may regard Bs as a function on the Siegel modular variety
Σg = Kg\Sp2g(R)/Sp2g(Z) or as a Sp2g(Z)-invariant function on the Siegel
upper half-space Hg. Recalling that [[α]] denotes the class of α ∈ Sp2g(R)
in Σg, we shall write Bs([[α]]) or Bs([α]) for Bs(α).

Let A ⊂ Sp2g(R) denote the Cartan subgroup of diagonal symplectic
matrices, A+ ⊂ A the subgroup of positive matrices and let a⊂ sp2g be the
Lie algebra of A.

For α =
(

δ 0
0 δ−1

)
∈ A+, where δ = diag(δ1, . . . ,δg) we define

k(α) :=
g

∏
i=1

(δi +δ
−1
i )

Proposition 4.5. For any order s > g+1/2 and any α ∈ A+ there exists a
constant C =C(s)> 0 such that

Bs([[α]])≤C k(α)1/2 .

Proof. Let α =
(

δ 0
0 δ−1

)
∈ A+, where δ = diag(δ1, . . . ,δg). Since the map

α∗ : W s(Mα)→W s
α(M) is an isometry, the best s-Sobolev constant Bs([α])

for the operator 1+∆α on the Heisenberg manifold M is equal to the best
s-Sobolev constant for the operator 1+∆ on the Heisenberg manifold Mα ,
namely

(4.5) Bs([α]) = sup
f∈W s(Mα )\{0}

‖ f‖∞

‖(1+∆)s/2 f‖L2(Mα )

.

We fix the fundamental domain F = [0,1]g× [0,1]g× [0,1/2] for the action
of the lattice Γ on Hg. By the standard Sobolev embedding theorem, for any
s > g+1/2 there exists a constant C(s) such that for any f ∈W s

loc(H
g) we

have
| f (I)|2 ≤C(s)

∫
F
|(1+∆)s/2 f (x)|2 dx

where I = (0,0,0) is the identity of Hg and dx is the Haar measure assigning
volume 1 to F . Since left and right translation commute and since (1+∆)
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operates on the left, for every f ∈W s
loc(H

g) and every h ∈ Hg we have

(4.6) | f (h)|2 ≤C(s)
∫

Fh
|(1+∆)s/2 f (x)|2 dx .

It easy to see that, for any h ∈ Hg, the set Fh is also a fundamental domain
for Γ. Furthermore, if we let pα : h ∈ Hg 7→ hΓα ∈Mα denote the natural
projection, the projection pα((Fh)o) of the interior of Fh covers each point
of Mα−1 at most

(4.7) 2g
g

∏
i=1

max{δi,δi
−1} ≤ 2gk(α)

times.
Given any f ∈W s(Mα), let f̃ = f ◦ pα . Then, for any h ∈ Hg and any

integer n≥ 0∫
Fh

∣∣∣(1+∆)n/2 f̃ (x)
∣∣∣2 dx≤ 2g k(α)

∫
Mα

∣∣∣(1+∆)n/2 f (x)
∣∣∣2 dx (by (4.7))

= 2gk(α)‖(1+∆)n/2 f‖2
L2(Mα )

We deduce, by interpolation and by (4.6), that for any s ≥ g+ 1/2 there
exists a constant C such that

(4.8) sup
h∈Mα

| f (h)| ≤C (k(α))1/2 ‖ f‖W s(Mα ) .

This concludes the proof. �

4.3. Best Sobolev constant and height function. The height of a point
Z ∈ Hg is the positive number

(4.9) hgt(Z) := detℑ(Z) .

Let Fg ⊂ Hg denote the Siegel fundamental domain for the action of
Sp2g(Z) on Hg (see [Kli90]). We define the height function Hgt : Σg→ R+

to be the maximal height of a Sp2g(Z)-orbit (which is attained by Proposition
1 of [Car58]), or, equivalently, the height of the unique representative of an
orbit inside Fg. Thus, if [Z] ∈ Σg denotes the class of Z ∈ Hg in the Siegel
modular variety,

(4.10) Hgt([Z]) := max
γ∈Sp2g(Z)

hgt(γ(Z)) = max
γ∈Sp2g(Z)

detℑ(γ(Z))

Any point in Hg may be uniquely written as Z = X + iW>DW , where
X = (xi j) is a symmetric real matrix, W = (wi j) is an upper triangular real
matrix with ones on the diagonal, and D = diag(δ1, . . . ,δg) is a diagonal
positive matrix. The coordinates (xi j)1≤i≤ j≤g , (wi j)1≤i< j≤g and (δi)1≤i≤g
thus defined are called Iwasawa coordinates on the Siegel upper half-space.
For t > 0, define Sg(t)⊂ Hg as the set of those Z = X + iW>DW ∈ Hg such
that

(4.11) |xi j|< t (1≤ i, j ≤ g)
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(4.12) |wi j|< t (i < j)

(4.13) 1 < tδ1 and 0 < δk < tδk+1 (1≤ k ≤ g−1)

For all t sufficiently large, Sg(t) is a “fundamental open set” for the action of
Sp2g(Z) on Hg, containing the Siegel fundamental domain Fg (see [Car58] or
[Kli90]). We will need the following Lemma, which is an easy consequence
of the expression
(4.14)
ds2 = tr

(
dXY−1dXY−1 +dDD−1dDD−1 +2(W>)−1dW>DdWW−1D−1

)
for the Siegel metric in Iwasawa coordinates, where Y =W>DW .

Lemma 4.6. Any point Z = X + iW>DW inside a Siegel fundamental open
set Sg(t) is at a bounded distance from the point iD.

Proof. Let Z = X + iW>DW , with W and D as explained above, be a point in
Sg(t). In the sequel of the proof we denote by C1, C2 etc., positive constants
depending only on t and the dimension g.

We first observe that (4.12) says that the entries of the matrices W and
W> are bounded by t. Since these matrices are unipotent, their inverses
W−1 and (W>)−1 are also bounded by a constant C1. Consider the path
Z(τ) = X + iW (τ)>DW (τ), with W (τ) := τW and τ ∈ [0,1]. The en-
tries of (W>)−1dW>DdW W−1D−1 along this path are all proportional to
C2 (δi/δ j)(dτ)2, where j > i. Since δi/δ j < t j−i by (4.13), there follows
from (4.14) that the lenght of the path is bounded by a constant C3. Thus,
the arbitrary point Z = X + iW>DW ∈ Sg(t) is within a bounded distance
from X + iD.

But X + iD is within a bounded distance from iD. Indeed, fixed any pair
of indices 1≤ i≤ j ≤ g, we may consider the path Z(i j)(τ) = X(i j)(τ)+ iD,
(τ ∈ [0,1]), where X(i j)(τ) is the symmetric matrix with entries xi j(τ) =
x ji(τ) = τxi j and all other entries constant and equal to those of X . There
follows from (4.14) that the lenght of any such path is∫ 1

0

|xi j|√
δiδ j

dτ ,

which is bounded by some constant C4 because of (4.11) and (4.13). The
claim follows by choosing successively all pair of indices, thus constructing
a sequence of paths joining X + iD to iD. �

The Siegel volume form dXdY/(detY )g+1 in Iwasawa coordinates is

(4.15) dVolg = ∏
i≤ j

dxi j ·∏
i< j

dwi j ·∏
k

δ
−(k+1)
k dδk .

A computation, using again the fundamental open set Sg(t), gives the
following.
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Lemma 4.7. The logarithm of the height function on the Siegel modular
variety is distance-like with exponent kg = g+1

2 . More precisely, for any
τ � 0

Volg
{
[Z] ∈ Σg s.t. Hgt([Z])≥ τ

}
� e−

g+1
2 τ .

Proof. A change of variable as in page 67 of [Kli90] shows that this volume
is within a bounded ratio of ∫

∞

eτ

t−(g+3)/2dt .

�

Proposition 4.8. For any s > g+1/2 there exists a constant C(s)> 0 such
that the best Sobolev constant satisfies the estimate

Bs([[α]])≤C(s) · (Hgt([[α]]))1/4 .

Proof. Let Z = X + iW>DW ∈ Fg be the representative of [[α]] ∈ Σg inside
the Siegel fundamental domain, so that Bs(Z) = Bs([[α]]). Since the Siegel
fundamental domain Fg is contained in a fundamental open set Sg(t), by
Lemma 4.6, the point Z is within a uniformly bounded distance from the
point iD. Thus, by Lemma 4.2, there exists a constant C =C(s) > 0 such
that

Bs(Z)≤C Bs(iD).

Since iD = β−1(i), with β =
(

D−1/2 0
0 D1/2

)
, we have Bs(iD) = Bs(β ) and, by

Proposition 4.5, Bs(β )≤Ck(β )1/2 ≤C′(t)det(D)1/4 =C′(t)hgt([[α]])1/4.
The middle inequality above follows from the definition of k(β ) and the
observation that, for Z in a fundamental open set set Sg(t), the entries δi of
the matrix D are bounded below by t−i. �

4.4. Diophantine conditions and logarithm law. We will need, in the
final renormalization argument, some control on the best Sobolev constant
Bs([[ρα]]), hence, by Proposition 4.8, on Hgt([[ρα]]), when ρ are certain
automorphisms in the Cartan subgroup A⊂ Sp2g(R) of diagonal symplectic
matrices. This control is the higher-dimensional analogue of the escape rate
of geodesics into the cusp of the modular surface.

Diophantine conditions. Let a+ ⊂ sp2g be the cone of those δ̂ =
(

δ 0
0 −δ

)
∈

sp2g where δ = diag(δ1, . . . ,δg) is a non-negative diagonal matrix. We
consider the corresponding one-parameter subgroup of diagonal symplectic
matrices etδ̂ ∈ A ⊂ Sp2g(R), and also denote by e−tδ̂ the corresponding
automorphisms (x,ξ ,z) 7→ (e−tδ x,etδ ξ , t) of the Heisenberg group.

We recall that under the left action of the symplectic matrix β =
(

A B
C D

)
∈

Sp2g(R), the height on Hg transforms according to

(4.16) hgt(β (Z)) = |det(CZ +D)|−2 hgt(Z)
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Lemma 4.9. Let δ = diag(δ1,δ2, . . . ,δg) be a non-negative diagonal ma-
trix and let δ̂ =

(
δ 0
0 −δ

)
∈ a be the generator of the one-parameter group

(etδ̂ )t∈R < Sp2g(R). For any [α] ∈Mg and any t ≥ 0 we have the trivial
bound

Hgt([[e−tδ̂
α]])≤ (detetδ )2 Hgt([[α]]) .

Proof. We recall that Hgt is the maximal hgt of a Sp2g(Z) orbit. There-
fore, we may take the representative β = αγ , with γ ∈ Sp2g(Z), such that

(e−tδ̂ β )−1(i) ∈ Hg realizes the maximal height, i.e.

Hgt([[e−tδ̂
α]]) = hgt((e−tδ̂

β )−1(i)),

and prove the inequality for the function hgt, namely

hgt((e−tδ̂
β )−1(i))≤ (detetδ )2 hgt(β−1(i)) ,

since then hgt(β−1(i)) ≤ Hgt([[α]]). By the Iwasawa decomposition, any
symplectic matrix β ∈ Sp2g(R) sending the base point i := i1g into the point

β−1(i) = X + iW>DW may be written as β−1 = νηκ with ν =
(

W> XW−1

0 −W−1

)
,

η =
(√

D 0
0
√

D
−1

)
and κ ∈ Kg. By the formula (4.16),

hgt(νηκ(Z)) = hgt(ηκ(Z)) = (detD) hgt(κ(Z))

(because detW = 1) for all Z ∈ Hg. Therefore, since hgt(κ(i)) = 1, we only
need to prove

hgt(κetδ̂ (i))≤ dete2tδ .

Let κ =
(

A B
−B A

)
∈ Kg, i.e. with A>A+B>B = 1g and A>B symmetric. Since

etδ̂ (i) = ie2tδ , using formula (4.16), the above inequality is equivalent to

|det(−iBe2tδ +A)|−2 ·dete2tδ ≤ dete2tδ

i.e. to
|det(A− iBe2tδ )|2 ≥ 1 ,

and therefore to
|det(AA>+Be4tδ B>)| ≥ 1 .

But, by our hypothesis on δ and t, the norm of e2tδ is ‖e2tδ‖ ≥ 1, and
therefore 〈

x,(A>A+B>e4tδ B)x
〉
≥
〈

x,(A>A+B>B)x
〉
= ‖x‖2

for any vector x ∈ Rg. Hence, all the eigenvalues of the symmetric matrix
A>A+B>e4tδ B are ≥ 1, and the same occurs for the determinant. �

Definition 4.10. Let δ = diag(δ1, . . . ,δg) be a non-negative diagonal matrix,
and δ̂ =

(
δ 0
0 −δ

)
∈ a+ ⊂ sp2g. We say that an automorphism α ∈ Sp2g(R),

or, equivalently, a point [α] ∈Mg in the moduli space,
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• is δ̂ -Diophantine of type σ if there exists a σ > 0 and a constant
C > 0 such that

(4.17)
Hgt([[e−tδ̂

α]])≤C Hgt([[e−tδ̂ ]])(1−σ) Hgt([[α]]) ∀ t� 0 ,

• satisfies a δ̂ -Roth condition if for any ε > 0 there exists a constant
C > 0 such that

(4.18) Hgt([[e−tδ̂
α]])≤C Hgt([[e−tδ̂ ]])ε Hgt([[α]]) ∀ t� 0 ,

i.e. if it is Diophantine of every type 0 < σ < 1.
• is of bounded type if there exists a constant C > 0 such that

(4.19) Hgt([[e−tδ̂
α]])≤C

for all δ̂ ∈ a+ and all t ≥ 0.

Remark 4.11. In the final section, dealing with theta sums, we will be
interested in Diophantine properties in the direction of the particular δ̂ =(

I 0
0 −I

)
∈ a. For such δ̂ , the Diophantine properties of an automorphism

α ∈ Sp2g(R) only depend on the right T class of α−1, where T⊂ Sp2g(R) is

the subgroup of block-triangular symplectic matrices of the form
(

A B
0 (A>)−1

)
.

In particular, those α in the full measure set of those automorphisms such
that α−1 =

(
A B
C D

)
with A ∈ GLg(R) are in the same Diophantine class of

β =
(

I 0
−X I

)
, where X is the symmetric matrix X =CA−1. For such lower-

triangular block matrices β , the Height in the Diophantine conditions above
is (see (4.16))

Hgt([[e−tδ̂
β ]]) = max

∣∣∣det(QQ>e−2t +(QX +P)(QX +P)>e2t)
∣∣∣−1

(4.20)

the maximum being over all
(N M

P Q
)
∈ Sp2g(Z). When g = 1, we recover

the classical relation between Diophantine properties of a real number X
and geodesic excursion into the cusp of the modular orbifold Σ1, or the
behaviour of a certain flow in the space M1 = SL2(R)/SL2(Z) of unimod-
ular lattices in the plane. Indeed, our (4.20) coincides with the function
δ (Λt) = maxv∈Λt\{0} ‖v‖

−2
2 , where Λt is the unimodular lattice made of(

et 0
0 e−t

)(
1 X
0 1
)( P

Q
)
, with P,Q ∈ Z. The maximizers, for increasing time t,

define a sequence of relatively prime integers Pn and Qn which give best
approximants Pn/Qn to X in the sense of continued fractions. In particular,
our definitions of Diophantine, Roth and bounded type coincide with the
classical notions.

This same function δ (Λt), extended to the space SLn(R)/SLn(Z) of
unimodular lattices in Rn, has been used by Lagarias [Lag82], or, more
recently, by Chevallier [Che05], to understand simultaneous Diophantine
approximations. A similar function, ∆(Λt) = maxv∈Λt\{0} log(1/‖v‖∞), has
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been considered by Dani [Dan85] in his correspondance between Diophan-
tine properties of systems of linear forms and certain flows on the space
SLn(R)/SLn(Z), or more recently by Kleinbock and Margulis [KM99] to
prove a “higher-dimensional multiplicative Khinchin theorem”.

Khinchin-Sullivan-Kleinbock-Margulis logarithm law. A stronger con-
trol on the best Sobolev constant comes from the following generalization of
the Kinchin-Sullivan logarithm law for geodesic excursion [Sul82], due to
Kleinbock and Margulis [KM99].

Let X = G/Λ be a homogeneous space, equipped with the probability
Haar measure µ . A function φ : X→R is said k-DL (for “distance-like”) for
some exponent k > 0 if it is uniformly continuous and if there exist constants
c± > 0 such that

c−e−kt ≤ µ ({x ∈ X s.t. φ(x)≥ t})≤ c+e−kt

Theorem 1.7 of [KM99] says the following.

Proposition 4.12 (Kleinbock-Margulis). Let G be a connected semisimple
Lie group without compact factors, µ its normalized Haar measure, Λ⊂ G
an irreducible lattice, a a Cartan subalgebra of the Lie algebra of G, z a
non-zero element of a. If φ : G/Λ→ R is a k-DL function for some k > 0,
then for µ-almost all x ∈ G/Λ one has

limsup
t→∞

φ(etzx)
log t

= 1/k .

We have seen in Proposition 4.7 that the logarithm of the height function
Hgt is a DL-function with exponent g+1

2 on the Siegel variety Σg, hence it
induces a DL-function on the homogeneous space Mg = Sp2g(Z)\Sp2g(R).
Thus, the following proposition is a consequence of the easy part of Proposi-
tion 4.12 and of Proposition 4.8.

Proposition 4.13. Let s > g+ 1/2. For any non-zero vector δ̂ ∈ a in the
Cartan subalgebra of diagonal symplectic matrices there exists a full measure
set Ωg(δ̂ )⊂Mg such that for all [α] ∈Ωg(δ̂ ) we have

limsup
t→∞

logHgt([[e−tδ̂ α]])

log t
≤ 2

g+1
.

In particular, any such [α] satisfies a δ̂ -Roth condition.

5. EQUIDISTRIBUTION

In this section we consider only functional spaces “built up” from the
space of functions with zero average along the fibers of the central fibration
of the standard nilmanifold M. Thus, all smooth forms have coefficients in
C∞

0 (M), all Sobolev forms and currents have coefficients in some W s
α(M),

s ∈ R (see definition 4.2).
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5.1. Birkhoff sums and renormalization. Let (X0
1 , . . . ,X

0
g ,Ξ

0
1, . . . ,Ξ

0
g,T )

be the “standard” Heisenberg basis defined in section 2.1.
For 1≤ d ≤ g, we define the sub-algebra pd,0 ⊂ hg generated by the first

d base elements X0
1 , . . . ,X

0
d , and then the Abelian subgroup Pd,0 := exppd,0.

According to (4.1), the group Sp2g(R) acts on the right on the enveloping
algebra U (hg) and in particular for V ∈ hg, Vα = α−1(V ). For simplicity
we set, for any α ∈ Sp2g(R), (Xα

i ,Ξα
j ,T ) := (α−1(X0

i ),α
−1(Ξ0

j),T ). Then
pd,α := α−1(pd,0) and Pd,α = α−1(Pd,0) are respectively the algebra and
the subgroup generated by (Xα

i ,Ξα
j ,T ). Every isotropic subgroup of Hg is

obtained in this way, i.e. given by some Pd,α defined as above.
It is immediate that for every α,β ∈ Sp2g(R) we have

α
−1(Pd,β ) = Pd,βα ;

in particular, if β belongs to the diagonal Cartan subgroup A, then Pd,βα =
Pd,α .

We define a parametrization of Pd,α , hence a Rd-action on M subordinate
to α , by setting

(5.1) Pd,α
x := exp(x1Xα

1 + · · ·+ xdXα
d ) with x = (x1, . . . ,xd) ∈ Rd.

Birkhoff sums. We define the bundle A j(pd,Ws)→Mg of p-forms of
degree j and Sobolev order s as the set of pairs

(α,ω), α ∈ Sp2g(R), ω ∈ A j(pd,α ,W s
α(M)),

modulo the equivalence relation (α,ω) ≡ (αγ,γ∗ω) for all γ ∈ Sp2g(Z).
The class of (α,ω) is denoted [α,ω]. We also define the dual bundle
A j(p

d,W−s)→Mg of p-currents of dimension j and Sobolev order s as the
set of pairs

(α,D), α ∈ Sp2g(R), D ∈ A j(p
d,α ,W−s

α (M)),

modulo the equivalence relation (α,D) ≡ (αγ,(γ∗)
−1D) for all elements

γ ∈ Sp2g(Z). The class of (α,D) is denoted [α,D ].
The bundles A j(p,Ws) and A j(p,W

−s) are Hilbert bundles for the dual
norms

‖ [α,ω]‖s := ‖ω‖s,α , ‖ [α,D ]‖−s := ‖D‖−s,α .

In the following, it will be convenient to set ωd,α = dXα
1 ∧·· ·∧dXα

d and to
identify top-dimensional currents D with distributions by setting 〈D , f 〉 :=〈
D , f ωd,α〉.

Given a Jordan region U ⊂ Rd and a point m ∈ M, we define a top-
dimensional p-current Pd,α

U m as the Birkhoff sums given by integration
along the chain Pd,α

U m = {Pd,α
x m | x ∈U}. Explicitely, if ω = f dXα

1 ∧·· ·∧
dXα

d is a top-dimensional p-form, then

(5.2)
〈
Pd,α

U m,ω
〉

:=
∫

Pd,α
U m

ω =
∫

U
f (Pd,α

x m)dx1 . . .dxd.
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Our goal is to understand the asymptotic of these distributions as U ↗Rd in
a Følner sense. A particular case is obtained when U = Q(T ) = [0,T ]d .

We remark that the Birkhoff sums satisfy the following covariance prop-
erty:

γ
−1
∗

(
Pd,α

U m
)
= Pd,αγ

U (γ−1m), ∀m ∈M,∀γ ∈ Sp2g(Z).

Renormalization flows. For each 1≤ i≤ g, we denote by δ̂i :=
(

δi 0
0 −δi

)
∈

a the element of the Cartan subalgebra of diagonal symplectic matrices
defined by the diagonal matrix δi = diag(d1, . . . ,dg) with di = 1 and dk = 0
if k 6= i. Any such δ̂i generates a one parameter group of automorphisms
rt

i := etδ̂i ∈ A, with t ∈ R.
Left multiplication by the one parameter group (rt

i) yields a flow on
Sp2g(R) that projects to moduli space Mg according to [α] 7→ rt

i [α] = [rt
iα].

Above this flow, we consider its horizontal lift to the bundles A j(pd,Ws)
and A j(p

d,W−s) (s ∈ R), defined by

rt
i [α,ω] := [rt

iα,ω] rt
i [α,D ] := [rt

iα,D ]

for α ∈ Sp2g(R) and ω ∈ A j(pd,α ,Ws) or D ∈ A j(p
d,α ,W−s). This is well

defined since, as we remarked before, pd,α = pd,rt
i α .

Definition 5.1. For s > 0, let Zd(p
d,W−s) be the sub-bundle of the bundle

Ad(p
d,W−s) consisting of elements [α,D ] with D ∈ Zd(p

d,α ,W−s
α (M)), i.e.

with D a closed pd,α -current of dimension d and Sobolev order s.

We remark that the definition is well posed. In fact, if D is a closed
pd,α -current of dimension d then, from the identities

〈
D ,Xα

i ( f )
〉
= 0

for all test functions f and i ∈ [1,d], we obtain 0 =
〈
γ∗D ,γ∗Xα

i ( f )
〉
=〈

γ∗D ,Xαγ−1

i ( f )
〉

, which shows that γ∗D is a closed pd,αγ−1
-current of di-

mension d.
Observe that, although the subgroup Pd,(rt

i α) and Pd,α coincide, the actions
of Rd defined by their parametrizations (5.1) differ by a constant rescaling;
in fact

(5.3) P
d,(rt1

1 ...r
tg
g α)

(x1,...,xd)
= Pd,α

(e−t1x1,...,e−td xd)
.

Consequently, denoting by (e−t1, . . . ,e−td)U the obvious diagonal automor-
phism of Rd applied to the region U , the Birkhoff sums satify the identities

(5.4) P
d,(rt1

1 ...r
tg
g α)

U m = et1+···+td Pd,α
(e−t1 ,...,e−td )U m.

Proposition 5.2. Let s > d/2. The sub-bundle Zd(p
d,W−s) is invariant

under the renormalization flows rt
i with 1≤ i≤ d. Furthermore, for every
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(t1, . . . , td) ∈ Rd and any [α,D ] ∈ Zd(p
d,W−s) and any s > d/2, we have∥∥rt1

1 . . .rtd
d [α,D ]

∥∥
−s = e−(t1+···+td)/2∥∥ [α,D ]

∥∥
−s.

Proof. The invariance of the sub-bundle Zd(p
d,W−s) is clear from (5.3).

Set, for simplicity, r := rt1
1 . . .rtd

d . By definition
∥∥r[α,D ]

∥∥
−s =∥∥ [rα,D ]

∥∥
−s = ‖D‖−s,rα for any [α,D ] ∈ Ad(p

d,W−s).
Without loss of generality we may assume that D belongs to the space

Ad(p
d,α ,W−s(ρh)), where ρh is an irreducible Schrödinger reprentation in

which the basis (Xα
i ,Ξα ,T ) acts according to (2.5). Let L̃α = (ρh)∗Lα and

L̃rt
dα = (ρh)∗L̃rt

dα be the push-forward to L2(Rg) of the operators defining
the norms ‖ · ‖s,α and ‖ · ‖s,rt

dα .
By Proposition 3.13, the space of closed currents of dimension d is span-

ned by Ig, if d = g, and by the dense set of currents D = Dy ◦Id,g with
Dy ∈ L2(Rg−d,dy), if d < g. Any such current is given, for any test function
f ∈ S (Rg), by 〈D , f 〉 =

〈
Dy,

∫
Rd f (x,y)dx

〉
. The unitary operator Ut :

L2(Rg)→ L2(Rg) defined, for t = (t1, . . . , td), by2

(5.5) Ut f (x,y) := e(t1+···+td)/2 f
(
(et1, . . . ,etd)x,y

)
(x ∈Rd , y ∈Rg−d), intertwines the differential operator L̃α with the operator
L̃rα , i.e. Ut(L̃α f ) = L̃rαUt f for any smooth f . Thus

‖D‖−s,rα = sup
‖ f‖s,rα=1

|〈D , f 〉|= sup
‖L̃s/2

rα f‖=1

|〈D , f 〉|

= sup
‖L̃s/2

α U−1
t f‖=1

|〈D , f 〉|= sup
‖L̃s/2

α f‖=1

|〈D ,Ut f 〉|

= sup
‖(Lα )s/2 f‖=1

∣∣∣∣〈Dy,
∫
Rg

e(t1+···+td)/2 f
(
(et1, . . . ,etd)x,y

)
dx
〉∣∣∣∣

= sup
‖(Lα )s/2 f‖=1

e−(t1+···+td)/2
∣∣∣∣〈Dy,

∫
Rg

f (x,y)dx
〉∣∣∣∣

= e−(t1+···+td)/2 ‖D‖−s,α

�

5.2. The renormalization argument.

Orthogonal splittings. For any exponent s > d/2, the sub-bundle
Zd(p

d,W−s) is a closed subspace of the Hilbert bundle Ad(p
d,W−s) and

therefore induces an orthogonal decomposition

(5.6) Ad(p
d,W−s) = Zd(p

d,W−s)⊕Rd(p
d,W−s) .

where Rd(p
d,W−s) := Zd(p

d,W−s)⊥. We denote by Z −s and R−s the
corresponding orthogonal projections, and, given α ∈ Sp2g(R), by Z −s

α

2This is a particular case of the metaplectic representation. (See [Wei64, Fol89]).
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and R−s
α the restrictions of these projections to the fiber over [α] ∈Mg. In

particular, we obtain a decomposition of the Birkhoff sums D = Pd,α
U m as

[α,D ] = Z −s[α,D ]+R−s[α,D ]

= [α,Z −s
α (D)]+ [α,R−s

α (D)]
(5.7)

with “boundary term” Z −s
α (D) ∈ Zd(p

d,α ,W−s
α (M)) and “remainder term”

R−s
α (D) ∈ Rd(p

d,α ,W−s
α (M)).

We will also need an estimate for the distortion of the Sobolev norms
along the renormalization flow. Below, |t| denotes the sup norm of a vector
t ∈ Rd .

Lemma 5.3. Let s > d/2 + 2. For t = (t1, . . . , td) ∈ Rd and τ ∈ R, let
rτ = r−τt1

1 . . .r−τtd
d . There exists a constant C = C(s) such that if |τt| is

sufficiently small then the orthogonal projection

Z −s
rτ α

: Rd(p
d,α ,W−(s−2)

α (M))→ Zd(p
d,α ,W−s

rτ α
(M))

has norm bounded by C |τt|.

Proof. As in the proof of Proposition 5.2, we may restrict to a fixed Schrö-
dinger representation ρh in which the basis (Xα

i ,Ξα
i ,T ) acts according to

(2.5). It is also clear from Lemma 3.15 that we may use the homogeneous
Sobolev norm defined in (3.4). If H = (ρh)∗Lα denotes the sub-Laplacian
inducing the Sobolev structure of W−s

α (Rg), then the Sobolev structure of
W−s

rτ α
(Rg) is induced by

Hτ =U ′−τHU ′τ
where U ′τ =Uτt is the one-parameter group of unitary operators of L2(Rg)
defined according to (5.5). We denote by 〈φ ,ψ〉−s,τ = 〈φ ,H−s

τ ψ〉 the inner
product in W−s

rτ α
(Rg). A computation shows that the infinitesimal generator

of U ′τ is i times the self-adjoint operator A = (ρh)∗
(
∑

d
k=1 tk(1/2−XkΞk)

)
.

Moreover, using the Hermite basis, one can show that there exists a constant
C such that ‖Aψ‖ ≤C|t|‖Hψ‖ for ψ in the domain of A.

Now, let R ∈W−s+2
α (Rg) be a distribution (we identify top-dimensional

currents with distributions as explained in 5.1) which is orthogonal to the
subspace Z of closed distributions when τ = 0, i.e. such that

〈R,D〉−s,0 =
〈
R,H−sD

〉
= 0

for all D ∈ Z. In order to bound the norm of its projection to Z w.r.t. the
Sobolev structure at τ we must bound the absolute values of the scalar
products 〈R,D〉−s,τ for all D in Z. Now,

〈R,D〉−s,τ =
〈
R,U ′−τH−sU ′τD

〉
=
〈
U ′τR,H−sU ′τD

〉
If R is in the domain of A, we may write

U ′τR = R+ i
∫

τ

0
U ′uAR du
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According to Proposition 5.2, the group U ′τ preserves Z. Therefore, since R
is orthogonal to U ′τD for all τ , we may write

〈R,D〉−s,τ = i
∫

τ

0

〈
U ′uAR,H−sU ′τD

〉
du

= i
∫

τ

0

〈
AR,U ′−uH−sU ′τD

〉
du

= i
∫

τ

0

〈
AR,U ′τ−uD

〉
−s,u du

By Cauchy-Schwartz and Lemma 4.2, if |τt| is sufficiently small we have∣∣∣〈R,D〉−s,τ

∣∣∣≤ ∣∣∣∣∫ τ

0
‖AR‖−s,u ‖U ′τ−uD‖−s,u du

∣∣∣∣
≤C′ ‖AR‖−s,0

∣∣∣∣∫ τ

0
‖U ′τ−uD‖−s,u du

∣∣∣∣
≤C′′ |t|‖R‖−s+2,0

∣∣∣∣∫ τ

0
‖U ′τ−uD‖−s,u du

∣∣∣∣
But ‖U ′τ−uD‖−s,u = ‖D‖−s,τ . There follows∣∣∣〈R,D〉−s,τ

∣∣∣≤ |τt|C′′ ‖R‖−s+2,0 ‖D‖−s,τ

This says that the orthogonal projection Zτ(R) of R onto Z w.r.t. the Sobolev
structure at τ has norm

‖Zτ(R)‖−s,τ ≤ |τt|C′′ ‖R‖−s+2,0.

�

Notation 5.4. In order to shorten our formulas, in the proofs of the following
statements we drop the “initial point” m ∈M or the automorphism α in the
symbol Pd,α

U m whenever the estimates are uniform in m, in α or both.

From the Sobolev embedding theorem and the definition (4.4) of the Best
Sobolev Constant Bs we have the following trivial bound.

Lemma 5.5. For any Jordan region U ⊂Rd with Lebesgue measure |U |, for
any s > g+1/2 and all m ∈M we have∥∥∥[α,Pd,α

U m]
∥∥∥
−s
≤ Bs([[α]]) |U |.

For the remainder term we have the following estimate. Below, we denote
by ∂D the boundary of the current D , defined by 〈∂D ,η〉= 〈D ,dη〉.

Lemma 5.6. Let s > g+d/2+1. For any non-negative s′ < s− (d +1)/2,
there exists a constant C = C(g,d,s′,s) > 0 such that, for all m ∈M and
α ∈ Sp2g(R), we have

‖R−s [α,Pd,α
U m]‖−s ≤C‖ [α,∂ (Pd,α

U m)]‖−s′ .
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Proof. Let ω : [α]→ ω([α]) be a section of Ad(pd,Ws). Writing ω =
ωs

Z +ωs
R for its decomposition with ωs

R in the annihilator of Zd(p
d,W−s)

and ωs
Z in the annihilator of Rd(p

d,W−s), we have〈
R−s

α (Pd,α
U ),ω

〉
=
〈
R−s

α (Pd,α
U ),ωs

R

〉
=
〈
Pd,α

U ,ωs
R

〉
.

Since s > (d + 1)/2 and since, by definition, 〈T,ωs
R〉 = 0 for any T ∈

Zd(p
d,W−s), by Theorem 3.16 there exists a constant C := C(g,d,s′,s)

and a section of (d − 1)-forms η with dη = ωs
R and satisfying, for all

s′ < s− (d + 1)/2, the estimate ‖η([α])‖s′,α ≤ C‖ωs
R([α])‖s,α for all α .

It follows that 〈
Pd

U ,ω
s
R

〉
=
〈

∂Pd
U ,η

〉
.

Hence, for s′ < s− (d +1)/2, for all m ∈M and α ∈ Sp2g(R), we have

|
〈
Pd

U ,ω
s
R

〉
| ≤C‖∂Pd

U‖−s′×‖ω
s
R‖s ≤C‖∂Pd

U‖−s′×‖ω‖s.

�

To estimate the boundary term, we need the following recursive estimate.

Lemma 5.7. Let s > d/2+2. There exists a positive constant C1 = C1(s)
such that for all t1 ≥ 0, . . . , td ≥ 0 and all [α,D ]∈ Ad(p

d,W−(s−2)) we have

‖Z −s[α,D ]‖−s ≤ e−(t1+···+td)/2 ‖Z −s[r−t1
1 . . .r−td

d α,D ]‖−s

+C1 |t1 + · · ·+ td|
∫ 1

0
e−u(t1+···+td)/2‖R−s[r−ut1

1 . . .r−utd
d α,D ]‖−(s−2) du.

Proof. Set for simplicity ru = r−ut1
1 . . .r−utd

d and t = t1 + · · ·+ td . Consider
the orthogonal decomposition

D = Z −s
r−uα

(D)+R−s
r−uα

(D), u ∈ [0,1].

If we apply the projection Z −s
rτ−uα

, since by Proposition 5.2 we have the
identity Z −s

rτ−uα
Z −s

r−uα
(D) = Z −s

r−uα
(D), we obtain

Z −s
rτ−uα

(D) = Z −s
r−uα

(D)+Z −s
rτ−uα

(R−s
r−uα

(D))

and therefore we may write

[rτ−u
α,Z −s

rτ−uα
(D)] = [rτ−u

α,Z −s
r−uα

(D)]+ [rτ−u
α,Z −s

rτ−uα
(R−s

r−tα
(D))]

= rτ Z −s[r−u
α,D ]+Z −s[rτ−u

α,R−s
r−uα

(D)]

Now, we compute the norm with exponent −s. By Proposition 5.2, the first
term on the right has norm

‖rτ Z −s[r−u
α,D ]‖−s = e−

t
2 τ‖Z −s[r−u

α,D ]‖−s .

To estimate the norm of the second term on the right, we observe that Z −s
rτ−u

is an orthogonal projection, and that by Lemma 5.3 the projection

Rd(p
d,α ,W−(s−2)

rτ−uα
(M))→ Zd(p

d,α ,W−s
r−uα

(M))
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has norm bounded by C(s) t τ . Therefore

‖Z −s[rτ−u
α,D ]‖−s ≤ e−

t
2 τ ‖Z −s[r−u

α,D ]‖−s

+C(s) t τ ‖R−s[r−u
α,D)‖−(s−2) .

Let n ∈ N+, and set τ = 1/n, u = kτ , with k ∈ N∩ [0,n]. By finite induction
on k we obtain

‖Z −s[α,D ]‖−s ≤ e−
t
2‖Z −s[r−1

α,D ]‖−s

+C(s)
t
n

n

∑
k=1

e−
tk
2n‖R−s[r−k/n

α,D ]‖−(s−2) .

The Lemma follows by taking the limit as n→ ∞. �

Next, we consider the case d = 1.

Theorem 5.8. Let α ∈ Sp2g(R) and s > g+7/2. Let P1,α be the 1-dimen-
sional Abelian subgroup of Hg generated by the base vector field Xα

1 ∈ hg.
Let UT = [0,T ] and P1,α

UT
m the Birkhoff sum associated to some m ∈M for

the action of P1,α
x (x ∈ R). There exist a constant C2 =C2(s)> 0 such that

for all T ≥ 1 and all m ∈M we have∥∥∥ [α,P1,α
UT

m]
∥∥∥
−s
≤ C2 T 1/2 Hgt

(
[[r− logT

1 α]]
)1/4

+C2

∫ logT

0
eu/2 Hgt

(
[[r−u

1 α]]
)1/4 du.

Proof. For simplicity we set rt = rt
1. To start, we observe that, according

to (5.4) and Lemma 5.6, we have

‖R−s[r−t
α,P1,α

Uet T
]‖−(s−2) = et ‖R−s[r−t

α,P1,r−tα
UT

]‖−(s−2)

≤ et ∥∥ [r−t
α,∂ (P1,r−tα

UT
)]
∥∥
−s′

provided g+1/2 < s′ < s−3. The boundary ∂ (P1,r−tα
UT

) is a 0-dimensional
current given by 〈

∂ (P1,r−tα
UT

, f
〉
= f (Pr−tα

T (m))− f (m) ,

hence, by the Sobolev embedding theorem and the definition (4.4) of the
Best Sobolev Constant, we have∥∥ [r−t

α,∂ (P1,r−tα
UT

)]
∥∥
−s′ ≤ 2Bs′([[r

−t
α]]) .

There follows from Proposition 4.8 that∥∥R−s[r−t
α,P1,α

Uet T
]
∥∥
−(s−2) ≤ 2et Bs′([[r

−t
α]])≤C(s′)et Hgt([[r−t

α]])1/4 .
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Using Lemma 5.7 with D = P1,α
Uet T

m and t = nτ , we may estimate the
boundary term in the decomposition (5.7) as∥∥∥Z −s[α,P1,α

Uet T
]
∥∥∥
−s
≤e−t/2

∥∥∥Z −s[r−t
α,P1,α

Uet T
]
∥∥∥
−s

+C(s,s′)
∫ t

0
eu/2 Hgt([[r−u

α]])1/4 du .

By the covariance formula (5.4), the Proposition 4.8 and Lemma 5.5, we
have ∥∥∥Z −s[r−t

α,P1,α
Uet T

]
∥∥∥
−s

= et
∥∥∥Z −s[r−t

α,P1,r−tα
UT

]
∥∥∥
−s

≤ et C(s)T Hgt([[r−t
α]])1/4 .

There follows that∥∥∥Z −s[α,P1,α
Uet T

]
∥∥∥
−s
≤ et/2C(s)T Hgt([[r−t

1 α]])1/4

+C(s,s′)
∫ t

0
eu/2 Hgt([[r−u

α]])1/4 du .

If we take first T = 1, then rename et := T ≥ 1, we finally get∥∥∥Z −s[α,P1,α
UT

m]
∥∥∥
−s
≤ C(s)T 1/2 Hgt([[r− logT

α]])1/4

+C(s,s′)
∫ logT

0
et/2 Hgt([[r−t

α]])1/4 dt .

The reminder term in the decomposition (5.7) is estimated as at the beginning
of the proof, using Lemma 5.6, Proposition 4.8 and Lemma 4.9, and is
bounded by∥∥∥R−s[α,P1,α

UT
]
∥∥∥
−s
≤C(s) Hgt([α])1/4

=C(s) Hgt([[rlogT r− logT
α]])1/4

≤C(s)T 1/2 Hgt([[r− logT
α]])1/4 .

The Theorem follows. �

The next result follows immediatly from the above Theorem 5.8 and the
Kleinbock-Margulis logarithm law, i.e from Proposition 4.13.

Proposition 5.9. Let the notation as in Theorem 5.8. There exists a full
measure set Ωg(δ̂1)⊂Mg such that if [α] ∈Ωg(δ̂1) and ε > 0 there exists a
constant C =C(s,ε)> 0 such that for all T � 1 and all m ∈M we have∥∥∥ [α,P1,α

UT
m]
∥∥∥
−s
≤C T 1/2 (logT )1/(2g+2)+ε .

Now we may use induction on the dimension of the isotropic group Pd ⊂
Hg. Let (sd)d∈N be the solution of the recusive equation sd+1 = sd +3+d/2
with initial condition s1 = g+7/2, that is, sd = d(d +11)/4+g+1/2.
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Theorem 5.10. Let s > sd . There exists a constant C3 =C3(s,d)> 0 such
the following holds true. Let α ∈ Sp2g(R) and let Pd,α ⊂ Hg be the d-
dimensional Abelian subgroup of Hg generated by the base vector fields
Xα

1 , . . . ,Xα
d ∈ h

g. Let Ud(t) := [0,et ]d . Let Pd,α
Ud(t)

=Pd,α
Ud(t)

m be the Birkhoff

sum associated to some m ∈M for the action of Pd,α
x , (x ∈ Rd). Then, for

all t > 0 and all m ∈M, we have∥∥∥ [α,Pd,α
Ud(t)

m]
∥∥∥
−s

≤C3

d

∑
k=0

∑
1≤i1<···<ik≤d

∫ t

0
. . .
∫ t

0
exp
(

d
2 t− 1

2

k

∑
`=1

u`
)

×Hgt
(
[[ ∏

1≤ j≤d
r−t

j

k

∏
`=1

ru`
i` α]]

)1/4
du1 . . .duk.

(5.8)

Proof. We argue by induction. The case d = 1 is Theorem 5.8. We assume
the result holds for d−1≥ 1.

Set for simplicity ru = ru
1 . . .r

u
d .

Decomposing the current Pd,α
Ud(t)

m as in (5.7) as a sum of the currents

Z −s[α,Pd,α
Ud(t)

] and R−s[α,Pd,α
Ud(t)

], we first estimate the boundary term∥∥Z −s[α,Pd,α
Ud(t)

]
∥∥
−s. Using Lemma 5.7 we have:

∥∥∥Z −s[α,Pd,α
Ud(t)

]
∥∥∥
−s
≤e−dt/2

∥∥∥Z −s[r−1
α,Pd,α

Ud(t)
]
∥∥∥
−s

+C1(s)
∫ t

0
e−ud/2‖R−s[r−u

α,Pd,α
Ud(t)

]‖−(s−2) du

= I + II.

(5.9)

By the covariance (5.4), Lemma 5.5 and Proposition 4.8, we have∥∥∥Z −s[r−1
α,Pd,α

Ud(t)
]
∥∥∥
−s

= edt
∥∥∥Z −s[r−1

α,Pd,r−tα
Ud(0)

]
∥∥∥
−s

≤C edt Hgt([[r−t
α]])1/4

Hence

(5.10) I ≤C edt/2 Hgt([[r−t
α]])1/4

corresponding to the term with k = 0 in the statement of the theorem.
To estimate the term II, we start observing that, provided s′ < s−2− (d+

1)/2, using (5.4) and Lemma 5.6, we have

∥∥R−s[r−u
α,Pd,α

Ud(t)
]
∥∥
−(s−2) =

∥∥eud R−s[r−u
α,Pd,r−uα

Ud(t−u)]
∥∥
−(s−2)

≤C(s′,s)eud ∥∥ [r−u
α,∂ (Pd,r−uα

Ud(t−u))]
∥∥
−s′.

(5.11)
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The boundary ∂ (Pd,r−uα

Ud(t−u)) is the sum of 2d currents of dimension d−1.

These currents are Birkhoff sums of d “face” subgroups Pd−1,r−uα

j , ( j =

1, . . . ,d), obtained from Pd,r−uα by omitting one of the base vector fields
Xα

1 , . . . ,Xα
d . For each j = 1, . . . ,d there are two Birkhoff sums of Pd−1,r−uα

j
for points m± j along the (d−1)-dimensional cubes Ud−1, j(t−u) obtained
from Ud(t−u) by omitting the j-th factor interval [0,et−u].

If s′ > sd−1 (and therefore s > sd−1 +(d + 1)/2+ 2 = sd), denoting by
Pd−1,r−uα

Ud−1(t−u) the generic summand of ∂ (Pd,r−uα

Ud(t−u)), we may estimate the norm
of each such boundary term using the inductive hypothesis (5.8). For the
j-face we obtain

∥∥∥ [r−u
α,Pd−1,r−uα

Ud−1(t−u)]
∥∥∥
−s′
≤C3(s′,d−1)

d−1

∑
k=0

∑
1≤i1<···<ik≤d

i` 6= j

×
∫ t−u

0
dui1 · · ·

∫ t−u

0
duik exp

(
d−1

2 (t−u)− 1
2

k

∑
`=1

ui`

)
×Hgt

(
[[ ∏

1≤`≤d
6̀= j

r−(t−u)
`

k

∏
`=1

r
ui`
i` r−u

α]]
)1/4

.

From (5.9) and (5.11) we obtain the following estiamate for the term II:

II ≤C4(s,d)
d

∑
j=1

d−1

∑
k=0

∑
1≤i1<···<ik≤d

i` 6= j

×
∫ t

0
du
∫ t−u

0
dui1 · · ·

∫ t−u

0
duik exp

(
d−1

2 t + 1
2u− 1

2

k

∑
`=1

ui`

)
×Hgt

(
[[ ∏

1≤`≤d
r−t
`

k

∏
`=1

r
ui`
i` r−u+t

j α]]
)
.

(5.12)

Applying the change of variable u j = t− u, majorizing the integrals
∫ t−u

0
with integrals

∫ t
0 and observing that there are at most k+1 integer intervals
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]it , it+1[ in which the integer j in the above sum may land, we obtain

II ≤C4(s,d)
d

∑
j=1

d−1

∑
k=0

∑
1≤i1<···<ik≤d

i` 6= j

×
∫ t

0
du j

∫ t−u

0
dui1 · · ·

∫ t−u

0
duik

exp
(

d
2 t− 1

2u j− 1
2

k

∑
`=1

ui`

)
×Hgt

(
[[ ∏

1≤`≤d
r−t
`

k

∏
`=1

r
ui`
i` r−u j

j α]]
)
.

≤C5(s,d)
d

∑
k=1

∑
1≤i1<···<ik≤d

∫ t

0
dui1 · · ·

∫ t

0
duik

× exp
(

d
2 t− 1

2

k

∑
`=1

ui`

)
Hgt

(
[[ ∏

1≤`≤d
r−t
`

k

∏
`=1

r
ui`
i` α]]

)
.

(5.13)

The reminder term R−s[α,Pd,α
Ud(t)

] in the decomposition (5.7) is estimated
using Lemma 5.6, Proposition 4.8 and Lemma 4.9. We have:∥∥∥R−s[α,Pd,α

Ud(t)
]
∥∥∥
−s
≤C(s) Hgt([α])1/4

=C(s) Hgt([[rtr−t
α]])1/4

≤C(s)etd/2 Hgt([[r−t
α]])1/4 ,

(5.14)

producing one more term like (5.10). The theorem follows from the estimates
(5.10) and (5.13), for the terms I and II, and (5.14) for the remainder. �

Different possible asympthotics are then consequences of the Diophantine
conditions (4.17), (4.18) and (4.19), or the Kleinbock-Margulis logarithm
law (Proposition 4.13).

Proof of Theorem 1.7. Let the notations be as in Theorem 5.10, and con-
sider the integrals in (5.8). It follows from Lemma 4.9 that, for any 0≤ k≤ d,

Hgt
(
[[ ∏

1≤ j≤d
r−t

j

k

∏
`=1

ru`
i` α]]

)1/4
≤ e

1
2 ∑

k
`=1 uk Hgt

(
[[ ∏

1≤ j≤d
r−t

j α]]
)1/4

.

There follows from (5.8) that

(5.15)
∥∥∥ [α,Pd,α

Ud(t)
]
∥∥∥
−s
≤Ctd e

d
2 t Hgt

(
[[ ∏

1≤ j≤d
r−t

j α]]
)1/4

for some constant C =C(s,d). Therefore the norms of our currents depend
on the Diophantine properties of α in the direction of δ̂ (d) := δ̂1+ · · ·+ δ̂d ∈
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a (recall that rt
i = etδ̂i), defined in 4.10. For example, if α satisfies a δ̂ (d)-

Diophantine condition (4.17) of exponent σ > 0, we get∥∥∥ [α,Pd,α
Ud(t)

]
∥∥∥
−s
≤Ctd ed(1−σ/2)t ≤C′ed(1−σ ′/2)t

for all σ ′ < σ . If α satisfies a δ̂ (d)-Roth condition (4.18), we get∥∥∥ [α,Pd,α
Ud(t)

]
∥∥∥
−s
≤C e(d/2+ε)t

for all ε > 0. If α is of bounded type, i.e. satisfies (4.19), then all the
“Height” terms inside the integrals of (5.8) are bounded, and we get∥∥∥ [α,Pd,α

Ud(t)
]
∥∥∥
−s
≤C e(d/2)t .

On the other side, according to the easy part of Kleinbock and Margulis
theorem 4.12, there exists a full measure set Ωg(δ̂ (d)) ⊂ Σg such that if
[[α]] ∈Ωg(δ̂ (d)) and ε > 0 then

Hgt
(
[[ ∏

1≤ j≤d
r−t

j α]]
)1/4
≤Ct1/(2g+2)+ε .

There follows from (5.15) that for such α’s∥∥∥ [α,Pd,α
Ud(t)

]
∥∥∥
−s
≤Ctd+1/(2g+2)+ε e(d/2)t .

5.3. Birkhoff sums and Theta sums.

First return map. Here it is convenient to work with the “polarized” Hei-
senberg group, the set Hg

pol ≈ Rg×Rg×R equipped with the group law
(x,ξ , t) · (x′,ξ ′, t ′) = (x+ x′,ξ +ξ ′, t + t ′+ξ x′). The homomorphism Hg→
Hg

pol, as well as the exponential map exp : hg→ Hg
pol, is (x,ξ , t) 7→ (x,ξ , t +

1
2ξ x). Define the “reduced standard Heisenberg group” Hg

red := Hg
pol/({0}×

{0}× 1
2Z) ≈ Rg×Rg× (R/1

2Z), and then the “reduced standard lattice”
Γred := Zg×Zg×{0} ⊂ Hg

red. It is clear that the quotient Hg
red/Γred ≈ Hg/Γ

is the standard nilmanifold. The subgroup N = {(0,ξ , t)with ξ ∈ Rg , t ∈
R/1

2Z} is a normal subgroup of Hg
red. The quotient Hg

red/N is isomorphic to
the Legendrian subgroup P = {(x,0,0)with x ∈ Rg}, and we have an exact
sequence 0→N→Hg

red→ P→ 0. Therefore Hg
red ≈ PnN, and in particular

any (x,ξ , t) ∈ Hg
red may be uniquely written as the product

(x,ξ , t) = exp(x1X1 + · · ·+ xgXg) · (0,ξ , t) = (x,0,0) · (0,ξ , t) .

Given a symmetric g×g real matrix Q, we consider the symplectic matrix
α =

(
I 0
Q I

)
∈ Sp2g(R). Then exp(x1Xα

1 + · · ·+ xgXα
g ) = (x,−Qx,−x>Qx),

and any element of Hg
red can be written uniquely as a product

exp(x1Xα
1 + · · ·+ xgXα

g ) · (0,ξ , t) = (x,ξ −Qx, t− 1
2x>Qx)
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for some x ∈ Rg, ξ ∈ Rg an t ∈ R/1
2Z. Given n ∈ Zg, m ∈ Zg, hence

(n,m,0) ∈ Γred, then

exp(x1Xα
1 + · · ·+ xgXα

g ) · (0,ξ , t) · (n,m,0)

= exp(x′1Xα
1 + · · ·+ x′gXα

g ) · (0,ξ ′, t ′)
(5.16)

if and only if x′ = x+n, ξ ′ = ξ +m+Qn and t ′ = t +ξ>n+ 1
2n>Qn+ 1

2Z.

Birkhoff sums of certain functions on the circle. Let ϕ ∈ S
(
R/1

2Z
)
,

and let ψ ∈ E (Rg) be a smooth function with compact support. Define a
function φ : Hg

red ≈ α−1(P)nN→ C as the product

φ(exp(x1Xα
1 + · · ·+ xgXα

g ) · (0,ξ , t)) := ψ(x) ·ϕ(t)

and then a function φ̃ : M→ C on the quotient standard nilmanifold by
summing over the lattice Γred. Namely, if m = exp(x1Xα

1 + · · ·+ xgXα
g ) ·

(0,ξ , t) ·Γred ∈M, we set

φ̃(m) := ∑
(n,m,0)∈Γred

φ(exp(x1Xα
1 + · · ·+ xgXα

g ) · (0,ξ , t) · (n,m,0))

= ∑
n∈Zg

ψ (x+n) ·ϕ
(

t +ξ
>n+ 1

2n>Qn
)

where we used (5.16). Since ψ has compact support, this sum is finite, so
that φ̃ is indeed a smooth function. The Birkhoff average of ω = φ̃ dXα

1 ∧
·· · ∧ dXα

g along the current Pg,α
U m with m ∈ M as above is, according to

(5.2),〈
Pg,α

U m,ω
〉
= ∑

n∈Zg

(
ϕ

(
t +ξ

>n+ 1
2n>Qn

)
·
∫

U
ψ(y+ x+n)dy

)
.

Let 0 < δ < 1/2, and choose a test function ψ ∈ E (Rg) with support in a
small ball Bε(0) = {x ∈Rg s.t. |x|∞ ≤ ε} of radius 0 < ε < δ , and unit mass∫
Rg ψ(x)dx = 1. For N a positive integer, U = [−δ ,N +δ ]g and x = 0, we

have

(5.17)
〈
Pg,α

U m,ω
〉
= ∑

n∈Zg∩[0,N]g
ϕ

(
t +ξ

>n+ 1
2n>Qn

)
There follows from Theorem 1.7 in the Introduction and the above discussion
(i.e. formula 5.17) that

Theorem 5.11. Let Q[x] = x>Qx be the quadratic forms defined by the
symmetric g× g real matrix Q, α =

(
I 0
Q I

)
∈ Sp2g(R), `(x) = `>x be the

linear form defined by ` ∈ Rg, and t ∈ R. Then,
• there exists a full measure set Ωg ⊂Mg such that if [α] ∈ Ωg and

ε > 0 then

∑
n∈Zg∩[0,N]g

ϕ
(
t + `(n)+ 1

2Q[n]
)
= O

(
(logN)g+1/(2g+2)+ε Ng/2

)
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• if [α] ∈Mg satisfies a δ̂ (g)-Roth condition, then for any ε > 0

∑
n∈Zg∩[0,N]g

ϕ
(
t + `(n)+ 1

2Q[n]
)
= O

(
Ng/2+ε

)
• if [α] ∈Mg is of bounded type, then

∑
n∈Zg∩[0,N]g

ϕ
(
t + `(n)+ 1

2Q[n]
)
= O

(
Ng/2

)
as N→ ∞, for any test function ϕ ∈W s(R/1

2Z) with Sobolev order s > sg

and zero average
∫ 1/2

0 ϕ(t)dt = 0.

Corollary 1.8 in the Introduction follows if we take ϕ(t) = e4πit .
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