Teoria de Códigos

, ·	2005 2006
	2005:2006
——— exercicios ————	2003.2000

- 1. $^{\mu}$ Calcule o digito de controlo, segundo o ISBN¹-10, de:
 - (a) 0-19-853803-
 - (b) 3-540-66336-
 - (c) 84-9789-613-
 - (d) 84-7658-486-
- 2. μ Verifique a validade, segundo o ISBN-10, de:
 - (a) 972-25-1375-3
 - (b) 972-8839-21-9
 - (c) 972-8839-06-5
 - (d) 972-41-3663-9
- 3. $^{\mu}$ Verifique a validade, segundo o EAN²-13, de:
 - (a) 5601405001101
 - (b) 5601522469075
 - (c) 5601038100202
 - (d) 5601537332739
 - (e) 5601370031127
 - (f) 8003410344315
 - (g) 5000265090209
- 4. $^{\mu}$ Crie os ISBN³-13 dos ISBN-10 da questão 2, com o prefixo 978-.
- 5. $^{\mu}$ Construa um procedimento que teste o código ISBN-10 recebido.
- 6. $^{\mu}$ Construa um procedimento que gere o digito de controlo (*checksum*) para o ISBN-10.
- 7. $^{\mu}$ Construa um procedimento que teste o código EAN-13 recebido.
- 8. ^{\(\mu\)} Construa um procedimento que gere o digito de controlo (checksum) para o EAN-13.
- 9. ^{\(\mu\)} Construa um procedimento que teste o código usado nos cheques bancários⁴.

¹ $x_1x_2...x_{10}$ é tal que $(x_1, x_2, ..., x_{10}) \cdot (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) \equiv 0 \mod 11$, onde $x_i = 0..9$, se i = 1...9, e $x_{10} = 0..10$. 10 é representado por X.

 $^{^2}x_1x_2...x_{13}$ é tal que $(x_1, x_2, ..., x_{13}) \cdot (1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1) \equiv 0 \mod 10$, onde $x_i = 0..9$, se i = 1..13. Pode obter mais informações em http://www.barcodeisland.com/ean13.phtml.

³A conversão para -13 dos ISBN-10 é feita, ao não se considerar o digito de controlo deste último, concatenando o prefixo 978 ou o 979, e ao resultante aplicar o EAN-13. Veja mais em http://en.wikipedia.org/wiki/ISBN-13.

⁴Além do número do cheque e o número de conta, em alguns bancos é usado ainda um outro número com 9 dígitos $a_1 a_2 \dots a_9$ que identifica o banco emissor, e é tal que $(a_1, a_2, \dots, a_9) \cdot (7, 3, 9, 7, 3, 9, 7, 3, -1) \equiv 0 \mod 10$.

10. $^{\mu}$ Encontre uma base para o espaço nulo das matrizes seguintes:

(a)
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$
, matriz sobre \mathbb{Z}_2 .

(b)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$
, matriz sobre \mathbb{Z}_2 .

(c)
$$\begin{pmatrix} 0 & 0 & 2 & 2 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 2 & 0 \end{pmatrix}$$
, matriz sobre \mathbb{Z}_3 .

(d)
$$\begin{pmatrix} 9 & 12 & 12 & 33 & 9 \\ 24 & 29 & 18 & 9 & 5 \\ 5 & 15 & 17 & 16 & 19 \end{pmatrix}$$
, matriz sobre \mathbb{Z}_{37} .
(e) $\begin{pmatrix} 110416 & 31572 & 554310 & 604695 \\ 462290 & 192626 & 378018 & 389981 \end{pmatrix}$, matriz sobre \mathbb{Z}_{877651} .

(e)
$$\begin{pmatrix} 110416 & 31572 & 554310 & 604695 \\ 462290 & 192626 & 378018 & 389981 \end{pmatrix}$$
, matriz sobre \mathbb{Z}_{877651}

- 11. $^{\mu}$ Use o mupad para gerar uma matriz aleatória⁵ sobre um \mathbb{Z}_p à sua escolha, calcula a nulidade e uma base para o seu espaço nulo.
- 12. ^μ De forma aleatória,
 - (a) crie corpos de Galois \mathbb{F}_q de ordem

i.
$$q = 8$$

ii.
$$q = 9$$

iii.
$$q = 343$$

iv.
$$q = 14641$$

v.
$$q = 531441$$

vi.
$$q = 1220703125$$

- (b) matrizes, e determine a nulidade e uma base para o espaço nulo, sobre os corpos da alínea anterior.
- 13. Sejam $D = \mathbb{Z}_3[x], f(x) = x^2 + x + 2, g(x) = x^2 + 1$. Calcule:

(a)
$$(x+2) + (2x+2)$$
 em $D/(f(x))$ e em $D/(g(x))$;

(b)
$$(x+2)(2x+2)$$
 em $D/(f(x))$ e em $D/(g(x))$;

- 14. Seja $f(x) = x^2 + x + 2$.
 - (a) Mostre que f(x) é primitivo em $\mathbb{Z}_3[x]$.
 - (b) Mostre que f(x) é primitivo em $\mathbb{Z}_5[x]$.
 - (c) Mostre que f(x) não é primitivo em $\mathbb{Z}_{11}[x]$.
- 15. Mostre que $f(x) = x^3 + x + 1$ é primitivo em $\mathbb{Z}_2[x]$.
- 16. Mostre que $f(x) = x^3 + x^2 + 1$ é primitivo em $\mathbb{Z}_2[x]$.
- 17. Mostre que $f(x) = x^4 + x + 1$ é primitivo em $\mathbb{Z}_2[x]$.

⁵Use o comando linalg::randomMatrix.

- 18. Para $f(x) = x^4 + x^3 + x^2 + x + 1$, $g(x) = x^4 + x^3 + x^2 + 1$, $h(x) = x^4 + x^3 + 1$, mostre, em $\mathbb{Z}_2[x]$, qual deles é primitivo, irredutível e não primitivo, e não irredutível. Para o que é irredutível e não primitivo, calcule a ordem do polinómio x.
- 19. Construa o elementos não nulos de um corpo de Galois com 128 elementos.
- 20. Construa o elementos não nulos de um corpo de Galois com 127 elementos.
- 21. Dado um código (15, 16, 8) binário, calcule o número de erros que são corrigíveis e o número de vectores corrigíveis. Sendo o canal simétrico binário, com p = 0.1 a probabilidade de um símbolo ser recebido erradamente, calcule a probabilidade de uma palavra ser corrigível.
- 22. Dado um código (8, 16, 4) binário, calcule o número de erros que são corrigíveis e o número de vectores corrigíveis. Sendo o canal simétrico binário, com p = 0.1 a probabilidade de um símbolo ser recebido erradamente, calcule a probabilidade de uma palavra ser corrigível.
- 23. Construa um procedimento bin2dec:=proc(v) que escreva na representação decimal a entrada $(v_1v_2\cdots v_k)_2$, onde $v=(v_1,\ldots,v_k)$.
- 24. Construa um procedimento hamming:=proc(numero:Type::PosInt) onde n é um argumento de entrada, número inteiro positivo, e cujo resultado final é uma matriz $n \times (2^n 1)$, cuja coluna j é a representação do número natural j na sua escrita binária. A matriz resultante chama-se matriz de Hamming. Por exemplo,
 - >> hamming(3);

- 25. Verifique se a mensagem recebida é uma palavra-código, onde os códigos usados são de Hamming:
 - (a) $\mathbf{r} = (1,1,1,1,1,1,1)^T$ no código [7, 4];
 - (b) $r=(1,0,1,0,1,1,1)^T$ no código [7, 4];
 - (c) $r=(1,0,1,0,1,1,1,0,0,1,1,1,0,0,0)^T$, no código [15, 11];
 - (d) $\mathbf{r} = (0,0,1,1,0,0,0,0,1,0,0,0,0,1,0)^T$, no código [15, 11];
 - (e) $r=(1,0,1,0,0,0,1,0,1,1,1,1,0,0,0)^T$, no código [15, 11];
 - (f) $r=(1,1,0,0,1,0,1,1,1,0,0,0,0,0,0)^T$, no código [15, 11];
 - (g) $\mathbf{r} = (1,1,0,0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,0,0,0,1,1,1)^T$ no código [31, 26];
- 26. Calcule as matrizes geradoras dos códigos de Hamming [7,4] e [15,11].
- 27. Seja C o código de Hamming [31, 26].
 - (a) Construa a matriz de paridade e uma matriz geradora do código C.
 - (b) Codifique, em C, o vector

(c) Corrija os erros e descodifique⁶ os vectores recebidos:

⁶O sistema Ax = b é resolvido, no MuPAD, por linalg::matlinsolve(A,b);.

```
i. r = (11010111001101101101010111110111)
```

ii. r = (0001011110011111011010101111101111)

iii. r = (000000000111001001010101010101010)

- 28. Corrija e descodifique os vectores recebidos referentes à questão 25.
- 29. Considerando o código de Hamming [63, 57], e depois de gerar aleatoriamente um vector r que se assume recebido, corrija o erro em r.
- 30. Averigue se é possível construir um código linear binário
 - (a) [6,2] que seja c.c. 2-erros.
 - (b) [8, 3] que seja c.c. 2-erros.
 - (c) [6, 2] que seja c.c. 2-erros.
 - (d) [10, 3] que seja c.c. 3-erros.
 - (e) [12, 4] que seja c.c. 3-erros.
- 31. Considere as matrizes, sobre \mathbb{Z}_2 ,

$$G_1 = \left[egin{array}{c|c} 1 & 1 & & & \\ 1 & 1 & & & \\ 0 & 1 & & \end{array}
ight], \ G_2 = \left[egin{array}{c|c} I_3 & 0 & 1 & \\ 1 & 1 & 1 & \\ 1 & 1 & 1 \end{array}
ight], \ G_3 = \left[egin{array}{c|c} I_4 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & \\ 1 & 0 & 1 \end{array}
ight]$$

Para cada uma delas,

- (a) determine o número de elementos do código de que a matriz é geradora;
- (b) indique uma base para o espaço nulo.
- (c) encontre uma matriz de paridade para cada um dos códigos gerados pelas matrizes;
- (d) verifique se os códigos corrigem erros singulares.
- 32. Calcule as matrizes de paridade das seguintes matrizes geradoras:

(a)
$$\begin{bmatrix} I_3 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} I_3 & 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} I_3 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

(d)
$$\begin{bmatrix} I_4 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} I_4 & 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- 33. Seja C um código linear [n, k].
 - (a) Considere a relação binária \sim definida am \mathbb{Z}_2^n por

$$a \sim b \text{ se } a - b \in C.$$

- i. Verifique se \sim é uma relação de equivalência.
- ii. Mostre que $u \sim v$ se e só se $Hu^T = Hv^T$, onde H é a matriz de paridade do código C.

- (b) Verifique se a distância de Hamming é uma métrica.
- 34. Construa um código binário linear auto-dual em \mathbb{Z}_2^6 .
- 35. Construa um código binário linear auto-dual em $\mathbb{Z}_2^8.$

número de posições corrigíveis nesse código.

$$r_1 = (100011), r_2 = (101010), r_3 = (111100).$$

- (a) Construa o código linear gerado por G.
- (b) Calcule o número de posições corrigíveis.
- (c) Liste os líderes e respectivos síndromes.
- (d) Corrija, se possível, os vectores recebidos r_1 , r_2 e r_3 .

38. Se
$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
 é a matriz geradora de um código linear C , encontre:

- (a) os parâmetros [n, k];
- (b) a matriz de paridade;
- (c) a distância mínima do código e o número de posições corrigíveis;
- (d) a correcção dos vectores recebidos $r_1 = (100010)$ e $r_2 = (001100)$.

39. Seja
$$W = RS(G)$$
 com $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$.

- (a) Encontre a matriz de paridade H de W e os parâmetros [n, k, d].
- (b) Verifique se W é auto-dual.
- (c) Corrija os vectores recebidos $r_1 = (111111)$ e $r_2 = (101111)$
- 40. Seja C um código linear com matriz de paridade

$$\left[egin{array}{c|cccc} I_4 & 1 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{array}
ight].$$

Corrija e descodifique, se possível, cada um dos seguintes vectores recebidos:

- (a) (1101011);
- (b) (0110111);
- (c) (0111000).

- 41. Encontre os completamentos de $H = \begin{bmatrix} ? & 1 & 0 \\ ? & 0 & 1 \end{bmatrix}$ de forma a que seja a matriz de paridade de uma código linear com correcção de 1 bit.
- 42. Para $\pi(x) = x^4 + x + 1 \in \mathbb{Z}_2[x],$
 - (a) mostre, via MuPad, que $\pi(x)$ é irredutível
 - (b) mostre que $\pi(x)$ é primitivo
 - i. usando matrizes;
 - ii. via MuPad.
 - (c) Para cada um dos polinómios em $\mathbb{Z}_2[x]$ apresentados, construa, se possível, o código BCH e os respectivos parâmetros [n, k, d] e número de p.c.:

i.
$$\pi(x) = x^3 + x^2 + 1$$
 c.c. 1-erro,

ii.
$$\pi(x) = x^3 + x^2 + 1$$
 c.c. 2-erros,

iii.
$$\pi(x) = x^3 + x^2 + 1$$
 c.c. 3-erros,

iv.
$$\pi(x) = x^4 + x + 1$$
 de forma a que seja [15, 7],

v.
$$\pi(x) = x^4 + x^3 + 1$$
 c.c. 2-erros,

vi.
$$\pi(x) = x^4 + x^3 + 1$$
 c.c. 3-erros,

vii.
$$\pi(x) = x^6 + x^5 + 1$$
 c.c. 3-erros.

- (d) Seja C o código BCH obtido do polinómio primitivo $\pi(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$, considerando as primeiras 6 potências de α . Corrija, em C, os seguintes vectores recebidos por um canal com ruído:
 - i. $r_1 = (100011011001010);$
 - ii. $r_2 = (0111111010011010);$
 - iii. $r_3 = (101000011101100);$
 - iv. $r_4 = (111011001010100)$.
- 43. Seja C o código BCH obtido do polinómio primitivo $\pi(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$, considerando as primeiras 4 potências de α .
 - (a) Mostre que $g(x) = x^8 + x^7 + x^6 + x^4 + 1$ é polinómio gerador de C.
 - (b) Corrija, em C, o seguinte vector recebido por um canal com ruído:

- 44. Considere o polinómio irredutível $\pi(x) = x^4 + x^3 + 1 \in \mathbb{Z}_2[x]$.
 - (a) Verifique que $\pi(x)$ é primitivo.
 - (b) Encontre os polinómios minimais aniquiladores das 6 primeiras potências de α .
 - (c) Seja C o código BCH obtido do polinómio primitivo $\pi(x)$ corrector de 2 erros. Corrija, em C, o seguinte vector recebido por um canal com ruído:

45. Seja C o código BCH obtido do polinómio primitivo $\pi(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$ corrector de 2 erros.

(a) Codifique, em C, o vector

$$r = \left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right],$$

apresentando o resultado final como um vector linha sobre \mathbb{Z}_2 .

(b) Corrija, em ${\cal C},$ o seguinte vector recebido por um canal com ruído: