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O-minimal structures

So o-minimal structures do in fact include:

• semi-algebraic geometry: definable sets in real closed
fields

R = (R,0,1,−,+, ·, <);

• sub-analytic geometry: definable sets in the field of real
numbers expanded by restricted analytic functions

Ran = (R,0,1,−,+, ·, (f )f∈an, <).

Do they:

• capture tameness?
• provides new insights originated from model-theoretic

methods into the real analytic-like setting?
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About tameness

Let
M = (M, (c)c∈C , (f )f∈F , (R)R∈R, <)

be an arbitrary o-minimal structure.

van den Dries (1984), Knight, Pillay and Steinhorn (1986):

Theorem (Cell decomposition)

(In) Let A1, . . . ,Ak ⊆ Mn be definable. Then exists a cell
decomposition D of Mn compatible with the Ai ’s

(IIn) Let f : A ⊆ Mn → M be definable. Then exists a cell
decomposition D of Mn compatible with A such that for
each D ∈ D we have f|D : D → M is continuous.
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About tameness

The proof of cell decomposition is by induction on n. Assuming
(In) and (IIn) we first get (IIIn) below. From (In), (IIn) and (IIIn) we
get (In+1) and (IIn+1).

Lemma (Uniform finiteness property)

(IIIn) Let A ⊆ Mn+1 be definable such that for all x ∈ Mn the fiber
Ax = {t ∈ M : (x , t) ∈ A} is finite. Then exists NA such that
#Ax ≤ NA for all x ∈ Mn.
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(I1) is o-minimality and (II1) follows from:

Theorem (Monotonicity theorem)
Let f : (a,b) ⊆ M → M be definable. Then exists

a0 = a < a1 < . . . < ak < ak+1 = b

such that each f| : (ai ,ai+1)→ M is either constant, or strictly
monotone a continuous.
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About tameness

Sketch of proof of (In+1):

Let:

Y =
⋃k

i=1{(x , t) ∈ Mn+1 : t ∈ bd(Ai x )} and take N with
#Yx ≤ N ... by (IIIn).

Bl = {x ∈ Mn : #Yx = l} and take flj : Bl → Y with
(Y|Bl

)x = {fl1(x), . . . , fll(x)} and −∞ = fl0 < fl1 < . . . <
fll < fll+1 = +∞.

Cilj = {x ∈ Bl : flj(x) ∈ (Ai)x} and
Dilj = {x ∈ Bl : (flj(x), flj+1(x)) ⊆ (Ai)x}.
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....:

Apply (In) and (IIn) to Bl ’s, Cilj ’s, Dilj ’s and the flj ’s. Let D the cell
decomposition. Take

D∗ =
⋃
{DE : E ∈ D}

where for each E ⊆ Bl

DE = {(flj|E , flj+1|E )′s, Γ(flj|E )′s}.

Then D∗ is a cell decomposition of Mn+1 which partitions each
A1, . . . ,Ak .
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About tameness

Sketch of proof of (IIn+1):

So let f : A ⊆ Mn+1 → M be definable. By (In+1) we may
assume that A is a cell.

Case (1): A is a cell and non open in Mn+1.

By construction of cells, exists p : A→ p(A) ⊆ Mk with k ≤ n, a
projection which is a definable homeomorphism, such that p(A)
is an open cell in Mk . To finish apply (IIk ) to f ◦ p−1 : p(A)→ M.
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About tameness

....:

Case (2): A is an open cell in Mn+1.

Let A∗ be the definable subset of A of all (z, t) such that exists
open box C × (a,b) ⊆ A such that:
(a) z ∈ C;

(b) ∀x ∈ C, f (x ,−) : (a,b)→ M is continuous and monotone;
(c) f (−, t) is continuous at z.

Fix some open box C × (a, c) ⊆ A. Let λ : C → (a, c) be such
that λ(x) = max{s ∈ (a, c] : f (x ,−) : (a, s)→ M is continuous
and monotone }. By Monotonicity theorem λ is well defined and
definable. By (IIn) we assume λ is continuous. Fix b ∈ (a, c)
and taking again a smaller C we may assume b ≤ λ(x) for all
x ∈ C. Fix t ∈ (a,b), by (IIn) we assume f (−, t) : C → M is
continuous. So C × (a,b) ∩ A∗ 6= ∅ and A∗ is dense in A.



About tameness
....:

Case (2): A is an open cell in Mn+1.

Let A∗ be the definable subset of A of all (z, t) such that exists
open box C × (a,b) ⊆ A such that:
(a) z ∈ C;

(b) ∀x ∈ C, f (x ,−) : (a,b)→ M is continuous and monotone;
(c) f (−, t) is continuous at z.

Fix some open box C × (a, c) ⊆ A. Let λ : C → (a, c) be such
that λ(x) = max{s ∈ (a, c] : f (x ,−) : (a, s)→ M is continuous
and monotone }. By Monotonicity theorem λ is well defined and
definable. By (IIn) we assume λ is continuous. Fix b ∈ (a, c)
and taking again a smaller C we may assume b ≤ λ(x) for all
x ∈ C. Fix t ∈ (a,b), by (IIn) we assume f (−, t) : C → M is
continuous. So C × (a,b) ∩ A∗ 6= ∅ and A∗ is dense in A.



About tameness
....:

Case (2): A is an open cell in Mn+1.

Let A∗ be the definable subset of A of all (z, t) such that exists
open box C × (a,b) ⊆ A such that:
(a) z ∈ C;

(b) ∀x ∈ C, f (x ,−) : (a,b)→ M is continuous and monotone;
(c) f (−, t) is continuous at z.

Fix some open box C × (a, c) ⊆ A. Let λ : C → (a, c) be such
that λ(x) = max{s ∈ (a, c] : f (x ,−) : (a, s)→ M is continuous
and monotone }. By Monotonicity theorem λ is well defined and
definable. By (IIn) we assume λ is continuous. Fix b ∈ (a, c)
and taking again a smaller C we may assume b ≤ λ(x) for all
x ∈ C. Fix t ∈ (a,b), by (IIn) we assume f (−, t) : C → M is
continuous. So C × (a,b) ∩ A∗ 6= ∅ and A∗ is dense in A.



About tameness
....:

Case (2): A is an open cell in Mn+1.

Let A∗ be the definable subset of A of all (z, t) such that exists
open box C × (a,b) ⊆ A such that:
(a) z ∈ C;

(b) ∀x ∈ C, f (x ,−) : (a,b)→ M is continuous and monotone;
(c) f (−, t) is continuous at z.

Fix some open box C × (a, c) ⊆ A. Let λ : C → (a, c) be such
that λ(x) = max{s ∈ (a, c] : f (x ,−) : (a, s)→ M is continuous
and monotone }. By Monotonicity theorem λ is well defined and
definable. By (IIn) we assume λ is continuous. Fix b ∈ (a, c)
and taking again a smaller C we may assume b ≤ λ(x) for all
x ∈ C. Fix t ∈ (a,b), by (IIn) we assume f (−, t) : C → M is
continuous. So C × (a,b) ∩ A∗ 6= ∅ and A∗ is dense in A.



About tameness

....:

By (In+1) let D be a cell decomposition of Mn+1 compatible with
A∗ and A. It is enough to show that f|D : D → M is continuous
for D ∈ D open cell such that D ⊆ A.

But then D ⊆ A∗, so for all (z, t) ∈ D such that exists open box
C × (a,b) ⊆ D such that:
(a) z ∈ C;

(b) ∀x ∈ C, f (x ,−) : (a,b)→ M is continuous and monotone;
(c) f (−, t) is continuous at z.

By easy general topology f| : C × (a, c)→ M is continuous on
each such open box. So f|D : D → M is continuous.
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About tameness

Cell decomposition is a nice stratification result which gives
finiteness results such as:

Corollary (Łojasiewicz property)
Let A ⊆ Mn be definable inM. Then A has finitely many
definably connected components.

Corollary (Uniform Łojasiewicz property)
Let A ⊆ Mm ×Mn be definable inM. Then there is NA ∈ N
such that for each x ∈ Mm, the fiber Ax ⊆ Mn has at most NA
many definably connected components.
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About tameness

... we have a notion of dimension of definable sets A ⊆ Mn :

dim A = max{dim C : C ⊆ A a cell}
(by construction cells have natural dimension.)

Theorem
For definable sets we have:
• If A ⊆ B then dim A ≤ dim B;

• dim(B ∪ C) = max{dim B,dim C};
• If S ⊆ Mm+n then each

S(d) = {x ∈ Mm : dim Sx = d}

is definable and

dim(
⋃

x∈S(d)

{x} × Sx ) = dim(S(d)) + d .
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... for a definable set A let ∂A = cl(A) \ A (the frontier).

Theorem
Let S be non empty definable set. Then

dim ∂S < dim S.

In particular, dim cl(S) = dim S.
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... a stratification G of a closed definable set A ⊆ Mn is a
partition of A into finitely many cells, called strata of G, such
that for each stratum C ∈ G its frontier ∂C is a union of lower
dimension strata.

Theorem (Existence of stratifications)
Let A ⊆ Mn be non empty closed definable set and A1, . . . ,Ak
definable subsets of A. Then exists a stratification of A
partitioning each of A1, . . . ,Ak .
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More tameness

... there is more tameness...

If
R = (R,0,1,−,+, ·, (f )f∈F , (S)S∈S , <)

is an o-minimal structure on a real closed field (R,0,1,−,+,
·, <)...

• Ck -stratifications for any fixed k ;

• Definable triangulation theorem;
• Definable trivialization theorem;
• . . . . . .

(the others depending on your motivation...)
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About new insights

There are many important o-minimal expansions

R = (R,0,1,+, ·, (f )f∈F , <)

of the ordered field of real numbers

R, Ran, Rexp, Ran, exp, Ran∗ , Ran∗, exp, RPfaff, RQA, ...

constructed to include the exponential function, restoration of
Riemmann zeta function, restriction of gamma function, Rolle
leaves, classes of C∞ quasi-analytic functions,...

In each of these new structures our tameness results of course
apply... which was not known before.
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Let R be a RCF, V an affine real algebraic variety over R with
coordinate ring R[V ] and Specr R[V ] the real spectrum of V an
affine real scheme.

Theorem (Delfs)
The natural morphism of sites

µ : Specr R[V ] −→ Vsa

induces an isomorphism

Mod(kVsa) −→ Mod(kSpecr R[V ])

of the corresponding categories of sheaves of k -modules.
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For X a definable space consider X̃ the o-minimal spectrum of
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Theorem (E, Peatfield and Jones + E. Prelli)
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Mod(kXdef) −→ Mod(kX̃ )

of the corresponding categories of sheaves of k -modules.
... never used in sub-analytic case ... connects logic to real
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... could we use the two methods in o-minimal case?

With the first method:

• the spaces X̃ are hard to work with.

With the second method:

• can transfer classical results only if X is locally compact;
• the category Ind(•) is complicated.
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Theorems (E, Peatfield and Jones)

• Vanishing Theorem.
• Vietoris-Begle Theorem.
• Eilenberg-Steenrod Axioms.
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(F∗,D∗) ' RHomk (RΓc(X ,F∗), k)

as F∗ varies through D+(kXdef).

... conjectured by Delf’s in the semi-algebraic case.
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Results: sub-analytic case

Kashiwara-Schapira (resp. L. Prelli) define the operators

Rf∗, f−1, ⊗L, RHom, Rf!!, f !

by setting

f!!“lim−→”
i

Fi := “lim−→”
i
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f!!lim−→
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ρ∗Fi := lim−→
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ρ∗f!Fi )

.... and develop the formalism of these six Grothendieck
operations. But f!!ι 6' ιf! (resp. f!!ρ∗ 6' ρ∗f!).
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The formalism of the six Grothendieck
operations

• Base Change Theorem:

g−1Rf!!F ' Rf ′!!g
′−1F .

• Projection Formula:

Rf!!F ⊗ G ' Rf!!(F ⊗ f−1G).

• Künneth Formula:

Rδ!!(g′−1F ⊗ f ′−1G) ' Rf!!F ⊗ Rg!!G.

• Global form of Verdier duality:

Hom(F , f !G) ' Hom(Rf!!F ,G).
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O-minimal six operations

In recent work with L. Prelli we define the operators

Rf∗, f−1, ⊗L, RHom, Rfo., f o.

by setting, in the tilde world:

Γ(U; fo.F ) := lim−→
Z

ΓZ (f−1(U); F )

with Z closed constructible subsets of f−1(U) such that
f|Z : Z −→ U is proper (i.e., separated and universally closed).

.... and develop the formalism of these new six Grothendieck
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