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O-minimal structures

So o-minimal structures do in fact include:

e semi-algebraic geometry: definable sets in real closed
fields

R= (R7071a_a+7'a<);

e sub-analytic geometry: definable sets in the field of real
numbers expanded by restricted analytic functions

Ran = (Rv 07 1 y =y (f)fEana <)-

Do they:

e capture tameness?

e provides new insights originated from model-theoretic
methods into the real analytic-like setting?
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About tameness

Let
M = (M, (C)cec: (Fter, (R)rer: <)

be an arbitrary o-minimal structure.
van den Dries (1984), Knight, Pillay and Steinhorn (1986):

Theorem (Cell decomposition)

(In) Let Aq,...,Ax € M" be definable. Then exists a cell
decomposition D of M" compatible with the A;’s

(Il,) Letf: AC M"™ — M be definable. Then exists a cell

decomposition D of M" compatible with A such that for
each D € D we have fp : D — M is continuous.
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About tameness

The proof of cell decomposition is by induction on n. Assuming
(1n) and (/1) we first get (/ll,) below. From (1), (Il,) and (/ll,) we
get (/n41) and (/lp44).

Lemma (Uniform finiteness property)

(1)) Let AC M"+! be definable such that for all X € M" the fiber
Ay ={te M: (x,t) € A} is finite. Then exists N, such that
#Ax < Ny forall x e M".
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About tameness

(1) is o-minimality and (//;) follows from:

Theorem (Monotonicity theorem)

Let f: (@, b) € M — M be definable. Then exists
Gg=a<a<...<a<a1=>b

such that each f : (a;, a;41) — M is either constant, or strictly
monotone a continuous.
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About tameness

Sketch of proof of (/,11):
Let:

Y = U {(x,t) e M™1 . t € bd(A;)} and take N with
#Yyx < N ... by ().

B ={xe M":4#Yy =1} and take f; : B, — Y with
(Yig)x = {fn(x),.... fa(x)} and —co =fig < fy < ... <
fr < fipq = +o0.

Cij = {x € B;: fj(x) € (A))x} and

Dyj = {x € By : (f(x), fj+1(x)) € (Ai)x}
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About tameness

Apply (In) and (/) to B's, Cjj's, Dy’s and the f’s. Let D the cell
decomposition. Take

D* =| {De: Ec D}
where for each E C B,
De = {(fje, fj+11e)'S, T (€)' s}

Then D* is a cell decomposition of M™*1 which partitions each
A, A O
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Sketch of proof of (/l,,1):

Soletf: AC M™' — M be definable. By (/,,1) we may
assume that A is a cell.

Case (1): Ais a cell and non open in M1,

By construction of cells, exists p : A — p(A) € M¥ with k < n, a
projection which is a definable homeomorphism, such that p(A)
is an open cell in M. To finish apply (/) to fop~' : p(A) — M.
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Case (2): Ais an open cell in M1,

Let A* be the definable subset of A of all (z, t) such that exists
open box C x (a,b) C A such that:

(a) ze C;

(b) Vx € C, f(x,—) : (a,b) — M is continuous and monotone;
(c) f(—,1t)is continuous at z.
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Case (2): Ais an open cell in M1,

Let A* be the definable subset of A of all (z, t) such that exists
open box C x (a,b) C A such that:

(a) ze C;
(b) Vx € C, f(x,—) : (a,b) — M is continuous and monotone;
(c) f(—,1t)is continuous at z.

Fix some open box C x (a,c) C A. Let A : C — (a,c) be such
that A\(x) = max{s € (a,c]: f(x,—) : (a,s) — M is continuous
and monotone }. By Monotonicity theorem X is well defined and
definable. By (/I,) we assume X is continuous. Fix b € (&, ¢)
and taking again a smaller C we may assume b < X(x) for all

x € C.Fixte (ab), by (Il,) we assume f(—,t): C — Mis
continuous. So C x (a,b) N A* # () and A* is dense in A.
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By (In41) let D be a cell decomposition of M™! compatible with
A* and A. Itis enough to show that fp : D — M is continuous
for D € D open cell such that D C A.

But then D C A*, so for all (z,t) € D such that exists open box
C x (a,b) C D such that:

(a) ze C;
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About tameness

By (In41) let D be a cell decomposition of M™! compatible with
A* and A. Itis enough to show that fp : D — M is continuous
for D € D open cell such that D C A.

But then D C A*, so for all (z,t) € D such that exists open box
C x (a,b) C D such that:

(a) ze C;

(b) Vx € C, f(x,—) : (a,b) — M is continuous and monotone;
(c) f(—,t)is continuous at z.

By easy general topology f : C x (&, c) — M is continuous on
each such open box. So fip : D — M is continuous. O
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About tameness

Cell decomposition is a nice stratification result which gives
finiteness results such as:

Corollary (Lojasiewicz property)

Let A C M" be definable in M. Then A has finitely many
definably connected components.

Corollary (Uniform Lojasiewicz property)

Let AC M™ x M" be definable in M. Then there is Ny € N
such that for each x € M™, the fiber Ay C M" has at most Ny
many definably connected components.
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About tameness
... we have a notion of dimension of definable sets A C M" :

dimA = max{dimC: C C Aacell}
(by construction cells have natural dimension.)

Theorem

For definable sets we have:
e If AC BthendimA < dim B;
e dim(BU C) = max{dim B,dim C};
e If S C M™" then each

S(d) = {x € M" . dim Sy = d}
is definable and

dim( | J {x} x Sx) =dim(S(d)) + d.
x€8(d)
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About tameness

... for a definable set A let 9A = cl(A) \ A (the frontier).

Theorem
Let S be non empty definable set. Then

dimdS < dim S.

In particular, dimcl(S) = dim S.
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partition of A into finitely many cells, called strata of &, such
that for each stratum C € & its frontier 9C is a union of lower
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About tameness

... a stratification & of a closed definable set AC M" is a
partition of A into finitely many cells, called strata of &, such
that for each stratum C € & its frontier 9C is a union of lower
dimension strata.

Theorem (Existence of stratifications)

Let A C M" be non empty closed definable set and Ay, ..., A
definable subsets of A. Then exists a stratification of A
partitioning each of Ay, ..., Ak.
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... there is more tameness...
If
R = (Ra 0,1, —+,, (f)fe]:7 (8)3687 <)

is an o-minimal structure on a real closed field (R,0,1, —, +,
5 <)

 CK-stratifications for any fixed k;

¢ Definable triangulation theorem;

e Definable trivialization theorem;

(the others depending on your motivation...)
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About new insights

There are many important o-minimal expansions
R = (Ra 07 17 +5 (f)fe]'—7 <)

of the ordered field of real numbers

Ra Rana Rexpy Ran,exm Ran*a Ran*,exp RPfaffa RQA)W

constructed to include the exponential function, restoration of
Riemmann zeta function, restriction of gamma function, Rolle
leaves, classes of C* quasi-analytic functions,...

In each of these new structures our tameness results of course
apply... which was not known before.
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About new insights

A semi-algebraic set of R” remains semi-algebraic at
infinity. This is false for sub-analytic sets, in general. So before
we mostly had tameness locally not at infinity.

Bierstone and Milman:

“An understanding of the behaviour at infinity of certain
important classes of sub-analytic sets as in Wilkie’s (1996)

Rexp - (R7 07 17 +7 Ty eXp, <)

represents the most striking success of the model-theoretic
point of view in sub-analytic geometry.”
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About new insights

... tameness in non-standard contexts: any of the 2 models of
Th(M) in a language of size « is also o-minimal.

In particular we have tameness in the following non-standard
o-minimal models of resp. semi-algebraic and sub-analytic
geometry:

° R((t(@)) = (R((t@))v 0,1,+,, <)
° IR((t(@))an = (R((tQ))a 0,1,+,-, (f)fEana <)
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Grothendieck again

We would like to develop a theory of sheaves on definable
spaces in arbitrary o-minimal structures

M = (M, (C)cec, (Per, (R)rer: <)

generalizing/in analogy to:

e the theory of sheaves in sub-analytic geometry
(Kashiwara-Schapira et al.);

e the theory of sheaves in semi-algebraic geometry (Delfs);

e the theory of sheaves in algebraic geometry
(Grothendieck);

e the theory of sheaves on locally compact topological
spaces (Verdier).
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Grothendieck again

... every definable space X is a topological space....

Topological sheaf theory is not suitable:

¢ no information in the non standard setting;
e no new information in the standard setting.

... we have to use sites (Grothendieck topologies), the
o-minimal site Xger.
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Deep examples

... in the sub-analytic site Xs,, Kashiwara and Schapira used
results of Lojasiewicz to construct new sheaves:

o tempered distributions Db;

o tempered C> functions C3"';
e Whitney C> functions C3™"";
« tempered holomorphic O} functions;

on the sub-analytic site Xg,.

This is very deep and has applications to the theory of
D-modules.
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Method: semi-algebraic case

Let R be a RCF, V an affine real algebraic variety over R with
coordinate ring R[V] and Spec,R[V] the real spectrum of V an
affine real scheme.

Theorem (Delfs)
The natural morphism of sites

w: Spec, R[V] — Vi,
induces an isomorphism
MOd(sza) — MOd(kSpec,Ff[V])

of the corresponding categories of sheaves of k-modules.
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Method: sub-analytic case
For a real analytic manifold X consider the natural morphism
p: X — Xsa
of sites and the induced functors

Mods_(kx) C Mod(kx) == Mod(kx,,).
.

Theorem (Kashiwara-Schapira)
The restriction of p, extends to an equivalence of categories

Ind(Mod§_.(kx)) — Mod(kx,,)-

Moreover, F ~ Ii_m>p*F,-, {Fi}ici € Mod§_ .(kx).

]
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For X a definable space consider X the o-minimal spectrum of
X.

Theorem (E, Peatfield and Jones + E. Prelli)
The natural morphism of sites

vy )~( — Xdef
induces an isomorphism
MOd(kXdCf) — MOd(ky()

of the corresponding categories of sheaves of k-modules.



Method: o-minimal case

For X a definable space consider X the o-minimal spectrum of
X.

Theorem (E, Peatfield and Jones + E. Prelli)
The natural morphism of sites

vy )~( — Xdef
induces an isomorphism
MOd(kXdCf) — MOd(ky()

of the corresponding categories of sheaves of k-modules.

... hever used in sub-analytic case ... connects logic to real
algebra.
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Method: o-minimal case
For a definable space X consider the natural morphism
p: X — Xdef

of sites and the induced functors

Px
COh(Op(Xdef)) - MOd(kX) <~ MOd(kXdef)'
o

Theorem (E, Prelli)
The restriction of p, extends to an equivalence of categories

Ind(Coh(Op(Xaer))) — Mod(Kkx,,, ).

Moreover, £ ~ limp..Fi, {Fj}ic; € Coh(Op(Xar))-

]
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Comparing the two methods

... could we use the two methods in o-minimal case?
With the first method:

¢ the spaces X are hard to work with.

With the second method:

e can transfer classical results only if X is locally compact;
o the category Ind(e) is complicated.
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Results: o-minimal cohomology

We can develop o-minimal sheaf cohomology by defining as
usual o -
HI(X; F):= HY(X; F) = RIT(X; F)
where X is a definable space and F € Mod(kx,,).
Theorems (E, Peatfield and Jones)
e Vanishing Theorem.

¢ Vietoris-Begle Theorem.
e Eilenberg-Steenrod Axioms.
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Results: o-minimal local Verdier duality

Theorem (E, Prelli)
There exists D* in D" (ky,,) and a natural isomorphism

RHokadef(}"*, D*) ~ RHomy (Rl (X, F*), k)

as F* varies through D" (kx,,, ).

... conjectured by Delf’s in the semi-algebraic case.
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Results: o-minimal Poincaré and
Alexander duality

Theorems (E, Prelli)
Let X be definable manifold of dimension n.
e If X has an orientation k-sheaf Ory, then

HP(X;Orx) ~ H P(X; k).
e If X is k-orientable and Z is a closed definable subset, then

H5(X; kx) ~ H. P(Z; k).
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Results: sub-analytic case

Kashiwara-Schapira (resp. L. Prelli) define the operators
Rf., ', &L, RMom, Rfi. f'

by setting

f liny’ = “liny’
i i

(resp.

] ]
.... and develop the formalism of these six Grothendieck
operations. But fiie 2 ofi (resp. fips 2 psf).
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The formalism of the six Grothendieck
operations

Base Change Theorem:
9 'Ry F ~ Rf\g~ F.
Projection Formula:
RiF ® G ~ Rfiy(F ® f1G).
Kinneth Formula:
Row(g'F® F71G) ~ Rfy F @ RguG.
Global form of Verdier duality:

Hom(F, f'G) ~ Hom(Rf, F,G).
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In recent work with L. Prelli we define the operators
Rf., ', L RHom, Rf. f

by setting, in the tilde world:

—
z

F(U; §F) := limr z(f~" (U); F)

with Z closed constructible subsets of f~1(U) such that
fiz : Z — Uis proper (i.e., separated and universally closed).



O-minimal six operations

In recent work with L. Prelli we define the operators
Rf., ', L RHom, Rf. f
by setting, in the tilde world:

F(U; §F) := limr z(f~" (U); F)
V4

with Z closed constructible subsets of f~1(U) such that
fiz : Z — Uis proper (i.e., separated and universally closed).

.... and develop the formalism of these new six Grothendieck
operations ...






THANK YOU!



