
Liquid Types Revisited

Mário Pereira, Sandra Alves, and Mário Florido

University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

Refinement types [2] state complex program’s invariants, by simplying aug-
menting type systems with logical predicates. A refinement type of the form
{ν : B | φ} stands for the set of values from basic type B restricted to the fil-
tering predicate (refinement) φ. However, the use of arbitrary boolean terms as
refinement expressions leads to undecidable type systems, both for type checking
and inference.

Liquid Types [4] (Logically Qualified Data Types) present a system capable
of automatically infer refinement types, by means of two main restrictions to a
general refinement type system: every refinement predicate is a conjunction of
expressions exclusively taken from a global, user-supplied set of logical qualifiers
(simple predicates over program variables, the value variable ν and the variable
placeholder ?); and a conservative (ence decidable) notion of subtyping.

The Liquid Types system is defined as an extension to the Damas-Milner type
system, with the term language extended with an if-then-else constructor and
constants. A key idea behind this system is that the refinement type of every
term is a refinement of the corresponding ML type.

We propose a refinement type system based on Liquid Types, with the addi-
tion of intersection types [1]. Our intersections are at the refinement expressions
level only, i.e. for the type σ∩ τ both σ and τ are of the same form, solely differ-
ing in the refinement predicates. As an example, the identity function id = λx.x
(considered to act only over integer values) could be typed within our system as
(x : {ν : int | ν ≥ 0} → {ν : int | ν ≥ 0}) ∩ (x : {ν : int | ν ≤ 0} → {ν : int | ν ≤ 0}).
Our use of intersections for refinement types draws some inspiration from [3].

With our type system we are able to derive more precise types than in the
original system, leading to a detailed description of programs’ behaviour.

References

1. Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter
lambda model and the completeness of type assignment. The journal of symbolic
logic, 48(4):931–940, 1983.

2. E. Denney. Refinement types for specification. In David Gries and Willem-Paul
Roever, editors, Programming Concepts and Methods PROCOMET ’98, IFIP —
The International Federation for Information Processing. Springer US, 1998.

3. Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and Im-
plementation, PLDI ’91, pages 268–277, New York, NY, USA, 1991. ACM.

4. Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’08, pages 159–169, New York, NY, USA, 2008. ACM.

