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Refinement types [2] state complex program’s invariants, by simplying aug-
menting type systems with logical predicates. A refinement type of the form
{ν : B | φ} stands for the set of values from basic type B restricted to the fil-
tering predicate (refinement) φ. However, the use of arbitrary boolean terms as
refinement expressions leads to undecidable type systems, both for type checking
and inference.

Liquid Types [4] (Logically Qualified Data Types) present a system capable
of automatically infer refinement types, by means of two main restrictions to a
general refinement type system: every refinement predicate is a conjunction of
expressions exclusively taken from a global, user-supplied set of logical qualifiers
(simple predicates over program variables, the value variable ν and the variable
placeholder ?); and a conservative (ence decidable) notion of subtyping.

The Liquid Types system is defined as an extension to the Damas-Milner type
system, with the term language extended with an if-then-else constructor and
constants. A key idea behind this system is that the refinement type of every
term is a refinement of the corresponding ML type.

We propose a refinement type system based on Liquid Types, with the addi-
tion of intersection types [1]. Our intersections are at the refinement expressions
level only, i.e. for the type σ∩ τ both σ and τ are of the same form, solely differ-
ing in the refinement predicates. As an example, the identity function id = λx.x
(considered to act only over integer values) could be typed within our system as
(x : {ν : int | ν ≥ 0} → {ν : int | ν ≥ 0}) ∩ (x : {ν : int | ν ≤ 0} → {ν : int | ν ≤ 0}).
Our use of intersections for refinement types draws some inspiration from [3].

With our type system we are able to derive more precise types than in the
original system, leading to a detailed description of programs’ behaviour.
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