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Abstract

The Toomer invariant of a simply connected space X, e(X), is the least integer k for which the
inclusion BkΩX ↪→ BΩX, where BkΩX is the kth stage of the classifying construction on ΩX, is
surjective in homology. The Toomer invariant of X is a lower bound of the Lusternik-Schnirelmann
category of X. We construct CW-complexes Z and Z ∪ em such that e(Z) = 2 and e(Z ∪ em) = 4. This
exhibits the Toomer invariant as the first approximation of the L.-S. category which fails to increase by
at most one when a cell is attached to a space. We deduce from our result that there may be gaps in the
Milnor-Moore spectral sequence in the sense that one may have E∞p,∗ = 0 and E∞p+1,∗ 6= 0.
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Introduction

The Lusternik-Schnirelmann category of a space X, denoted cat(X), is the least integer n such that X can
be covered by n + 1 open sets each of which is contractible in X. If no such n exists one sets cat(X) =∞.
Originally the L.-S. category was introduced as an invariant which gave a lower bound for the number of
critical points of a differentiable function defined on a manifold. In spite of the simplicity of its definition
category is not an easy homotopy invariant, neither from a theoretical nor from a computational point of
view. Numerous approximations, such as the weak categories of I. Berstein and P. J. Hilton [3] and of
W. Gilbert [7], the rational category [4], and the A-category of S. Halperin and J.-M. Lemaire [9], have been
introduced in order to handle the difficulties with the category.

Let k be a commutative ring. In 1963 M. Ginsburg [8] showed that for a simply connected space X cat(X)
is always greater than or equal to the greatest integer p for which the Milnor-Moore spectral sequence of X
satisfies E∞

p,∗ 6= 0. Recall that the Milnor-Moore spectral sequence of a simply connected space X converges
to H∗(X;k) and that E2 = TorH∗(ΩX)(k,k) when k is a field. The number sup{p ∈ N, E∞

p,∗ 6= 0} has been
studied by G. H. Toomer [15] who showed, in particular, that it coincides with the least integer n for which
the morphism H∗(BnΩX;k) → H∗(BΩX;k), induced by the inclusion of the nth stage of the classifying
construction on ΩX into the classifying space BΩX, is surjective. Today this number is known as the Toomer
invariant of X and is denoted by ek(X).

In order to attain a better understanding of the category and its approximations it is natural to compare
these homotopy invariants, and besides the numerical aspect of the question it is interesting to compare
the invariants through their properties. For example, the category increases by at most one when a cell
is attached to a space and so do, for instance, the rational category, the weak category of Berstein-Hilton
[3], and the A-category [10]. In the course of a workshop in Oberwolfach in 1997, Y. Félix asked whether
this property is also shared by the rational Toomer invariant. In this work we answer in the negative to
this question. We construct CW-complexes Z and Z ∪ em satisfying eQ(Z) = 2 and eQ(Z ∪ em) = 4. As a
∗The research of the second author was supported by a Lavoisier grant and an Alexander von Humboldt fellowship.
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consequence we obtain that there may be gaps in the Milnor-Moore spectral sequence in the sense that one
may have E∞

p,∗ = 0 and E∞
p+1,∗ 6= 0. Notice that such a phenomenon cannot occur at the level of the E2

term of the Milnor-Moore spectral sequence. Indeed, if k is a field and X is a simply connected space, then
TorH∗(ΩX)

p (k,k) = 0 implies TorH∗(ΩX)
p+1 (k,k) = 0.

Through our result the rational Toomer invariant appears as the first example of an approximation of
the category which fails to increase by at most one when a cell is attached to a space. By computing them
for the spaces Z and Z ∪ em we show that the integral Toomer invariant eZ, the weak category of Gilbert,
the strict category weight of Yu. B. Rudyak [12], and the invariants σicat defined in [16] fail also to have
this property.

Acknowledgment. We are indebted to Yves Félix for a very useful conversation which enabled us to improve
our results significantly. The space Z ∪ em had originally 76 cells! Now it has 6 cells and its rational
cohomology is a Poincaré duality algebra.

1 Preliminaries

Throughout this article a space is a well-pointed compactly generated Hausdorff space of the homotopy type
of a CW-complex. Any continuous map preserves the base point. A CW-complex is 1-reduced if it has no
1-cells and only one 0-cell. A space is of finite type if it has the homotopy type of a CW-complex having
finitely many cells in each dimension. For a space X we denote by ΩX the Moore loop space of X.

We fix a commutative ring k. (Graded) modules are always (graded) k-modules. All homology groups
are to be taken with coefficients in k. For a space X we denote by C∗(X) the normalized singular chain
complex of X with coefficients in k.

If V is a chain complex, then the homology class of a cycle z ∈ V will be denoted by {z}. The suspension
of a graded module V = (V )n∈Z is the graded module sV defined by (sV )n = Vn−1. We follow the convention
V n = V−n. (Differential) graded algebras are assumed to be associative and augmented. (Differential) graded
coalgebras are assumed to be coassociative and coaugmented. For a graded (co)algebra B we denote by B̄
the (co)augmentation (co)ideal of B. For a graded module V we denote by TV the tensor (co)algebra on
V . When TV is the tensor coalgebra on V we shall write for elements v1, . . . , vn ∈ V [v1| · · · |vn] instead of
v1 ⊗ · · · ⊗ vn. A differential graded (co)algebra B is connected if it is non negatively graded and B0 = k. A
chain algebra is a differential graded algebra A such that An = 0 for n < 0. A cochain algebra is a differential
graded algebra A such that An = 0 for n < 0.

A morphism of differential graded modules (algebras, coalgebras) is called a weak equivalence if it induces
an isomorphism in homology. A morphism of filtered differential graded modules (algebras, coalgebras) is
a weak equivalence if it is a homology isomorphism at each level of the filtration. Weak equivalences are
denoted by the symbol ∼→. Two objects V and W of a category with weak equivalences are said to be weakly
equivalent if they are connected by a finite sequence of weak equivalences V

∼→ · ∼← · · · ∼→ · ∼← W . We
consider the homotopy equivalences as the weak equivalences in the category of topological spaces. Two
spaces are thus weakly equivalent if and only if they are homotopy equivalent. If a category has weak
equivalences, so does the morphism category. We can thus speak of weakly equivalent continuous maps,
chain maps, differential graded algebra morphisms etc.

The multiplication of the Moore loop space ΩX induces a multiplication on the chain complex C∗(ΩX)
which turns the latter into a chain algebra. Adams and Hilton have shown that for any simply connected
space X there is a chain algebra (TV, d) with V positively graded and k-free which is weakly equivalent to
C∗(ΩX). Any such chain algebra will be called an Adams-Hilton model of X.

Definition 1.1. The bar construction on a differential graded algebra A is the differential graded coalgebra
BA = (T (sĀ), d1 + d2) where d1 and d2 are given by

d1[sa1| . . . |san] = −
n∑

i=1

(−1)ε(i)[sa1| . . . |sdai| . . . |san],

d2[sa1| . . . |san] =
n∑

i=2

(−1)ε(i)[sa1| . . . |sai−1ai| . . . |san].
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Here, ε(1) = 0 and ε(i) = i− 1 +
i−1∑
j=1

|aj | for i > 1.

The bar construction is a functor in the obvious way. It is well known that the bar construction turns weak
equivalences between differential graded algebras which are free as k-modules into weak equivalences.

Consider a differential graded algebra (TV, d) and form the natural d-stable graded submodule

sT>1(V )⊕ T>1(sTV )

of B(TV, d). The quotient of B(TV, d) by this sub chain complex is the graded module k ⊕ sV with a
differential d̄. We denote by p the canonical projection B(TV, d)→ (k⊕ sV, d̄).

Proposition 1.2. [5, 19.1] If V is positively graded, then the projection p : B(TV, d)→ (k⊕sV, d̄) is a weak
equivalence. 2

2 L.-S. category and the Milnor-Moore spectral sequence

Recall from the introduction that the Lusternik-Schnirelmann category of a space X, denoted cat(X), is
the least integer n such that X can be covered by n + 1 open sets each of which is contractible in X. If
no such n exists one sets cat(X) = ∞. The L.-S. category can be characterized by means of the following
sequence of fibrations due to T. Ganea: Let g0(X) : G0(X) → X be the path fibration PX → X. Suppose
that the nth fibration gn(X) : Gn(X) → X has been defined. In order to define the n + 1st fibration
take the fibre Fn(X) of gn(X) and form the map (gn(X), ∗) : Gn(X) ∪Fn(X) CFn(X) → X. The fibration
gn+1(X) : Gn+1(X)→ X is then defined to be the mapping path fibration associated to the map (gn(X), ∗).
It is well known that the maps gn(X) can also be described as follows: Let ΩX denote the Moore loop space
of X. The classifying space BΩX of the topological monoid ΩX comes equipped with an increasing filtration
of subspaces B0ΩX ⊂ B1ΩX ⊂ · · · ⊂ BnΩX ⊂ · · · . If X is simply connected, the fibration gn(X) and the
inclusion BnΩX ↪→ BΩX are weakly equivalent. The link between the category and the Ganea fibrations is
given by the following theorem:

Theorem 2.1. [6] For a path-connected space X we have cat X ≤ n if and only if the fibration
gn(X) : Gn(X)→ X has a section. 2

In this text we will mainly be concerned with the following approximation of the category:

Definition 2.2. The Toomer invariant of space X, denoted by ek(X), is the least integer n for which
the morphism H∗(gn(X);k) : H∗(Gn(X);k) → H∗(X;k) is surjective. If no such integer exists we set
ek(X) =∞. We shall write e(X) and e0(X) instead of eZ(X) and eQ(X).

It follows immediately from the definition that for a path-connected space X ek(X) ≤ cat(X). Thanks to the
following theorem by M. Ginsburg ek(X) can, if X is simply connected, be calculated from an Adams-Hilton
model of X. For a differential graded algebra A we denote by BnA the sub differential graded coalgebra
T≤n(sĀ) of BA.

Theorem 2.3. [8] For a simply connected space X the filtered chain complexes C∗(B∗ΩX) and B∗C∗(ΩX)
are weakly equivalent. 2

The spectral sequence associated with the filtered differential module B∗C∗(ΩX) is the Milnor-Moore spectral
sequence of X. It is well known that the Milnor-Moore spectral sequence converges to H∗(X) when X is
simply connected and that E2

p,q = TorH∗(ΩX)
p,q (k,k) when, furthermore, k is a field. Using 2.3, Toomer

established the following theorem:

Theorem 2.4. [15] Let X be a simply connected space of finite category and {Er} be the Milnor-Moore
spectral sequence of X. Then ek(X) = sup{p ∈ N|E∞

p,∗ 6= 0}. 2
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It follows from this that cat(X) ≥ sup{p ∈ N|E∞
p,∗ 6= 0}. This inequality appeared first in Ginsburg [8].

For the rest of this section we suppose that k is a field.

For a differential graded algebra (TV, d) we denote by pn the restriction to Bn(TV, d) of the canonical
projection p : B(TV, d)→ (k⊕sV, d̄). Our calculations of the Toomer invariant will be based on the following
proposition:

Proposition 2.5. Let X be a simply connected space and (TV, d) be an Adams-Hilton model of X. Then
ek(X) ≤ n if and only if the inclusion Bn(TV, d) ↪→ B(TV, d) is surjective in homology. If n > 0, then this
is the case if and only if the projection pn : Bn(TV, d)→ (k⊕ sV, d̄) has a differential section.

Proof: Since (TV, d) and C∗(ΩX) are weakly equivalent chain algebras, the morphisms
Bn(TV, d) ↪→ B(TV, d) and BnC∗(ΩX) ↪→ BC∗(ΩX) are weakly equivalent. By 2.3, these morphisms are
weakly equivalent to the chain map C∗(BnΩX) ↪→ C∗(BΩX) and thus to the chain map
C∗(gn(X)) : C∗(Gn(X)) → C∗(X). It follows that ek(X) ≤ n if and only if the inclusion
Bn(TV, d) ↪→ B(TV, d) is surjective in homology. By 1.2, this is the case if and only if the projection
pn : Bn(TV, d) → (k ⊕ sV, d̄) is surjective in homology. For n > 0 the map pn is surjective. Since, over a
field, a surjective chain map has a section if and only if it is surjective in homology, it follows that for n > 0
we have ek(X) ≤ n if and only if pn has a section. 2

The main objective of this article is to show the Toomer invariant fails to have the basic property of
the category to increase by at most one when a cell is attached to a space. This is equivalent to the fact
that gaps can occur in the Milnor-Moore spectral sequence in the sense that one may have E∞

p,∗ = 0 but
E∞

p+1,∗ 6= 0. More precisely:

Proposition 2.6. Let X be a simply connected space and f : Sn → X (n > 0) be a map. If there exists
an integer p such that ek(X) < p and ek(X ∪f Dn+1) = p + 1, then the Milnor-Moore spectral sequence of
X∪fDn+1 satisfies E∞

p,∗ = 0 and E∞
p+1,∗ 6= 0. Conversely, if the Milnor-Moore spectral sequence of a 1-reduced

CW-complex Y , whose cellular chain complex differential is zero, satisfies E∞
r,∗ = 0 and E∞

r+1,∗ 6= 0 for some
r ∈ N, then Y contains subcomplexes Q and Q ∪ em such that ek(Q) + 1 < ek(Q ∪ em).

Proof: Let first X be a simply connected space and f : Sn → X (n > 0) be a map such that there exists
an integer p for which ek(X) < p and ek(X ∪f Dn+1) = p + 1. Let A = (TV, d) be an Adams-Hilton model
of X. Thanks to [2] we may suppose that the differential d̄ of k ⊕ sV is zero. Adjoin a generator to A
and extend the differential d to construct an Adams-Hilton model U = (T (V ⊕ ke), d) of X ∪f Dn+1. Then
the differential d̄ of k ⊕ s(V ⊕ ke) is zero. Otherwise the inclusion (k ⊕ sV, 0) ↪→ (k ⊕ s(V ⊕ ke), d̄) would
be surjective in homology and this would imply that ek(X ∪f Dn+1) ≤ ek(X) < p. We denote by Fk the
image of the homomorphism H∗BkU → H∗BU = k ⊕ s(V ⊕ ke). We then have E∞

k,l = (Fk/Fk−1)k+l. As
ek(X ∪f Dn+1) = p + 1, we have Fp $ Fp+1 = k ⊕ s(V ⊕ ke) and hence E∞

p+1,∗ 6= 0. As ek(X) < p, the
morphism H∗BkA→ H∗BA = k⊕sV is surjective for k ≥ p−1. Since the homomorphism H∗BA→ H∗BU
induced by the inclusion BA ↪→ BU is the inclusion k⊕ sV ↪→ k⊕ s(V ⊕ ke), it follows that k⊕ sV ⊂ Fk

for k ≥ p− 1. Since Fp $ k⊕ s(V ⊕ ke), it follows that Fp−1 = Fp = k⊕ sV and thus that E∞
p,∗ = 0.

Let now Y be a 1-reduced CW-complex such that the differential in the cellular chain complex of Y is
zero and such that the Milnor-Moore spectral sequence of Y satisfies E∞

r,∗ = 0 and E∞
r+1,∗ 6= 0 for some

r ∈ N. Let R = (TW, d) be an Adams-Hilton model of Y which is constructed as described in [1]. Then
the cellular chain complex of Y is isomorphic to the differential graded module (k⊕ sW, d̄). By assumption,
d̄ = 0. Let B ⊂W be a basis the elements of which correspond to the cells of Y . As E∞

r+1,∗ 6= 0, there exists
an element of B which is not in the image of the homomorphism H∗BrR → H∗BR = k ⊕ sW . Suppose
that x ∈ B is such an element with minimal degree m − 1. Let Q be the m − 1 skeleton of Y and em be
the cell corresponding to x. Then Q and Q ∪ em are subcomplexes of Y and the sub differential graded
algebras S = (T (W<m−1), d) and T = (T (W<m−1⊕kx), d) of R are Adams-Hilton models of Q and Q∪ em.
By the minimality of m − 1, we have k ⊕ sW<m−1 ⊂ im(H∗BrR → H∗BR). Since E∞

r,∗ = 0, it follows
that k ⊕ sW<m−1 ⊂ im(H∗Br−1R → H∗BR). As the inclusion Br−1S ↪→ Br−1R is surjective in homology
up to degree m − 1 and the map H∗BS → H∗BR induced by the inclusion BS ↪→ BR is the inclusion
k ⊕ sW<m−1 ↪→ k ⊕ sW , we obtain that the inclusion Br−1S ↪→ BS is surjective in homology and hence
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that ek(Q) ≤ r − 1. Since the map H∗BT → H∗BR induced by the inclusion BT ↪→ BR is the inclusion
k⊕ s(W<m−1⊕kx) ↪→ k⊕ sW , the element x cannot be in the image of the morphism H∗BrT → H∗BT as
it otherwise would also lie in the image of the morphism H∗BrR → H∗BR. It follows that ek(Q ∪ em) > r
and hence that ek(Q) + 1 < ek(Q ∪ em). 2

At the E2 term of the Milnor-Moore spectral sequence there cannot be any gaps as is showing the
following well known result:

Proposition 2.7. If X is a simply connected space, then TorH∗(ΩX)
p (k,k) = 0 implies TorH∗(ΩX)

p+1 (k,k) = 0.

Proof: Set A = H∗(ΩX) and consider the free resolution of the graded A-module k

0← k ε← A⊗ V0
d1← A⊗ V1 ← · · ·

dp← A⊗ Vp
dp+1← A⊗ Vp+1 ← · · ·

where V0 = k, ε is the augmentation, Vp+1 = s(ker dp/Ā ker dp), and dp+1 is the A-linear extension of a
section of the projection (of degree 1) ker dp → Vp+1. Then im dp+1 ⊂ Ā⊗Vp. It follows that the differential
of the DG vector space V obtained from the resolution by killing the action of A is zero. This identifies
Vp = TorA

p (k,k). By construction, if Vp = 0, then also Vp+1 = 0. The result follows. 2

3 The rational Toomer invariant

In this section we construct CW-complexes Z and Z ∪ e16 such that e0(Z) = 2 and e0(Z ∪ e16) = 4. We
suppose that k = Q.

The space Z is the CW-complex S2 ∨ S3 ∪ e8 ∪ e13 ∪ e14 where the cells are attached as follows. The
attaching map of e8 is the composite [S2, S3] ◦ η where η : S7 → S4 is the Hopf map. The cells e13 and e14

are attached by the Whitehead products [S2, φ ◦ ω] and [S3, φ ◦ ω] where ω : S11 → HP 2 is the attaching
map of the top cell of HP 3 and φ is the cobase extension of the Whitehead product [S2, S3] : S4 → S2 ∨ S3

by the inclusion S4 ↪→ HP 2.
In order to define the attaching map γ : S15 → Z of the cell e16 in the CW-complex Z ∪ e16 we look at a

Quillen model of Z. Recall that a Quillen model of a space X is a differential graded Lie algebra representing
the rational homotopy type of X. References on Quillen models include [2], [14], and [5]. For the convenience
of the reader we recall that a graded Lie algebra is a graded vector space L with a bracket [ , ] : L⊗ L→ L
satisfying [x, y] = −(−1)|x||y|[y, x] (antisymmetry) and [[x, y], z] = [x, [y, z]] − (−1)|x||y|[y, [x, z]] (Jacobi
identity). A differential graded Lie algebra is a couple (L, d) consisting of a graded Lie algebra L and a
boundary operator d satisfying d([x, y]) = [dx, y] + (−1)|x|[x, dy]. For a graded vector space V we denote by
L(V ) the free graded Lie algebra on V . A Quillen model of Z is given by the differential graded Lie algebra
(L(V ), d) where V is the graded vector space generated by elements x, y, u, a, and b of degrees 1, 2, 7, 12,
and 13 and the differential is given by

dx = 0, dy = 0, du =
1
2
[[x, y], [x, y]], da = [x, [[x, y], u]], and db = [y, [[x, y], u]].

The fact that the differential graded Lie algebra (L(V ), d) represents the rational homotopy type of Z

means in particular that there is an isomorphism (of degree 1) τ : H∗(L(V ), d)
∼=→ π∗(Z)⊗Q (cf. [5, 24(b)]).

This isomorphism converts the Lie bracket in H∗(L(V ), d) to the Whitehead product by the rule
τ [α, β] = (−1)|α|[τα, τβ] (cf. [5, 24.5]). The element z = [x, b] + [y, a] + 1

2 [u, u] is a cycle in (L(V ), d).
Define the attaching map γ : S15 → Z of the cell e16 to be a cellular map such that τ{mz} = [γ] ⊗ 1 for
some positive integer m.

A Quillen model of Z ∪ e16 is given by the differential graded Lie algebra (L(V ⊕Qe), d) where d extends
the differential on L(V ) and de = z. We remark that, by the link between the quadratic part of the differential
of a minimal Quillen model and the cup product in rational cohomology (cf. for ex. [2, 2.14]), H∗(Z ∪ e16)
is a Poincaré duality algebra.

Recall that the universal enveloping algebra of a graded Lie algebra L is the graded algebra UL = TL/I
where I is the ideal generated by the elements xy − (−1)|x||y|yx− [x, y], x, y ∈ L. The universal enveloping
algebra of a free Lie algebra L(W ) is the tensor algebra TW . If (L, d) is a differential graded Lie algebra,
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then UL is canonically a differential graded algebra. Baues and Lemaire [2] have shown that if (L(W ), d) is a
Quillen model of a simply connected space of finite type X, then the differential graded algebra (UL(W ), d) =
(TW, d) is an Adams-Hilton model of X. We therefore have

Proposition 3.1. The differential graded algebra (UL(V ), d) = (TV, d) is an Adams-Hilton model of Z and
the differential graded algebra (UL(V ⊕Qe), d) = (T (V ⊕Qe), d) is an Adams-Hilton model of Z ∪ e16. 2

The basis B = {x, y, u, a, b, e} of the graded vector space V ⊕Qe induces a basisMn of the graded vector

space
n⊕

i=1

T i(sT (V ⊕Qe)) = BnT (V ⊕Qe). The elements of Mn will be called monomials. The element

[s(x3ey2x)|s(y3u)|s(u2)] is a typical monomial in Mn, n ≥ 3. In order to lighten the presentation we will
suppress the s’s from the notation and write [x3ey2x|y3u|u2] instead of [s(x3ey2x)|s(y3u)|s(u2)]. We denote
by < , > the symmetric bilinear form on the graded vector space BnT (V ⊕Qe) defined on monomials by

< m, m′ >=
{

1 m = m′,
0 m 6= m′.

Theorem 3.2. The spaces Z and Z ∪ e16 satisfy e0(Z) = 2 and e0(Z ∪ e16) = 4.

Proof: We first show that e0(Z) = 2. From degree 2 on the projection B1(TV, d) → (Q ⊕ sV, 0) is just the
suspension of the projection (TV, d) → (V, 0). As the element u ∈ V7 = H7(V, 0) is not in the image of the
homomorphism H7(TV, d) → H7(V, 0) (which is null), the homomorphism H8B1(TV, d) → H8(Q ⊕ sV, 0)
is not surjective. This shows that e0(Z) ≥ 2. A section ι of the projection B2(TV, d) → (Q ⊕ sV, 0) is
given by ι(1) = 1, ι(x) = x, ι(y) = y, ι(u) = u + [[x, y]|[x, y]], ι(a) = a + [x|[[x, y], u]] + [[[x, y], u]|x],
ι(b) = b− [y|[[x, y], u]] + [[[x, y], u]|y]. As the section ι commutes with the differentials, we have e0(Z) = 2.

We now show that e0(Z ∪ e16) = 4. We clearly have cat(Z ∪ e16) ≤ 4 and therefore e0(Z ∪ e16) ≤ 4. It
remains to show that e0(Z ∪ e16) ≥ 4. Let n be an integer such that the projection

pn : Bn(T (V ⊕Qe), d)→ (Q⊕ s(V ⊕Qe), 0)

has a differential section σ. We show that n ≥ 4. Set ξ = e− σe. Clearly, ξ ∈ ker pn. AsMn\B is a basis of

ker pn = sT>1(V ⊕Qe)⊕
n⊕

i=2

T i(sT (V ⊕Qe)),

we have ξ =
∑

m∈Mn\B
< ξ,m > m. As σ is a differential section, we have

dξ = de− dσe = de− σdQ⊕s(V⊕Qe)e = de.

It follows that < dξ, u2 >=< de, u2 >6= 0. We thus have

0 6=< dξ, u2 >=< d(
∑

m∈Mn\B

< ξ,m > m), u2 >=
∑

m∈Mn\B

< ξ,m >< dm, u2 > .

This implies that there exists a monomial m ∈Mn\B such that < ξ,m >6= 0 and < dm, u2 >6= 0. The only
possible monomial is [u|u]. It follows that < ξ, [u|u] >6= 0. We have

0 = < de, [xyxy|u] >

= < dξ, [xyxy|u] >

= < d(
∑

m∈Mn

< ξ,m > m), [xyxy|u] >

=
∑

m∈Mn

< ξ,m >< dm, [xyxy|u] > .

It follows that ∑
m6=[u|u]

< ξ,m >< dm, [xyxy|u] >= − < ξ, [u|u] >< d[u|u], [xyxy|u] >6= 0.
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There exists thus a monomial m 6= [u|u] such that < ξ,m > 6= 0 and < dm, [xyxy|u] >6= 0. The possible
monomials are [x|yxy|u], [xy|xy|u], and [xyx|y|u]. We thus are in one of the following situations:

1) < ξ, [x|yxy|u] >6= 0,

2) < ξ, [xy|xy|u] >6= 0,

3) < ξ, [xyx|y|u] >6= 0.

Suppose that we are in the first situation. Then we have

0 = < de, [x|yxy|xyxy] >

= < dξ, [x|yxy|xyxy] >

= < d(
∑

m∈Mn

< ξ,m > m), [x|yxy|xyxy] >

=
∑

m∈Mn

< ξ,m >< dm, [x|yxy|xyxy] > .

It follows that∑
m6=[x|yxy|u]

< ξ,m >< dm, [x|yxy|xyxy] >= − < ξ, [x|yxy|u] >< d[x|yxy|u], [x|yxy|xyxy] >6= 0.

There exists thus a monomial m 6= [x|yxy|u] such that

< ξ,m >6= 0 and < dm, [x|yxy|xyxy] >6= 0.

The possible monomials are m1 = [x|y|xy|xyxy], m2 = [x|yx|y|xyxy], m3 = [x|yxy|x|yxy],
m4 = [x|yxy|xy|xy], and m5 = [x|yxy|xyx|y]. It follows that there exists an index i ∈ {1, . . . , 5} such
that

< σe, mi >=< e− ξ, mi >=< e, mi > − < ξ,mi >= − < ξ,mi >6= 0.

As each mi ∈ T 4(sTV ), this implies that σe /∈ B3TV and thus that n ≥ 4. The proof of the fact that n ≥ 4
in the other two situations is analogous. 2

By 2.6, we have the following corollary:

Corollary 3.3. The Milnor-Moore spectral sequence of Z ∪ e16 satisfies E∞
3,∗ = 0 and E∞

4,∗ 6= 0. 2

Remark 3.4. Let Z0 be a rationalization of the space Z. Then we have e0(Z0) = 2 and cat(Z0) = 3. Indeed,
we have e0(Z0) = e0(Z) = 2 and, as Z0 is the homotopy cofibre of a map into a two-cone, cat(Z0) ≤ 3. The
equality cat(Z0) = 3 holds since for any rationalization γ0 : S15

0 → Z0 of γ

4 = e0(Z ∪ e16) = e0(Z0 ∪γ0 CS15
0 ) ≤ cat(Z0 ∪γ0 CS15

0 ) ≤ cat(Z0) + 1 ≤ 3 + 1 = 4.

As cat increases by at most one when a cell is attached to a space, it was, of course, a priori clear that
the space Z0 would satisfy e0(Z0) < cat(Z0). It should be noticed here that Toomer originally conjec-
tured that e0 equals cat for rational spaces. The first counterexample to this conjecture has been given by
J.-M. Lemaire and F. Sigrist who showed that the rationalization Y0 of the CW-complex Y = S2∨CP 2∪ e7,
where the cell e7 is attached by the Whitehead product of S2 and the Hopf map S5 → CP 2, satisfies
e0(Y0) = 2 and cat(Y0) = 3 [11].
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4 The integral Toomer invariant and the σi-category

In [16] the following sequence of approximations of the L.-S. category has been introduced:

Definition 4.1. Let X be any space and i ≥ 1 be an integer. The σi-category of X, σicat(X), is the
least integer n such that the i-fold suspension of the nth Ganea fibration Σign(X) : ΣiGn(X)→ ΣiX has a
homotopy section. If no such n exists, one sets σicat(X) =∞. The σ-category of X is the (possibly infinite)
number σcat(X) = infi∈N σicat(X).

The σicat(X) form a decreasing sequence whose first term σ1cat coincides for path-connected spaces with
the weak category G-wcat(X) in the sense of Gilbert [7] and whose limit σcat(X) coincides for path-connected
finite CW-complexes with Rudyak’s strict category weight [12]. As the existence of a homotopy section for
Σign(X) : ΣiGn(X) → ΣiX implies the existence of a section for H∗(gn(X)), we have e(X) ≤ σicat(X).
This inequality fits into the following sequence of inequalities where i ≥ j and X is path-connected:

e0(X) ≤ e(X) ≤ σcat(X) ≤ σjcat(X) ≤ σicat(X) ≤ σ1cat(X) ≤ cat(X).

When X is a simply connected rational space we have e0(X) = e(X) = σcat(X) = σicat(X) = σ1cat(X) =
G-wcat(X). The σicat can therefore be interpreted as topological versions of the Toomer invariant. We
can easily deduce from the result of the previous section that the invariants e, σcat, σicat, and G-wcat
may increase by more than 1 when a cell is attached to a rationalization Z0 of the space Z constructed in
section 3. However, Z0 is not a finite CW-complex and it has seemed interesting to us to show that such a
phenomenon can also occur when all the spaces are finite CW-complexes.

Theorem 4.2. Let Z and Z ∪ e16 be the CW-complexes defined in section 3. Then for any i ≥ 1

e(Z) = σicat(Z) = 2 and e(Z ∪ e16) = σicat(Z ∪ e16) = 4.

In particular, G-wcat(Z) = σcat(Z) = 2 and G-wcat(Z ∪ e16) = σcat(Z ∪ e16) = 4.

Proof: The equalities e(Z ∪ e16) = 4 and σicat(Z ∪ e16) = 4 follow from e0(Z ∪ e16) = cat(Z ∪ e16) = 4
and from the inequalities e0 ≤ e ≤ σicat ≤ cat. To obtain the remaining equalities it suffices to prove that
σicat(Z) ≤ 2. This follows from the construction of the space Z and from the following proposition. 2

Proposition 4.3. Let X be any space and i ≥ 1 be an integer. Suppose that σicat(X) ≤ k with k ≥ 2 and
consider a map ω : Sp+n−1 → X representing the Whitehead product of two homotopy classes α ∈ πp(X)
and β ∈ πn(X) (p, n ≥ 1) . Then σicat(X ∪ω Dp+n) ≤ k.

In [13] H. Scheerer, D. Stanley, and D. Tanré show that the σ-category of the Lemaire-Sigrist space
S2 ∨CP (2) ∪ e7 (cf. 3.4) is 2. The proof of Proposition 4.3 is a generalization of their computation. Before
we give this proof we fix some notations. We denote by Ω̄X the ordinary loop space of the space X. For
a map f : Sp → X (p ≥ 1) we denote by f ] : Sp−1 → Ω̄X the adjoint map. Recall that there exists a
natural homotopy equivalence λ1 : ΣΩ̄X → G1(X) such that g1(X) ◦ λ1 = ev where ev : ΣΩ̄X → X is
the evaluation map. For k ≥ 2 denote by λk the natural map ΣΩ̄X → Gk(X) which is the composition
of λ1 and the map G1(X) → Gk(X) coming from the Ganea construction. For any cofibration sequence

Sp f→ X
j→ Y = X∪f Dp+1 the map ΣΩ̄j◦Σf ] = Σ(j◦f)] is homotopically trivial and so is each composition

Sp λn◦Σf]

−→ Gn(X)
Gn(j)−→ Gn(Y ). Using the adjunction, we can construct an extension χ : Dp+1 → ΣΩ̄X

of the map ΣΩ̄j ◦ Σf ] such that ev ◦ χ : Dp+1 → Y = X ∪f Dp+1 is the canonical map. Then for

each n ≥ 1 the composite λn ◦ χ is an extension of the composition Sp λn◦Σf]

−→ Gn(X)
Gn(j)−→ Gn(Y ) and

gn(Y ) ◦ λn ◦ χ : Dp+1 → Y is the canonical map. By the universal property of pushouts, we obtain thus a
map g̃n : Gn(X) ∪λn◦Σf] Dp+1 → Y which sends Dp+1 identically to Dp+1 and a commutative diagram in
which ϕn ◦ jn = Gn(j):

Gn(X)
jn //

gn(X)

��

Gn(X) ∪λn◦Σf] Dp+1 ϕn //

g̃n

��

Gn(Y )

gn(Y )

��
X

j
// Y Y.
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In order to obtain a homotopy section of gn(Y ) (resp. Σign(Y )) it suffices thus to construct a homotopy
section of g̃n (resp. Σig̃n).

Proof of Proposition 4.3: In what follows we fix a representative [ιp, ιn] : Sp+n−1 → Sp∨Sn of the Whitehead
product of the generators of πp(Sp) and πn(Sn) and for two maps φ : Sp →W and γ : Sn →W we denote by

[φ, γ] the composition Sp+n−1 [ιp,ιn]→ Sp ∨ Sn φ∨γ→ W ∨W
∇→W where ∇ is the folding map. Let f : Sp → X

and g : Sn → X be representatives of the classes α and β. The hypothesis σicat(X) ≤ k means that the map
Σigk(X) admits a homotopy section σ : ΣiX → ΣiGk(X). We will use σ to construct a homotopy section
of the map

Σig̃k : Σi(Gk(X) ∪λk◦Σ[f,g]] Dp+n)→ Σi(X ∪[f,g] Dp+n).

In order to do this we first show that λk ◦ Σ[f, g]] ' [λk ◦ Σf ], λk ◦ Σg]]: By adjointness and the naturality
of the Whitehead product, we have ev ◦ Σ[f, g]] = [f, g] and ev ◦ [Σf ],Σg]] = [ev ◦ Σf ], ev ◦ Σg]] = [f, g].
Therefore g1(X)◦λ1 ◦ (Σ[f, g]]− [Σf ],Σg]]) ' ∗ and the map λ1 ◦ (Σ[f, g]]− [Σf ],Σg]]) lifts up to homotopy
to F1(X). As the map G1(X) → Gk(X) factors for k ≥ 2 through G1(X) ∪F1(X) CF1(X), it follows
that λk ◦ (Σ[f, g]] − [Σf ],Σg]]) is homotopically trivial. We have thus λk ◦ Σ[f, g]] ' λk ◦ [Σf ],Σg]] =
[λk ◦ Σf ], λk ◦ Σg]].

As i ≥ 1, the map Σi[λk ◦Σf ], λk ◦Σg]] is homotopically trivial. It follows that the map Σi(λk ◦Σ[f, g]])
is homotopically trivial and thus that the map Σig̃k : Σi(Gk(X) ∪λk◦Σ[f,g]] Dp+n) → Σi(X ∪[f,g] Dp+n) is
weakly equivalent to the map Σigk(X) ∨ id : ΣiGk(X) ∨ Sn+p+i → ΣiX ∨ Sn+p+i. This map admits σ ∨ id
as a homotopy section and this implies that σicat(X ∪[f,g] Dp+n) ≤ k. 2
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