Unity in structural proof theory and structural extensions of the λ-calculus

José Espírito Santo
Departamento de Matemática
Universidade do Minho
Portugal

4th International Workshop on Proof Theory, Computation, Complexity (PCC'05)
Lisbon, 16-17 July 2005
Motivation

Two closely related problems

1. Unity in structural proof theory

2. Structural extensions of the λ-calculus

Goal: fully realize the programme suggested by

1. von Plato’s natural deduction with general elimination rules

2. Herbelin’s “λ-calculus structure” for sequent calculus

3. JES’ isomorphism between a fragment of LJT and an extension of natural deduction
Sequent calculi (left) and natural deduction systems (right)
The λ^{gm}-calculus (1)

Expressions

(Terms) $t, u, v ::= x | \lambda x. t | tl$

(Applicative contexts) $l ::= u \cdot (x)v | u :: l$

Abbreviations $[u] \equiv u \cdot (x)x$

Extracting hidden information

Match

$t(u_1 :: ... :: u_m \cdot (x)v)$ \hspace{1cm} (m \geq 1)$

with $\Psi(F, u_m \cdot (x)v)$ for some F, or

with $\Psi(F', u_{m-1} :: u_m \cdot (x)v)$ for some F', etc.
The λ^{gm}-calculus (2)

Sequents

$\Gamma \vdash t : A \quad \Gamma ; A \vdash l : B$

Typing rules

\[\Gamma, x : A \vdash x : A \quad \text{Axiom} \]

\[\Gamma, x : A \vdash t : B \quad \frac{}{\Gamma \vdash \lambda x. t : A \supset B} \quad \text{Right} \]

\[\frac{}{\Gamma \vdash tl : B} \quad h - \text{Cut} \]

\[\frac{}{\Gamma ; A \supset B \vdash u :: l : C} \quad lc - \text{Left} \]

\[\frac{}{\Gamma ; A \supset B \vdash u \cdot (x)v : C} \quad l - \text{Left} \]
The λ^g_m-calculus (3)

Reduction rules

$$(\beta 1) \quad (\lambda x.t)(u \cdot (y)v) \rightarrow s(s(u, x, t), y, v)$$

$$(\beta 2) \quad (\lambda x.t)(u :: l) \rightarrow s(u, x, t)l$$

$$(\pi) \quad \Psi(F, u \cdot (x)v)l \rightarrow \Psi(F, u \cdot (x)vl)$$

$$(\mu) \quad u \cdot (x)xl \rightarrow u :: l, \text{ if } x \notin l$$

t is in $[\beta\pi\text{-nf}]$ iff every cut occurring in t is of the form xl (morally a left introduction)

1) For typable terms, reduction is SN

2) Any combination of the reduction rules is confluent

Proof: Because this holds of λJm. Think of

$$t(u_1 :: \ldots :: u_m \cdot (x)v)$$

as

$$t(u_1, u_2 :: \ldots :: u_m :: [], (x)v)$$
The λ^{gm}-calculus (4)

Permutation rules

\[(p) \quad \Psi(F, u \cdot (x)v) \rightarrow s(\Psi(F, [u]), x, v), \text{if } v \neq x\]
\[(q) \quad \Psi(F, u :: l) \rightarrow \Psi(F, [u])l\]

t is in q-nf iff every cut occurring in t is of the form $t(u \cdot (x)v)$ (morally a general application)

t is in pq-nf iff every cut occurring in t is of the form $t[u] \equiv t(u \cdot (x)x)$ (morally an ordinary application)
The \(\lambda_{gs} \)-calculus (1)

Expressions

(Terms) \(M, N, P ::= x \mid \lambda x.M \mid app(F, N, (x)P) \)

(Functions) \(F ::= hd(M) \mid FN \)

Abbreviations \(app(F, N) \equiv app(F, N, (x)x) \)

Extracting hidden information

Match

\[app(hd(M)N_1\ldots N_{m-1}, N_m, (x)P) \quad (m \geq 1) \]

with \(\Theta(hd(M), l) \) for some \(l \), or

with \(\Theta(hd(M)N_1, l') \) for some \(l' \), etc.
The λ_{gs}-calculus (2)

Sequents

$\Gamma \vdash M : A$ \hspace{1cm} $\Gamma \gg F : A$

Typing rules

$$\Gamma, x : A \vdash x : A$$ \hspace{1cm} Assumption

$$\Gamma, x : A \vdash M : B$$ \hspace{1cm} $\Gamma \vdash \lambda x. M : A \supset B$ \hspace{1cm} Intro

$$\Gamma \gg F : A \supset B$$ \hspace{1cm} $\Gamma \vdash N : A$ \hspace{1cm} inner – Elim

$$\Gamma \gg F : A \supset B$$ \hspace{1cm} $\Gamma \vdash N : A$ \hspace{1cm} $\Gamma, x : B \vdash P : C$ \hspace{1cm} outer – Elim

$$\Gamma \vdash M : A$$ \hspace{1cm} $\Gamma \gg hd(M) : A$ \hspace{1cm} Coercion

8
The λ_{gs}-calculus (3)

Reduction rules

(\beta_1) \quad app(hd(\lambda x. M), N, (y) P) \rightarrow [[N/x]M/y]P

(\beta_2) \quad hd(\lambda x. M) N \rightarrow hd([N/x]M)

(\pi) \quad \Theta(hd(app(F, N, (x) P), l)) \rightarrow
\rightarrow app(F, N, (x) \Theta(hd(P), l))

(\mu) \quad app(F, N, (x) \Theta(hd(x), l)) \rightarrow \Theta(FN, l), \text{ if } x \notin l

M is in $\beta\pi$-nf iff every coercion occurring in M is of the form $hd(x)$

A derivation D in λ_{gs} is $\beta\pi$-normal iff every coercion formula occurring in D is an assumption
The λ_{gs}-calculus (4)

Permutation rules

\[(p) \quad \text{app}(F, N, (x)P) \rightarrow [\text{app}(F, N)/x]P, \ P \neq x\]

\[(q) \quad FN \rightarrow \text{hd}(\text{app}(F, N))\]

M is in \underline{q}-nf iff every gs-application occurrence in M is of the form $\text{app}(\text{hd}(M), N, (x)P)$ (morally a general application)

M is in \underline{pq}-nf iff every gs occurring in M is of the form $\text{app}(\text{hd}(M), N) \equiv \text{app}(\text{hd}(M), N, (x)x)$
Isomorphism (1)

Idea:

\[t(u_1 :: ... :: u_m \cdot (x)v) \]

\[\sim \]

\[app(hd(M)N_1...N_{m-1}, N_m, (x)P) \]

as long as \(t \sim M, u_i \sim N_i \) and \(v \sim P \)

Case \(m > 1 \):

1) Sequent calculus: right-associativity, head at the surface

2) Natural deduction: left-associativity, tail at the surface

3) To each occurrence of \(u :: l \) corresponds one occurrence of \(FN \)

4) Inversion of associativity of applicative terms
Isomorphism (2)

Case $m = 1$

$$t(u \cdot (x)v)$$

$$\sim$$

$$app(hd(M), N, (x)P)$$

1) Translation between notational variants of generalised application, inducing a translation between two copies of ΛJ

2) Neutral associativity, both head and tail at the surface

3) ΛJ (and hence the Λ) are neutral w.r.t. the characterization of sequent calculus and natural deduction in terms of associativity
Mappings Ψ and Θ are sound, mutually inverse bijections. For each $R \in \{\beta_1, \beta_2, \pi, \mu, p, q\}$:

1) $M \rightarrow_R M'$ in λ_{gs} iff $\Psi M \rightarrow_R \Psi M'$ in λ_{gm}.

2) $t \rightarrow_R t'$ in λ_{gm} iff $\Theta t \rightarrow_R \Theta t'$ in λ_{gs}.

Corollary: λ_{gs} inherits the properties of λ_{gm}.
Mappings Ψ and Θ translate between two copies of ΛJ.

$\Psi(app(hd(M), N, (x)P)) = (\Psi M)(\Psi N \cdot (x)\Psi P)$

$\Theta(t(u \cdot (x)v)) = app(\Theta(t), \Theta(u), (x)\Theta(v))$
Roadmap again

\[\begin{aligned}
\lambda^G & \quad \Theta \quad \psi \quad \lambda_N \\
\lambda^g_{gm} & \quad \Theta \quad \psi \quad \lambda^g_{gs} \\
\lambda^g & \quad \Theta \quad \psi \quad \lambda^g \\
& \quad \quad \quad G \quad \Lambda J
\end{aligned} \]
The λ^G-calculus (1)

Expressions

(Terms) \[t, u, v := x | \lambda x.t | tk \]

(Contexts) \[k := (x)v | u :: k \]

Abbreviations \[[u] = u :: (z)z \]

Typing rules

\[
\begin{align*}
\Gamma, x : A & \vdash x : A \quad \text{Axiom} \\
\Gamma, x : A & \vdash t : B \\
\Gamma & \vdash \lambda x.t : A \supset B \quad \text{Right} \\
\Gamma & \vdash u : A \\
\Gamma & \vdash k : C \\
\Gamma ; A \supset B & \vdash u :: k : C \quad \text{Left} \\
\Gamma & \vdash t : A \\
\Gamma & \vdash k : B \\
\Gamma & \vdash tk : B \quad \text{Cut} \\
\Gamma, x : A & \vdash v : B \\
\Gamma ; A & \vdash (x)v : B \quad \text{Selection}
\end{align*}
\]
The λ^G-calculus (2)

Reduction rules

\begin{align*}
(\sigma) \quad t((x)v) & \rightarrow s(t, x, v) \\
(\beta) \quad (\lambda x.t)(u :: k) & \rightarrow u((x)t)k \\
(\pi) \quad \Psi(E, (x)v)(u :: k) & \rightarrow \Psi(E, (x)v(u :: k)) \\
(\mu) \quad (x) xk & \rightarrow k, \text{ if } x \notin k
\end{align*}

Permutation rules

\begin{align*}
(p) \quad \Psi(EN, (x)v) & \rightarrow s(\Psi(E, [\Psi N]), x, v), \text{ if } v \neq x \\
(q) \quad \Psi(EN, u :: k) & \rightarrow \Psi(E, [\Psi N])(u :: k)
\end{align*}

t is in $pq\text{-nf}$ iff every cut occurring in t is of the form $t[u] \equiv t(u :: (x)x)$ or $t((x)v)$. Hence, t is in $pq\text{-nf}$ iff t is morally a λx-term.
The λ_N-calculus (1)

Expressions

(Terms) $M, N, P ::= x | \lambda x. M | \{E/x\} P$

(FAP-Expressions) $E ::= h_d(M) | EN$

Abbreviations $ap(E) = \{E/z\}z$

Typing rules

\[
\begin{align*}
\Gamma, x : A &\vdash x : A & \text{Assumption} \\
\Gamma, x : A &\vdash M : B \quad \Gamma \vdash \lambda x. M : A \supset B & \text{Intro} \\
\Gamma \triangleright E : A \supset B &\quad \Gamma \vdash N : A \quad \Gamma \vdash EN : B & \text{Elim} \\
\Gamma \triangleright E : A &\quad \Gamma, x : A \vdash P : B \quad \Gamma \vdash \{E/x\} P : B & \text{Subst} \\
\Gamma \vdash M : A & \quad \Gamma \triangleright h_d(M) : A & \text{Coercion}
\end{align*}
\]
The λ_N-calculus (2)

Reduction rules

$$(\sigma) \quad \{\text{hd}(M)/x\}P \rightarrow \text{[M/x]} \text{P}$$
$$(\beta) \quad \text{hd}(\lambda x. M)N \rightarrow \text{hd}\{\text{hd}(N)/x\}M$$

$$(\pi) \quad \Theta(\text{hd}\{E/x\}P), u :: k) \rightarrow \rightarrow \{E/x\}\Theta(\text{hd}(P), u :: k)$$
$$(\mu) \quad \{E/x\}\Theta(\text{hd}(x), k) \rightarrow \Theta(E, k), \text{ if } x \notin k$$

Permutation rules

$$(p) \quad \{\text{EN}/x\}P \rightarrow \text{[ap(EN)/x]}P, \text{ if } P \neq x$$
$$(q) \quad \text{ENN}^\prime \rightarrow \text{hd(ap(EN))}N^\prime$$

A derivation \mathcal{D} in λ_N is $\beta\pi\sigma$-normal iff every coercion formula occurring in \mathcal{D} is an assumption and the main premiss of an elimination

M is in pq-nf iff every substitution occurring in M is of the form $\text{ap(hd}(M)M) \equiv \{\text{hd}(M)N/x\}x$ or $\{\text{hd}(M)/x\}P$. Hence, M is in pq-nf iff M is morally a λx-term.
Decompositions of general elimination

\[\Gamma \vdash M : A \supset B \quad \Gamma \vdash N : A \quad \Gamma, x : B \vdash P : C \]
\[\Gamma \vdash M(N, x.P) : C \]

From \(\Lambda J = \lambda^g \subset \lambda^{gm} \subset \lambda^G \)

\[\Gamma \vdash t : A \supset B \quad \Gamma \vdash u : A \quad \Gamma ; B \vdash (x)v \]
\[\Gamma \vdash t(u :: (x)v) : C \]

(1) Selection (2) Left (3) Cut

From \(\Lambda J = \lambda^g \subset \lambda^{gs} \subset \lambda_N \)

\[\Gamma \vdash M : A \supset B \]
\[\Gamma \triangleright hd(M) : A \supset B \]
\[\Gamma \vdash N : A \]
\[\Gamma \triangleright hd(M)N : B \]
\[\Gamma \vdash \{hd(M)N/x\}P : C \]

(1) Coercion (2) Elim (3) Subst
Conclusions and future work

1) Natural deduction isomorphic to full sequent calculus

2) Both proof system presented as (meaningful) extensions of the simply typed λ-calculus

3) Difference reduced to associativity of applicative terms

4) Isomorphism: at the logical level

 left-introduction \sim elimination
 cut \sim primitive substitution

5) Isomorphism: at the λ-calculi level, inversion of associativity

6) Future work: unification of sequent calculus and natural deduction