
Intersection type assignment systems for
intuitionistic sequent calculus

José Espı́rito Santo1, Jelena Ivetić2, Silvia Likavec2

1 Mathematics Department, University of Minho, Portugal
jes@math.uminho.pt

2 Faculty of Engineering, University of Novi Sad, Serbia
jelena@imft.ftn.ns.ac.yu,likavec@di.unito.it

Abstract

We present and analyse various intersection type assignment systems for the λGtz-calculus, a calculus that
embodies the Curry-Howard correspondence for intuitionistic sequent calculus. Three systems λGtz∩, λGtz∩◦ and
λGtz∩] successfully characterise the strongly normalising terms in λGtz. The first one is presented as a refinement
of two previous, unsuccessful attempts. The latter two try to reduce to a minimum the use of the meta-level type
equivalence. The management of intersection is in all successful systems built in the ordinary logical rules.

Keywords: intersection types, intuitionistic logic, sequent calculus.

1 Introduction

The intersection type assignment systems were introduced by Coppo and Dezani [2, 3], Barendregt et
al. [1], Copo et al. [4], Pottinger [16], and Sallé [18]. They extend the simple type assignment system
λ → so that a refined study of both syntax and semantics of the ordinary λ-calculus is possible (e.g.
characterisation of normalising terms, analysis of models).

Meanwhile, the ordinary λ-calculus has been extended in several ways, as an answer to stimuli
coming from different sources. For instance, the λ-calculi with explicit substitutions have a computer
science motivation (more precisely the implementation of functional programs and other symbolic
systems). Many other extensions are motivated by logic and, more specifically, by the extension of
the Curry-Howard correspondence. Examples are Parigot’s λµ-calculus (for classical natural deduc-
tion), Herbelin’s λ-calculus (for a fragment of the intuitionistic sequent calculus), Joachimski-Matthes’
λ-calculus with generalised application (for von Plato’s system of natural deduction), and Curien-
Herbelin’s λµµ̃-calculus (for classical sequent calculus). As an answer to this expansion of the field
of application, intersection type assignment systems are being defined and studied for almost all of the
mentioned extensions [14, 15, 5, 6, 13].

Our main concern in this paper is the design of the type assignment systems for the λGtz calculus,
introduced in [7], and corresponding under the Curry-Howard correspondence to the intuitionistic se-
quent calculus. The original calculus had a system of simple types and was later extended in [8] to
an intersection type assignment system λGtz∩ which characterises the strongly normalising terms (i.e.
terms representing sequent calculus derivations on which cut-elimination always terminates).

In λGtz∩, the management of intersection is built in the ordinary logical rules, and the system relies
on the meta-level treatment of≤ and equivalence of types. The purpose of this paper is to present λGtz∩
and report on various alternative formulations of the system. Two of them are not successful and we
explain why they fail and how they lead us to the system λGtz∩. The two last (and novel) alternatives
are successful both in the sense that their induced notion of typeability is the same as that of λGtz∩, and
that equivalence of types is reduced to a minimum.

The paper is organised as follows. Syntax and reduction rules of the untyped λGtz-calculus are given
in Section 2. In Section 3 we introduce and study some properties of four intersection type assignment
systems that extend the system of simple types for the λGtz-calculus. We start with the unsuccessful

1

variants λGtz∩I and λGtz∩R, followed by λGtz∩, and finally we consider the novel systems λGtz∩◦ and
λGtz∩]. We conclude in Section 4 and give some directions for future work.

2 The syntax of the λGtz-calculus

The λGtz-calculus was proposed by Espirito Santo [7] as a modification of Herbelin’s λ̄-calculus [10].
The abstract syntax of λGtz is given by:

Terms t,u,v ::= x |λx.t | tk
Contexts k ::= x̂.t |u :: k

A term is either a variable, an abstraction or a cut tk. A context is either a selection or a context
cons(tructor). Depending on the form of k, a cut may be an explicit substitution t(x̂.v) or a multiary
generalized application t(u1 :: · · ·um :: x̂.v), m ≥ 1. In the last case, if m = 1, we get a generalized
application t(u :: x̂.v); if v = x, we get a multiary application t[u1, · · · ,um] (x̂.x can be seen as the empty
list of arguments). In λx.t and x̂.t, λx and x̂ bind the variable x in t. The scope of binders extends to
the right as much as possible. Free variables are the variables not bound by abstraction or by selection
operator and Barendregt’s convention should be applied in both cases.

Reduction rules of λGtz are the following:

(β) (λx.t)(u :: k) → u(x̂.tk)
(π) (tk)k′ → t(k@k′)
(σ) tx̂.v → v[x := t]
(µ) x̂.xk → k, if x /∈ k

where v[x := t] denotes meta-substitution defined as usual, and k@k′ is defined by

(u :: k)@k′ = u :: (k@k′) (x̂.t)@k′ = x̂.tk′.

The rules β, π, and σ aim at eliminating all cuts but those of the trivial form y(u1 :: · · ·um :: x̂.v) (for
some m≥ 1). The rule β generates a substitution but it is the rule σ that executes it, on the meta-level.
The rule π simplifies the head of a cut (t is the head of tk). The rule µ has a structural character and
it either performs a trivial substitution in the reduction t(x̂.xk) → tk, or it minimizes the use of the
generality feature in the reduction t(u1 · · ·um :: x̂.xk)→ t(u1 · · ·um :: k).

This set of reduction rules has a logical motivation, as they correspond to cut-elimination steps (or,
in the case of µ, to a certain trivial manipulation of sequent derivations). But it turns out that, even in the
untyped case, these reduction rules are interesting on their own, being capable of simulating ordinary
β-reduction, and therefore giving a decomposition of the atomic step of computation of the ordinary
λ-calculus.

3 Type assignment systems

3.1 Simply typed λGtz-calculus

The basic type assignment system for the λGtz-calculus is the one with simple types, introduced by
Espirito Santo in [7]. The set of types is defined as follows:

A,B ::= X | A→ B

where X ranges over a denumerable set of type atoms.
A type assignment is an expression of the form t : A, where t is either a term or a context and A

is a type. A context Γ is a set {x1 : A1, . . . ,xn : An} of type assignments with different term variables.
DomΓ = {x1, . . . ,xn}. A context extension Γ,x : A denotes the set Γ∪{x : A}, where x 6∈ DomΓ.

There are two kinds of type assignment:

2

- Γ ` t : A - a type assignment for terms;

- Γ;B ` k : A - a type assignment for contexts.

Notice the special place between the symbols ; and `, called the stoup, which contains a selected
formula with which we continue computation.

The type assignment system λGtz → is given in Figure 1.

Γ,x : A ` x : A
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R) Γ ` t : A Γ;B ` k : C
Γ;A→ B ` t :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 1: λGtz →: simply typed λGtz-calculus

λGtz → satisfies subject reduction, and the proof of this property shows which proof transformations
are associated with each reduction rule. β corresponds to the key-step in cut-elimination, whereas σ
and π correspond to right and left permutation of cuts, respectively. Rule µ undoes the sequence of
two inference steps consisting of unselecting the stoup formula, without contraction, and, immediately
after, selecting the same formula.

Espirito Santo proved strong normalisation for this system in [7], by translating it into a λ-calculus
with “delayed” substitutions. But, as with simply typed λ-calculus, the basic type assignment system
cannot characterise all strongly normalising terms. For example, the term λx.x(x :: ŷ.y) (which corre-
sponds to the term λx.xx in simply typed λ-calculus) does not have a type in λGtz →, although it is a
normal form.

3.2 Intersection types for the λGtz-calculus

In order to characterise strong normalization in the λGtz-calculus, the standard technique was to intro-
duce intersection types to the system. But the construction of the appropriate type assignment system
for λGtz was not a straightforward process: it consisted of three attempts presented in the following
subsections, followed by the additional successful system. In all of these systems, the set of types is
defined as follows:

A,B ; ::= X | A→ B | A∩B

where X ranges over a denumerable set of type atoms.

1 First attempt: Intuitive system λGtz∩I

Our first (and the most natural) attempt consisted of simply adding standard typing rules for the in-
tersection operator to the existing Espirito Santo’s basic type assignment system λGtz, following the
characteristic symmetry of the sequent calculus.
Pre-order ≤ over the set of types is defined as the smallest relation satisfying the following properties:

1. A≤ A 2. A∩B≤ A, A∩B≤ B
3. (A→ B)∩ (A→C)≤ A→ (B∩C) 4. A≤ B, B≤C ⇒ A≤C
5. A≤ B, A≤C ⇒ A≤ B∩C 6. A′ ≤ A, B≤ B′ ⇒ A→ B≤ A′→ B′

Two types are equivalent, A∼ B , if and only if A≤ B and B≤ A.

3

Γ,x : A ` x : A
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R) Γ ` t : A Γ;B ` k : C
Γ;A→ B ` t :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Γ ` t : A Γ ` t : B
Γ ` t : A∩B

(∩R)
Γ,x : A1 ` t : B

Γ,x : A1∩A2 ` t : B
(∩L)

Γ ` t : A, A≤ B
Γ ` t : B

(≤R)

Figure 2: First attempt: intuitive system λGtz∩I

The type assignment system λGtz∩I is given in Figure 2.
Basis expansion and Bases intersection lemmas can be easily proved for the proposed system, where

bases intersection is defined as usual. The following rules are admissible in λGtz∩I.

Proposition 1 (≤ RULES)
(i) If Γ,x : A ` t : C and B≤ A , then Γ,x : B ` t : C.

If Γ,x : A;C ` k : D and B≤ A , then Γ,x : B;C ` k : D.
(ii) If Γ;C ` k : A and A≤ B , then Γ;C ` k : B.

Proposition 2 (∩ RULES)
(i) If Γ ` t : A1∩A2 , then Γ ` t : Ai , for each i ∈ {1,2}.

(ii) If Γ;A1 ` x̂.t : B , then Γ;A1∩A2 ` x̂.t : B.
(iii) If Γ;C ` k : A and Γ;C ` k : B , then Γ;C ` k : A∩B.

This system has two problems. The first one is that the second statement from Proposition 2 holds
only for the selection, while it is not possible to prove a similar statement for the context of the form
k ≡ t :: k1 (since type changes are not allowed in the stoup in any of the typing rules). The second
one is that in the presence of (∩R) rule all terms could have intersection types. These problems make
it impossible to formulate the Generation lemma which would enable us to “reverse” the rules of the
type assignment system and which is usually necessary for proving the Subject reduction and Subject
expansion properties. Hence, the main tool for further proofs is missing and forces us to search for a
new intersection type assignment system for the λGtz-calculus.

2 Second attempt: Restrictive system λGtz∩R

Having realized that the above presented system is inappropriate, mainly because it allows too much due
to the overly permissive typing rules, we turned to a more restrictive approach and designed a system
inspired by the type assignment system for classical sequent λµµ̃-calculus proposed by Dougherty et
al. in [6]. In this system pre-order ≤ on types is completely omitted, as well as RHS introduction
of intersection, which turned out to be the problematic rule in the previous system λGtz∩I (indeed
only LHS intersection introduction is important in the system, whereas RHS intersection introduction
was only added for symmetry reasons). To regain the broken symmetry of the system, we replaced
LHS intersection introduction with upgraded rules (Ax) and (→L), in which intersection is implicitly

4

introduced. This system assigns types to the same set of terms as the previous one, but it is more
restrictive since the set of the types that can be assigned to a certain term is smaller. For example, in the
previous system the type of the abstraction could be both A∩B and A→ B, whereas in this one it can
only be A → B. The system, denoted by λGtz∩R, is given in Figure 3, where ∩Ai abbreviates ∩n

i=1Ai,
for some n≥ 1.

Γ,x : ∩Ai ` x : Ai
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R) Γ ` u : Ai ∀i Γ;B ` k : C
Γ;∩Ai → B ` u :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 3: Second attempt: restrictive system λGtz∩R

Basis expansion and Bases intersection lemmas hold for this system as well and the rule (∩L) from
the previous system is now admissible. Since there is exactly one rule for deriving each sequent the
system is syntax-directed so it is trivial to formulate and prove the following Generation lemma.

Proposition 3 (GENERATION LEMMA)
(i) Γ ` x : A iff x : A∩Ai ∈ Γ, i = 1, ...,n for some n≥ 0.

(ii) Γ ` λx.t : A iff A≡ ∩Bi →C and Γ,x : ∩Bi ` t : C.

(iii) Γ;A ` x̂.t : B iff Γ,x : A ` t : B.

(iv) Γ ` tk : A iff there exists a type B such that Γ ` t : B and Γ;B ` k : A.

(v) Γ;T ` t :: k : C iff T ≡ ∩Ai → B and Γ;B ` k : C and for all i, Γ ` t : Ai.

The basic properties we wanted to prove were Subject reduction and Subject expansion. We proved
Substitution lemma, analogous to the one from λ-calculus and the following Append lemma.

Lemma 4 (APPEND LEMMA) If Γ;C ` k : B and Γ;B ` k′ : A , then Γ;C ` k@k′ : A.

However, when trying to prove Subject reduction, we are stuck already at the first reduction rule β.
Supposing that Γ ` (λx.t)(u :: k) : A, we want to prove that Γ ` ux̂.tk : A. From Γ ` (λx.t)(u :: k) : A
and using Generation lemma (iv) it follows that there exists a type B such that Γ ` λx.t : B and
Γ;B ` u :: k : A. From the last sequent, using Generation lemma (v) it follows that B = ∩Ci → D,
Γ;D ` k : A and for all i, Γ ` u : Ci. From Γ ` λx.t : B , using Generation lemma (ii) it follows that
Γ,x : ∩Ci ` t : D. Now we have to assign a type to term ux̂.(tk):

Γ ` u : Ci

Γ,x : ∩Ci ` t : D Γ,x : ∩Ci;D ` k : A
(Cut)

Γ,x : ∩Ci ` tk : A
(Sel)

Γ;∩Ci ` x̂.tk : A
(Cut)

???

The last (Cut) rule is impossible to apply, since the types Ci and ∩Ci do not match.
There are two solutions to this problem: we can either change the β reduction rule or we can again

change the type system. The first solution can be achieved by replacing the β reduction rule with a
larger computational step - (β+σ) reduction rule as follows:

(λx.t)(u :: k) →β t[x := u]k.

5

With this reduction rule, it is possible to prove Subject reduction for the rules β,σ and π without
changing the type system. The µ reduction is of a different nature and for this reduction it is possible
to prove the following proposition.

Proposition 5 If Γ;∩Bi ` x̂.xk : A, then Γ;Bi ` k : A, for some i.

But such a modification implies losing the possibility to delay substitution and the call-by-value compu-
tational side of λGtz. Also, Subject expansion property (needed for characterising strong normalisation)
does not hold.

Hence, in order to obtain type assignment system which characterizes all strongly normalising terms,
we had to change the type assignment system again. For more details about the system λGtz∩Rwe refer
the reader to [9, 11].

3 System λGtz∩
The appropriate type assignment system, in which Subject reduction and Subject expansion at the root
position hold for the original reductions of λGtz, was introduced in Espirito Santo et al. [8]. In order
to assign the same type to β-redex (λx.t)(u :: k) and its contractum ux̂.(tk) (as required by Subject
reduction) we need to implicitly introduce intersection in the (Cut) rule. The necessity for certain
equivalencies among types showed up, so we returned ≤ relation. But ≤ relation is not explicitly
introduced into typing rules, its only rôle is in defining equivalence, so that the equivalent types can be
interchangeable in derivations. The important rôle belongs to the following equivalence: ∩(A→ Bi) ∼
A→∩Bi. The type assignment system λGtz∩ is given in Figure 4.

Γ,x : ∩Ai ` x : Ai
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R) Γ ` u : Ai ∀i Γ;B ` k : C
Γ;∩Ai → B ` u :: k : C

(→L)

Γ ` t : Ai, ∀i Γ;∩Ai ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 4: λGtz∩: type assignment system for λGtz-calculus

The following rules are admissible in λGtz∩.

Proposition 6
1. If Γ,x : Ai ` t : C then Γ,x : ∩Ai ` t : C.
2. If Γ,x : Ai;D ` k : C then Γ,x : ∩Ai;D ` k : C.

Basis expansion and Bases intersection lemmas hold for λGtz∩. Generation lemma differs from the
previous one only in the following.

Proposition 7 (GENERATION LEMMA)
(iv) Γ ` tk : A iff there exists a type ∩Bi, i = 1, ...,n such that for all i Γ ` t : Bi and Γ;∩Bi ` k : A.

With this system we finally succeeded in characterising strong normalisation in λGtz, i.e., the terms
are strongly normalising if and only if they can be assigned a type in λGtz∩ (for more details see [8]).

Example: In λ-calculus with intersection types, the term λx.xx has the type (A∩ (A→ B))→ B. The
corresponding term in λGtz-calculus is λx.x(x :: ŷ.y). Although being a normal form this term is not

6

typeable in the simply typed λGtz-calculus. It is typeable in λGtz∩ in the following way:

(Ax)
x : A∩ (A→ B) ` x : A→ B

(Ax)
x : A∩ (A→ B) ` x : A

(Ax)
x : A∩ (A→ B),y : B ` y : B

(Sel)
x : A∩ (A→ B);B ` ŷ.y : B

(→L)
x : A∩ (A→ B);A→ B ` (x :: ŷ.y) : B

(Cut)
x : A∩ (A→ B) ` x(x :: ŷ.y) : B

(→R).
` λx.x(x :: ŷ.y) : (A∩ (A→ B))→ B

4 Systems λGtz∩◦ and λGtz∩]

In λGtz∩, the whole business of equivalence (and ≤) is left to the meta-level. This defect is reduced
to a minimum in the new systems λGtz∩◦ and λGtz∩], which we now present. In these systems we
distinguish two kinds of types: proper types and strict types. λGtz∩◦ (resp. λGtz∩]) is a system for
assigning proper (resp. strict) types.

Proper and strict types are defined as follows:

Proper Types S,T,U ::= ∩n
i=1ai (n≥ 1)

Strict Types a,b,c ::= p | S→ b

If we impose n = 1, then Proper Types = Strict Types = SimpleTypes. By allowing n≥ 1 one has:

SimpleTypes⊂ Strict Types⊂ Proper Types⊂ Types .

At the level of proper types, we work modulo commutativity and idempotency of ∩. So we can think
of S as a non-empty, finite set of strict types, and use the set-theoretical notations a ∈ S, S ⊆ T , and
S∪T . For instance, if S = a∩b and T = a, then a ∈ T , a ∈ S, T ⊆ S, and S∪T = S = a∩b∩a. Notice
that it is natural to regard a∩b∩a as S∩T !

Definition 8 Let S, T be proper types.
i) S∩T := S∪T .

ii) S→ T := ∩b∈T (S→ b).

Definition 9 A function ()◦ : Types→ Proper Types is defined by p◦ = p, (A→ B)◦ = A◦→ B◦, and
(A∩B)◦ = A◦∩B◦.

Lemma 10 A∼ A◦.

Proof: By induction on A. Immediate by IH and the fact that ∼ is a congruence. ¥

In λGtz∩◦ bases are sets of declarations x : S where all term variables are different. Sequents have
two forms: Γ ` t : T and Γ;S ` k : T . Typing rules are given in Figure 5.

Bases in λGtz∩] are as in λGtz∩◦. Sequents in λGtz∩] have the forms Γ ` t : b and Γ;S ` k : b. Typing
rules are given in Figure 6.

Both in λGtz∩◦ and λGtz∩], we have no ≤ and no equivalence (except that, at the level of proper
types, we work modulo commutativity and idempotency of ∩).

Proposition 11
(i) If λGtz∩] derives Γ ` t : a, then λGtz∩◦ derives Γ ` t : a.

(ii) If λGtz∩◦ derives Γ ` t : S, then λGtz∩ derives Γ ` t : S.

7

S⊇ T
Γ,x : S ` x : T

(Ax)

Γ,x : S ` t : T
Γ ` λx.t : S→ T

(→R)
Γ ` u : a, ∀a ∈ S Γ;T ` k : U

Γ;S→ T ` u :: k : U
(→L)

Γ ` t : a, ∀a ∈ S Γ;S ` k : U
Γ ` tk : U

(Cut)
Γ,x : S ` v : U
Γ;S ` x̂.v : U

(Sel)

Figure 5: λGtz∩◦: proper type assignment system for λGtz-calculus

b ∈ S
Γ,x : S ` x : b

(Ax)

Γ,x : S ` t : b
Γ ` λx.t : S→ b

(→R)
Γ ` u : a, ∀a ∈ S Γ;T ` k : b

Γ;S→ T ` u :: k : b
(→L)

Γ ` t : a, ∀a ∈ S Γ;S ` k : b
Γ ` tk : b

(Cut)
Γ,x : S ` v : b
Γ;S ` x̂.v : b

(Sel)

Figure 6: λGtz∩]: strict type assignment system for λGtz-calculus

Proof: (i) A typing derivation in λGtz∩] is a typing derivation in λGtz∩◦. (ii) A typing derivation in
λGtz∩◦ is a typing derivation in λGtz∩. ¥

Proposition 12 If λGtz∩◦ derives Γ ` t : T , then, for all b ∈ T , λGtz∩] derives Γ ` t : b;

Proof: We also prove that, if λGtz∩◦ derives Γ;S ` k : T , then, for all b ∈ T , λGtz∩] derives Γ;S ` k : b.
The proof is by simultaneous induction on Γ ` t : T and Γ;S ` k : T . Cases according to the last typing
rule used. All cases are straightforward. The only case slightly interesting is →R, which we prove. By
IH we know that, for each b ∈ T , λGtz∩] derives Γ,x : S ` t : b. So, for each b ∈ T , λGtz∩] derives
Γ ` λx.t : S → b. Since S → T = ∩b∈T (S → b), we actually have that, for each c ∈ S → T , λGtz∩]

derives Γ ` λx.t : c. ¥

The following rules are admissible in λGtz∩◦.
Proposition 13

(i) If Γ ` t : T and a ∈ T , then Γ ` t : a.
(ii) If Γ;S ` k : T and a ∈ T , then Γ;S ` k : a.

Proof: Follows from the statements proved in the previous proposition, together with the fact that
derivations in λGtz∩] are derivations in λGtz∩◦. ¥

We define Γ◦ = {(x : A◦) : (x : A) ∈ Γ}. We now see that, if λGtz∩ derives Γ ` t : A, then λGtz∩◦
assigns an equivalent type to t, in base Γ◦.

Proposition 14 If λGtz∩ derives Γ ` t : A, then λGtz∩◦ derives Γ◦ ` t : A◦.

Proof: We also prove that, if λGtz∩ derives Γ;B ` k : A, then λGtz∩◦ derives Γ◦;B◦ ` k : A◦. The proof
is by simultaneous induction on Γ ` t : A and Γ;B ` k : A. Cases according to the last typing rule used.

Case (Ax). We want to prove that λGtz∩◦ derives Γ◦,x : ∩n
i=1A◦i ` x : A◦j , with j ∈ {1, · · · ,n}. This

8

sequent is derived in λGtz∩◦ with an application of (Ax), because ∩n
i=1A◦i ⊇ A◦j .

Cases (→R) and (Sel). Straightforward.
Case (→L). We are given by IHs Γ◦ ` u : A◦i (for each i ∈ {1, · · · ,n}) and Γ◦;B◦ ` k : C◦. We have

to derive the sequent Γ◦;(∩n
i=1Ai → B)◦ ` u :: k : C◦ in λGtz∩◦. Let S = ∩n

i=1A◦i . We now claim that,
for each a ∈ S, Γ◦ ` u : a. Let a ∈ S. Then there is i ∈ {1, · · · ,n} such that a ∈ A◦i (because in fact
S = ∪n

i=1A◦i). From Γ◦ ` u : A◦i and a ∈ A◦i and Proposition 13 we conclude Γ◦ ` u : a. The claim
is proved. From the claim and Γ◦;B◦ ` k : C◦ we obtain, with one application of →L, the sequent
Γ◦;S→ B◦ ` u :: k : C◦. This is what we want, because (∩n

i=1Ai → B)◦ = (∩n
i=1A◦i → B◦) = S→ B◦.

Case (Cut). Similar to case →L. ¥

The main result is given in the following theorem.

Theorem 15 Let t be a λGtz-term. The following are equivalent:
(i) t is typeable in λGtz∩;

(ii) t is typeable in λGtz∩◦;
(iii) t is typeable in λGtz∩].

Proof: Immediate from Propositions 11, 12, and 14. ¥

Hence we get two alternative characterisations of the strongly normalising terms of λGtz.

4 Conclusion

In this work we described our quest for the intersection type assignment system λGtz∩ and offered two
new, equivalent systems λGtz∩◦ and λGtz∩]. All the systems λGtz∩, λGtz∩◦, and λGtz∩] successfully
characterise strongly normalising terms of the λGtz-calculus.

The characterisation of weak normalisation in the λGtz-calculus is still an open problem that might
be the first direction for future research. This might lead us to a design of a more “natural” type
assignment system which characterises strong normalisation (along the lines of the first type system
λGtz∩I). Introduction of some additional operators, such as the operators of explicit contraction and
explicit weakening, might broaden the expressiveness of the system.

In [8] a characterisation is given of those λJ-terms [12] or λx-terms [17] which are strongly nor-
malising as sequent terms, that is, as λGtz-terms reducing inside λGtz. Such characterisation is given
in terms of typeability in cetain subsystems of λGtz∩. An interesting exercise would be to obtain an
alternative characterisation in terms of subsystems of λGtz∩◦ or λGtz∩].

References

[1] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the com-
pleteness of type assignment. J. of Symbolic Logic, 48(4):931–940 (1984), 1983.

[2] M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for lambda terms. Archiv für
Mathematische Logik, 19:139–156, 1978.

[3] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
λ-calculus. Notre Dame J. of Formal Logic, 21(4):685–693, 1980.

[4] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus se-
mantics. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 535–560. Academic Press, London, 1980.

[5] D. Dougherty, S. Ghilezan, and P. Lescanne. Intersection and union types in the λµµ̃-calculus. In
M. Coppo and F. Damiani, editors, Intersection types and related systems 2004, volume 136 of
ENTCS, pages 153–172. Elsevier, 2005.

9

[6] D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-
Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. In S. Berardi
and U. de’ Liquoro, editors, Theoretical Computer Science, volume Festschrift Coppo, Dezani,
Ronchi. To appear.

[7] J. Espı́rito Santo. Completing Herbelin’s programme. In S. R. D. Rocca, editor, Proceedings of
TLCA’07, volume 4583 of LNCS, pages 118–132. Springer-Verlag, 2007.

[8] J. Espı́rito Santo, S. Ghilezan, and J. Ivetić. Characterising strongly normalising intuitionistic
sequent terms. In International Workshop TYPES’07 (Selected Papers), LNCS. Springer-Verlag,
2008.

[9] S. Ghilezan and J. Ivetić. Intersection types for λgtz calculus. Publications de l’Institute Mathe-
matique, Serbian Academy of Sciences and Arts, 82(96):159–164, 2007.

[10] H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure.
In Computer Science Logic, CSL 1994, volume 933 of LNCS, pages 61–75. Springer-Verlag,
1995.

[11] J. Ivetić. Formal calculi for intuitionistic logic. Master’s thesis, University of Novi Sad, 2008.

[12] F. Joachimski and R. Matthes. Standardization and confluence for ΛJ. In Proceedings of RTA
2000, volume 1833 of LNCS, pages 141–155. Springer, 2000.

[13] K. Kikuchi. Simple proofs of characterizing strong normalisation for explicit substitution calculi.
In F. Baader, editor, Proceedings of RTA’07, LNCS, pages 257–272. Springer-Verlag, 2007.

[14] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection
types for explicit substitutions. Inf. Comput., 189(1):17–42, 2004.

[15] R. Matthes. Characterizing strongly normalizing terms of a calculus with generalized applications
via intersection types. In ICALP Satellite Workshops, pages 339–354, 2000.

[16] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 561–577. Academic Press, London, 1980.

[17] K. Rose. Explicit substitutions: Tutorial & survey. Technical Report LS-96-3, BRICS, 1996.

[18] P. Sallé. Une extension de la théorie des types en lambda-calcul. In G. Ausiello and C. Böhm,
editors, Fifth International Conference on Automata, Languages and Programming, volume 62
of LNCS, pages 398–410. Springer-Verlag, 1978.

10

