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Abstract. In the context of intuitionistic implicational logic, we achieve
a perfect correspondence (technically an isomorphism) between sequent
calculus and natural deduction, based on perfect correspondences be-
tween left-introduction and elimination, cut and substitution, and cut-
elimination and normalisation. This requires an enlarged system of nat-
ural deduction that refines von Plato’s calculus. It is a calculus with
modus ponens and primitive substitution; it is also a “coercion calcu-
lus”, in the sense of Cervesato and Pfenning. Both sequent calculus and
natural deduction are presented as typing systems for appropriate ex-
tensions of the λ-calculus. The whole difference between the two calculi
is reduced to the associativity of applicative terms (sequent calculus =
right associative, natural deduction = left associative), and in fact the
achieved isomorphism may be described as the mere inversion of that
associativity.
The novel natural deduction system is a “multiary” calculus, because
“applicative terms” may exhibit a list of several arguments. But the
combination of “multiarity” and left-associativity seems simply wrong,
leading necessarily to non-local reduction rules (reason: nomalisation,
like cut-elimination, acts at the head of applicative terms, but natural
deduction focuses at the tail of such terms). A solution is to extend natu-
ral deduction even further to a calculus that unifies sequent calculus and
natural deduction, based on the unification of cut and substitution. In
the unified calculus, a sequent term behaves like in the sequent calculus,
whereas the reduction steps of a natural deduction term are interleaved
with explicit steps for bringing heads to focus. A variant of the calculus
has the symmetric role of improving sequent calculus in dealing with
tail-active permutative conversions.

1 Introduction

Two of the most important systems of formal deduction are sequent calculus
and natural deduction, both introduced in Gentzen’s seminal paper [15]. When
they were introduced, the two systems seemed to differ substantially. Natural
deduction manipulated formulas, tried to model informal reasoning, and had
an implicit management of structural rules. Sequent calculus manipulated “se-
quents” (formal instances of the provability relation), tried to model a symmetry



between assumption and conclusion, and had explicit management of structural
rules; in addition, it enjoyed a hauptsatz, the cut-elimination theorem. Other dif-
ferences were realized over the years. The cut-free fragment of sequent calculus is
appropriate for meta-theoretical reasoning and proof search, and therefore has a
link with logic programming [14, 20]. Natural deduction, via the Curry-Howard
isomorphism [3, 17], has a link with λ-calculus and functional programming.

One of the main tasks of structural proof theory [22] is to investigate whether
these differences between sequent calculus and natural deduction (and the con-
comitant relative (dis)advantages and different applications of the systems) are
absolute or just apparent. This task has been carried out over the last 70 years
[15, 25, 28, 24, 21, 27], and the outcome is that the differences are most of the
time just apparent. Gentzen observed already in [15] that natural deductions
can be seen as trees of sequents. Kleene [19] showed how to define sequent calcu-
lus with implicit structural rules, built in the logical rules. Prawitz [25] showed
that natural deduction also enjoys a hauptsatz, the normalisation theorem, from
which many meta-theoretical results can be obtained easily. Zucker and Pot-
tinger [28, 24] showed that there is a “homomorphism” between the process of
cut-elimination and the process of normalisation. von Plato [27] enlarged the
concept of natural deduction so that cut-free derivation and normal natural de-
duction are in bijective correspondence. Finally, Herbelin [16] started a definitive
extension of the Curry-Howard isomorphism to the sequent calculus.

In this paper we continue the contributions of von Plato and Herbelin, in
the context of intuitionistic implicational logic. We adopt the Curry-Howard
approach of defining logical systems as typing systems for some variant of the
λ-calculus, both for sequent calculus (following Herbelin) and natural deduction.
This has some technical advantages (uniform treatment of structural rules, han-
dling of proofs as terms) and brings in computational meaningful term language
for interpreting the proofs and expressing the differences of the systems. We
also adopt (and are ready to refine) von Plato’s extension of natural deduction.
The outcome of the paper is a new level of understanding of the correspondence
between sequent calculus and natural deduction, leading to a two-staged com-
prehension of the unity of structural proof theory: first, sequent calculus and
natural deduction are isomorphic systems which differ in a single feature, the
associativity of applicative terms; second, sequent calculus and natural deduc-
tion coexist inside a larger system, the unified calculus, based on the unification
of cut and substitution. We now explain these two stages in some detail.

Isomorphism stage: Herbelin studied a fragment LJT of sequent calculus
LJ and gave its computational interpretation in terms of the so-called λ-calculus.
Contrary to earlier accounts of the computational interpretation of the sequent
calculus, whose focus was on the feature of pattern matching, in λ the novelty is
the existence of an auxiliary syntactic class of applicative contexts. In the case of
intuitionistic implication, an applicative context is simply a list of terms, under-
stood as a “multiary” argument for functional application. Hence, “applicative
terms” in λ have the form t[u1, ..., um]. Herbelin expressed the difference between
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sequent calculus and natural deduction as the difference between t[u1, ..., um] and
the ordinary MN1...Nm of the λ-calculus.

There is a subtle point here. The difference between t[u1, ..., um] andMN1...Nm
includes a difference in the organization of applicative terms: sequent calculus is
right-associative t(u1 :: ...(um :: [])), whereas natural deduction is left-associative
(...(MN1)...Nm). But the difference between t[u1, ..., um] and MN1...Nm cannot
be reduced to an inversion of the associativity of applicative terms. That is true
only in the cut-free and normal fragments: the mapping that inverts the asso-
ciativity of applicative terms is proved in [4] to be a bijection between the struc-
tures x[u1, ..., um] and xN1...Nm. But in the unconstrained case, t[u1, ..., um] is
more general than MN1...Nm. For instance, t[u1, u2][u3] and t[u1, u2, u3] both
correspond to MN1N2N3, because, in the λ-calculus, we do not have a way of
delimiting the applicative term MN1N2 and saying it is the head of a new ap-
plicative term. Indeed, the λ-calculus is isomorphic (even at level of reduction) to
the structure V [u1, ..., um] (where V is a value, i.e. a variable or abstraction) [6,
7], and only an extension of the λ-calculus, equipped with a distinction between
applicative term and application, is isomorphic to the structure t[u1, ..., um] [7,
8].

These developments may be seen as the early steps of a programme, named
Herbelin’s programme in [9]. The programme consists in investigating whether,
for increasingly larger fragments of sequent calculus, there are isomorphic ex-
tensions of natural deduction, so that the sequent calculus fragments and the
natural deduction extensions are linked by a mere inversion of applicative terms.
The benefit of the programme for sequent calculus is that only an isomorphic
natural deduction system gives rigorous meaning to “applicative context” and
“applicative term”, and for natural deduction is that the extent of the natural
deduction “space of calculi” is uncovered.

The developments in [6–8] only comprise, in the sequent calculus side, frag-
ments of LJT . But LJT is a permutation-free fragment, where only a restricted
form of left introduction is available and where the computational meaning of
permutation (so typical of sequent calculus) is absent. So the challenge, taken in
the “isomorphism stage”, is to complete Herbelin’s programme for full sequent
calculus, that is, sequent calculus without constraints on left introductions (but
where permutative conversions necessarily show up). The computational inter-
pretation will be in terms of a λ-calculus λGtz (named so after Gentzen) with a
primitive notion of applicative context, the latter taken in a certain generalised
sense. In the natural deduction side, a system λNat is defined that extends and
refines von Plato’s natural deduction. It is a calculus with modus ponens and
primitive substitution, and integrates the idea of a distinction between applica-
tive term and application. Such syntactic structure turns out to expand the idea
of defining natural deduction as a “coercion calculus”, in the sense of Cervesato
and Pfenning [1].

Then we prove λGtz ∼= λNat in the fullest sense: the mapping that inverts
the associativity of applicative terms is a sound bijection between the sets of
terms of the two calculi and, in addition, establishes an isomorphism between
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cut-elimination in λGtz and normalisation in λNat. Strong cut-elimination for
λGtz is proved via an interpretation into the calculus of “delayed substitutions”
λs of [10]; strong normalisation for λNat follows by isomorphism. These results
constitute, for the logic under analysis here, considerable improvements over [16,
1, 27, 8].

Unification stage: After pointing out so accurately the single feature that
distinguishes sequent calculus from natural deduction, one expects to obtain a
transparent view of the relative virtues and defects of the two systems. We will
fulfill this expectation, and even suggest a remedy to the defects of each system.

The notion of applicative term consists, both in λGtz and λNat, of a head term,
m arguments (m ≥ 0), and a “continuation” or tail. Let us call “multiarity” the
possibility of forming applicative terms with m > 1 arguments. Although nor-
malisation in λNat is isomorphic to cut-elimination in λGtz, the combination of
multiarity and left-associativity of applicative terms in λNat implies that normal-
isation has to be defined with non-local reduction rules. The reason is simple:
normalisation, like cut-elimination, acts at the head of applicative terms, but
the natural deduction representation of applicative terms focuses at the tail
of such terms. Now, in a multiary system, heads are arbitrarily distant from
tails. So, we get isomorphism, but normalisation is just a clumsy way of doing
cut-elimination. Symmetrically, sequent calculus is the wrong setting for doing
tail-active permutative conversions.

A way out of this situation, which is suggested by the analysis of λGtz ∼= λNat,
is to extend natural deduction even further, to a calculus λU that unifies λGtz

and λNat. This unified calculus is based on the unification of cut and substitution,
and all its reduction rules are local. A sequent term behaves in λU like in the
sequent calculus, whereas the reduction steps in λU of a natural deduction term
are interleaved with explicit steps for bringing heads to focus. This gives an
implementation of multiary normalisation with local reduction steps.

The unified calculus seems particularly appropriate for dealing with con-
versions which are both head-acting and tail-acting. A variant of the calculus
is suggested which has the role of improving sequent calculus in dealing with
tail-acting permutative conversions.

Remark: This paper is based on [9, 11]. Both papers prove isomorphisms
that go beyond Herbelin’s fragment LJT : λGm ∼= λNm in [11] and λGtz ∼= λNat

in [9]. λGm is a fragment of λGtz where cuts have to be “right principal”, and
λNm is a fragment of λNat where substitutions have necessarily a form that
corresponds to generalised application. There is a uniform explanation of these
restriction in λ-calculus terms: in applicative terms, m ≥ 1. These fragments,
as well as λGm ∼= λNm, are omitted here, so we only present the isomorphism
originally proven in [9]. On the other hand, the unified calculus is studied only in
[11], with name λU . This calculus, which unifies λGm and λNm, based on the
unification of right-principal cut and generalised application, is also omitted here.
The reason is that we introduce here a new, slightly more general, unified calculus
λU, based on the unification of cut and substitution, unifying λGtz and λNat. See
Fig. 1 for a road-map, where Θ and Ψ denote the (inverse) isomorphisms.
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Fig. 1. Completing Herbelin’s programme, towards a unification
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Structure of the paper: The paper is organized as follows. Section 2
presents λGtz. Section 3 presents λNat. Sections 4 and 5 prove and analyze
λGtz ∼= λNat. Section 6 motivates, defines and studies the unified calculus. Section
7 discusses the contributions of the paper and related work. Section 8 concludes.

Notations: Types (=formulas) are ranged over by A,B,C and generated
from type variables using the “arrow type” (=implication), written A ⊃ B.
Contexts Γ are consistent sets of declarations x : A. “Consistent” means that
for each variable x there is at most one declaration in Γ . The notation Γ, x :
A always produces a consistent set. Meta-substitution is denoted with square
brackets [ /x] . All calculi in this paper assume Barendregt’s variable convention
(in particular we take renaming of bound variables for granted).

Naming of systems: sequent calculi are denoted λS (where S is some tag);
natural deduction systems are denoted λS . There are two exceptions, borrowed
from [11]: λGm (a sequent calculus) and λNm (a natural deduction system).
Other system which we will regard as being in the intersection of, or which
unify, sequent calculus and natural deduction are denoted λS.

2 Sequent calculus

The sequent calculus we introduce is named λGtz (read “λ-Gentzen”).
Expressions and typing rules: There are two sorts of expressions in λGtz:

terms t, u, v and contexts k.

(Terms) t, u, v ::= x |λx.t | tk
(Contexts) k ::= (x)v |u :: k

Terms are either variables x, y, z, abstractions λx.t or cuts tk. Contexts are either
a selection (x)v or a linear left introduction u :: k, often called a cons. Variable
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x is bound in (x)v. 1 A computational reading of contexts is as a prescription of
what to do next (with some expression that has to be plugged in). A selection
(x)v says “substitute for x in v” and a cons u :: k says “apply to u and proceed
according to k”. A cut tk is a plugging of a term t in the context k. We will use
the following abbreviations:

[] := (x)x
[u1, ..., un] := u1 :: ...un :: []
〈u/x〉t := u(x)t

The typing rules of λGtz are as follows:

Γ, x : A ` x : A Axiom

Γ, x : A ` t : B
Γ ` λx.t : A ⊃ B Right

Γ ` u : A Γ ;B ` k : C
Γ ;A ⊃ B ` u :: k : C

Left

Γ ` t : A Γ ;A ` k : B
Γ ` tk : B Cut

Γ, x : A ` v : B
Γ ;A ` (x)v : B Selection

There are two sorts of sequents in λGtz, namely Γ ` t : A and Γ ;A ` k : B. The
distinguished position in the antecedent of sequents of the latter kind contains
the selected formula. There is a typing rule Selection that selects an antecedent
formula. Besides this rule, there are the axiom rule, the introductions on the
left(=antecedent) and on the right(=succedent) of sequents, and the cut.

The typing rules follow a reasonable discipline: active formulas in the an-
tecedent of sequents have to be previously selected (the B in Left and one A
in Cut); and a formula introduced on the left is selected. The latter constraint
implies that a left introduction u :: k is a linear introduction, because there
cannot be an implicit contraction. Full left introduction is recovered as a cut
between an axiom and a linear left introduction, corresponding to x(u :: k). The
cut-elimination process will not touch these trivial cuts. More generally, given
a context k, xk represents the inverse of a selection, that is, the operation that
takes a formula out of the selection position and gives it name x.2 An implicit
contraction may happen here.

Reduction rules: The reduction rules of λGtz are as follows:

(β) (λx.t)(u :: k)→ 〈u/x〉(tk) (σ) 〈t/x〉v → [t/x]v
(π) (tk)k′ → t(k@k′) (µ) (x)xk → k, if x /∈ k

where
1 In order to save parentheses, the scope of binders extends to the right as far as

possible.
2 Such inference rule is primitive in Herbelin’s LJT and called “dereliction” in [16]

and “selection” in [4]. The latter name, of course, comes from a bottom-up reading.
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(u :: k)@k′ = u :: (k@k′) ((x)v)@k′ = (x)vk′

By cut-elimination we mean βπσ-reduction. Rules β, π and σ aim at eliminating
all cuts that are not of the form x(u :: k). The procedure is standard. If a cut
is a key-cut (both cut-formulas main(=introduced) in the premisses) with cut-
formula A ⊃ B, the cut is reduced to two cuts, with cut-formulas A and B. This
is rule β. If a cut, not of the form x(u :: k), is not a key cut, this means that
it can be permuted to the right (rule σ) or to the left (rule π). The particular
case of σ when v = x is named ε and reads 〈t/x〉x→ t or t[]→ t. A term t is a
βπσ-normal form iff it is generated by the following grammar:

t, u, v ::= x |λx.t |x(u :: k)
k ::= (x)v |u :: k (1)

There is a further reduction rule, named µ, of a different nature. It undoes the
sequence of inferences consisting of un-selecting and selecting the same formula,
if no implicit contraction is involved. A similar rule has been defined for Parigot’s
λµ-calculus [23], but acting on the RHS of sequents.

Consider the term (λx.t)(u :: k). After a β-step, we get v = 〈u/x〉(tk). If u is
a cut t′k′, v is both a σ- and a π-redex. In this case, there is a choice as to how
to continue evaluation. Opting for σ gives ([u/x]t)k, whereas the π option gives
t′(k′@(x)tk). According to [2], this choice is a choice between a call-by-name and
a call-by-value strategy of evaluation.

Strong normalisation: We give a proof of strong normalisation for λGtz by
defining a reduction-preserving interpretation in the λs-calculus of [10].

The terms of λs are given by:

M,N,P ::= x |λx.M |MN | 〈N/x〉M

This set of terms is equipped with the following reduction rules:

(β) (λx.M)N → 〈N/x〉M (π1) (〈P/x〉M)N → 〈P/x〉(MN)
(σ) 〈N/x〉M → [N/x]M (π2) 〈〈P/y〉N/x〉M → 〈P/y〉〈N/x〉M

where meta-substitution [N/x]M is defined as expected. In particular

[N/x]〈P/y〉M = 〈[N/x]P/y〉[N/x]M .

Let π = π1 ∪ π2. We now define a mapping ( )∗ : λGtz → λs. More precisely,
mappings ( )∗ : λGtz − Terms→ λs− Terms and ( , )∗ : λs− Terms× λGtz −
Contexts→ λs− Terms are defined by simultaneous recursion as follows:

x∗ = x (M, (x)v)∗ = 〈M/x〉v∗
(λx.t)∗ = λx.t∗ (M,u :: k)∗ = (Mu∗, k)∗

(tk)∗ = (t∗, k)∗

The idea is that, if t, ui and v are mapped by ( )∗ to M , Ni and P , respectively,
then t(u1 :: · · ·um :: (x)v) is mapped to 〈MN1 · · ·Nm/x〉P .
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Proposition 1. Let R ∈ {β, π, σ, µ}. If t→R u in λGtz, then t∗ →+
βπσ u

∗ in λs.

Proof: Follows from the following four facts: (i) (〈N/x〉M,k)∗ →+
π 〈N/x〉(M,k)∗;

(ii) ((M,k)∗, k′)∗ →+
π (M,k@k′)∗; (iii) ([t/x]u)∗ = [t∗/x]u∗; and (iv) 〈M/x〉(N, k)∗ →σ

([M/x]N, k)∗, if x /∈ k. �

Theorem 1 (Strong cut-elim.). Every typable t ∈ λGtz is βπσµ-SN.

Proof: [10] proves that every typable t ∈ λs is βπσ-SN (if we use for λs the
obvious typing rules). The theorem follows from this fact, the previous proposi-
tion and the fact that ( )∗ preserves typability. �

Related systems: We can easily embed LJ in λGtz, if we define LJ as the
typing system for some obvious term language. The embedding is given by:

Axiom(x) x Left(x, L1, (y)L2) x(u1 :: (y)u2)
Right((x)L) λx.t Cut(L1, (x)L2) t1(x)t2

The cut-free LJ terms correspond to the sub-class of terms in (1) such that k
in x(u :: k) has to be a selection (y)v. βπσ-normal forms correspond thus to a
generalisation of cut-free LJ-terms, namely Schwichtenberg’s multiary cut-free
terms [26]. We refer to these as Schwichtenberg normal forms.

A context u1 :: ... :: um :: (x)x (m ≥ 0) may be regarded as a list [u1, ..., um],
if we think of (x)x as the empty list []. Herbelin observes that such lists cor-
respond to “applicative” contexts in the λ-calculus, that is, expressions of the
form [ ]N1 · · ·Nm, with one “hole” in the head position [16]. We will return to
this issue below. If every context in a term t is of the form [u1, ..., um], t is a
λ-term. So, the class of λGtz-terms generalised a sub-class of the λ-terms. The
generalisation comes from allowing selection (x)v instead of just [] = (x)x. A
term t is βπσ-normal and only contains contexts of the form [u1, ..., um] iff t is a
cut-free λ-term, in the sense of [16]. We refer to such terms as Herbelin normal
forms. They are given by

t, u :: = x |λx.t |x(u :: k)
k ::= [] |u :: k

Another characterisation of this set is as the set of Schwichtenberg’s normal forms
(given by grammar (1)) which, in addition, are normal w.r.t. certain permutative
conversions [26].

Every cut in λGtz is of the form t(u1 :: ... :: um :: (x)v), with m ≥ 0. Several
interesting fragments of λGtz may be obtained by placing restrictions on m -
see Fig. 2. There is a m ≥ 1-fragment, which gives system λGm of [11]. 3 We
describe next another important fragment.

The m ≤ 1-fragment: This fragment gives a version λgs of the λgs-calculus,
to be defined in the next section. The m ≤ 1-fragment is closed under, and
equipped with, the reduction rules
3 A notational variant of λGm, named λJm, is studied in [13].
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Fig. 2. Fragments of λGtz and λNat
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(β) (λx.t)(u :: (y)v)→ 〈u/x〉〈t/y〉v
(π) t(u :: (x)v)(u′ :: (y)v′)→ t(u :: (x)v(u′ :: (y)v′))
(σ) 〈t/x〉v → [t/x]v

We might have considered a term like t((x)v)(u′ :: (y)v′) as a π-redex, but we did
not, for simplicity. Such a term contains a σ-redex, which must be reduced first
(so the fragment is given in its call-by-name version). The fragment is also closed
under some particular cases of µ-reduction (e.g. t(u :: (x)x(y)v) → t(u :: (y)v),
with x /∈ v), but these reductions are also σ-reductions, and we consider them
as such. For instance, t(u :: (x)x(y)v)→σ t(u :: (x)[x/y]v), and the latter is the
same as (α-equivalent to) t(u :: (y)v).

The m ≤ 1-terms are the terms normal w.r.t. the following permutation rule

(ν) t(u :: v :: k)→ t(u :: (z)z(v :: k)) ,

with z /∈ v, k. Notice that →ν⊆→−1
µ . Clearly, ν is terminating (the number of

ν-redexes decreases at each step). Also local confluence is easy to check. The
ν-nf of t is written ν(t).

Combining restrictions m ≤ and m ≥ 1, we arrive at the m = 1-fragment,
where cuts have the form t(u :: (x)v), with exactly one argument u. We denote
by λg the class of λGtz-terms determined by such constraint on cuts, equipped
with reduction rules π (unchanged relatively to λgs) and

(β) (λx.t)(u :: (y)v)→ [[u/x]t/y]v .

Substitutions 〈u/x〉v cannot be formed, so reduction rule σ is not needed per se,
but is implicitly employed in the new version of β. λg is a version of the system
λg to be defined in the next section.
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3 Natural deduction

The natural deduction system we introduce is named λNat (read “λ-natural”).
It is an improvement of natural deduction with general elimination rules.

Natural deduction with general elimination rules: This system [27]
may be presented as a type system for the λ-calculus with generalized applica-
tion. The latter is the system ΛJ of [18], which we rename here as λg, for the
sake of uniformity with the names of other calculi. Terms of λg are given by

M,N,P ::= x |λx.M |M(N, x.P ) .

The typing rule for generalized application is

Γ `M : A ⊃ B Γ ` N : A Γ, x : B ` P : C
Γ `M(N, x.P ) : C

gElim

The λg-calculus has two reduction rules:

(β) (λx.M)(N, y.P )→ [[N/x]M/y]P
(π) M(N, x.P )(N ′, y.P ′)→M(N, x.P (N ′, y.P ′)) .

Rule π corresponds to the permutative conversion allowed by general elimina-
tions. The usual λ-calculus embeds in λg by setting MN = M(N, x.x). Likewise,
modus ponens (=Gentzen’s elimination rule for implication) may be seen as the
particular case of the gElim where B = C and the rightmost premiss is omitted.

The λgs-calculus is the following version of λg with explicit substitution. A
new term constructor, explicit substitution 〈N/x〉M , is added. In rule β

(β) (λx.M)(N, y.P )→ 〈N/x〉〈M/y〉P ,

two explicit substitutions are generated, instead of two calls to the meta-substitu-
tion. π stays the same. Finally, the calculus contains a new reduction rule, named
σ, and defined by 〈N/x〉M → [N/x]M . A λg-term is a “pure” λgs-term, that
is, a λgs-term without occurrences of explicit substitution. A β-reduction step
of λg can be simulated in λgs by a β-step followed by two σ-steps.4

Now for normal forms. In λg, the βπ-normal terms are given by

M,N,P ::= x |λx.M |x(N, y.P )

and correspond to von Plato’s “fully normal” natural deductions. We will refer
to these as von Plato normal forms. A λgs-term is in βπσ-normal form iff it is a
λg-term in βπ-normal form. The class of von Plato normal forms is in bijective
correspondence with cut-free LJ-terms, and, therefore, is bigger than the class of
β-normal λ-terms. A βπ-normal λg-term M is called a Mints normal form if, for
every application x(N, y.P ) in M , P is y-normal [5]. P is y-normal if P = y or
P = y(N ′, y′.P ′) and y /∈ N ′, P ′ and P ′ is y′-normal. Another characterisation

4 For simplicity, we presented here the call-by-name version of λgs. For the general
definition of λgs see [10].
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of Mints normal forms is as βπ-normal forms which are, in addition, normal
w.r.t. a set of permutation rules given in [5]. The set of β-normal λ-terms is in
bijective correspondence with the set of Mints normal forms [21, 5].

Motivation for λNat: If one sees generalised application M(N, x.P ) as a sub-
stitution subst(MN,x.P ) (the notation here is not important), then one can say
that in λg every ordinary application MN occurs as the actual parameter of a
substitution. This situation has a defect: it is cumbersome to write iterated, ordi-
nary applications. For instance, MNN ′ is written subst(subst(MN,x.x)N ′, y.y),
with x, y fresh. A solution is to allow m ≥ 0 application as actual parameters of
substitutions: subst(MN1...Nm, x.P ). The particular case m = 0 encompasses
explicit substitution. The usefulness of allowing m > 1 is precisely in having
the alternative way subst(MNN ′, x.x) of writing MNN ′. The need to convert
between the cumbersome way and the alternative way of writing MNN ′ leads
to a new reduction rule named µ.

Expressions and typing rules: There are two syntactic classes in λNat:
terms M,N,P and elimination expressions E.

(Terms) M,N,P ::= x |λx.M | {E/x}P
(Elimination-Expressions) E ::= hd(M) |EN

Terms are either variables x, y, z, abstractions λx.M or (primitive) substitutions
{E/x}P . Elimination expressions (EEs, for short) are either coercions hd(M)
(a.k.a. heads) or eliminations EN . So an EE is a sequence of zero or more
eliminations starting from a coerced term and ending as the actual parameter
of a substitution. Hence, every substitution has the form {hd(M)N1...Nm/x}P ,
with m ≥ 0. Generalised elimination is recovered as {hd(M)N/x}P , that is the
particular case m = 1. Ordinary elimination is {hd(M)N/x}x. We will use the
following abbreviations:

ap(E) := {E/z}z
MN := ap(hd(M)N)

M(N, y.P ) := {hd(M)N/y}P
〈N/x〉M := {hd(N)/x}M

The typing rules of λNat are as follows:

Γ, x : A ` x : A
Assumption

Γ, x : A `M : B
Γ ` λx.M : A ⊃ B Intro

Γ B E : A ⊃ B Γ ` N : A
Γ B EN : B Elim

Γ B E : A Γ, x : A ` P : B
Γ ` {E/x}P : B Subst

Γ `M : A
Γ B hd(M) : A Coercion

11



There are two sorts of sequents in λNat, namely Γ `M : A and Γ B E : A. The
typing system contains an assumption rule, an introduction rule, an elimination
rule and a rule for typing substitution. These are standard, except for the use
of two sorts of sequents. The coercion rule changes the kind of sequent. The
displayed formula of the coercion rule is the coercion formula. The construction
ap(E) (={E/x}x) represents the inverse of the coercion rule.

Reduction rules: The reduction rules of λNat will act on the head of sub-
stitutions {hd(M)N1...Nm/x}P . In order to have access to such heads, it is
convenient to introduce the following syntactic expressions:

C ::= {[]/x}P |N · C
These expressions are called meta-contexts of λNat. As opposed to the con-
texts of λGtz, which are formal expressions of λGtz, meta-contexts are not for-
mal expressions of λNat, but rather a device in the meta-language. Intuitively,
a meta-context is a substitution with a “hole”: {[]N1...Nk/x}P . Formally, given
E, we define C[E] (the result of filling E in the hole of C) by recursion on C:
({[]/x}P )[E] = {E/x}P and (N · C)[E] = C[EN ]. So informally N · C can be
thought of as the meta-context C[[]N ].

In addition to λx. and (x) , there is in meta-contexts a new binder (over x)
{[]/x} . A variable x is a free variable of C (notation x ∈ C) if x occurs in C, but
not in the scope of a binder over x.

The reduction rules of λNat are as follows:

(β) C[hd(λx.M)N ]→ 〈N/x〉(C[hd(M)]) (σ) 〈M/x〉P → [M/x]P
(π) C[hd({E/x}P )]→ {E/x}(C[hd(P )]) (µ) {E/x}(C[hd(x)])→ C[E], x /∈ C

The first three reduction rules, β, π and σ, enforcing every head to be of the
form hd(x) and to be in the function position of some application (hence not to
be the actual-parameter position of some substitution). The βπσ-normal forms
are given by:

M,N,P ::= x |λx.M | {EN/x}P
E ::= hd(x) |EN

Later on, we will refer to this set as A .
By normalisation we mean βπσ-reduction. At the level of derivations, the

normality criterion is: a derivation in λNat is βπσ-normal if every coercion for-
mula occurring in it is an assumption and the main premiss of an elimination.
This extends von Plato’s criterion of normality. Indeed, if m is always 1 in
{hd(M)N1...Nm/x}P , coercion formula = main premiss of elimination, and the
criterion boils down to: the main premiss of an elimination is an assumption.

The particular case P = x of rule σ reads ap(hd(M))→M and is named ε.
There is a fourth reduction rule, named µ, which is a handy tool not available in
λg. Consider the λ-term xNN ′, that is, ap(hd(ap(hd(x)N))N ′). After a π step
we get {hd(x)N/z}{hd(z)N ′/z′}z′ (z, z′ fresh), which is a βπσ-normal form, if
N,N ′ are. After a µ step one gets ap(hd(x)NN ′), which is much simpler.
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Related systems: A term M is βπσ-normal and only contains substitutions
of the form ap(E) iff M is a normal term of Cervesato and Pfenning’s coercion
calculus in [1]. Later on, we will refer to the class of such terms as B . They are
given by

M,N ::= x |λx.M | ap(EN)
E ::= hd(x) |EN .

Another set, essentially equivalent to this one, is the set of β-normal forms of
λN , a coercion calculus studied in [7].

Fragments of λNat are determined by placing restrictions on the number m in
{hd(M)N1...Nm/x}P - recall Fig. 2. There is a m ≥ 1-fragment, in fact system
λNm of [11]. Another, important fragment is described next.

The m ≤ 1-fragment: The fragment is closed under

(β) C[hd(λx.M)N ]→ 〈N/x〉(C[hd(M)]), where C has the form {[]/y}P
(σ) 〈M/x〉P → [M/x]P
(π) C[hd({E/x}P )]→ {E/x}(C[hd(P )]), where C has the form N ′ · {[]/y}P ′

and E is of the form hd(M)N .

In π we are avoiding the cases C = {[]/y}P ′ and E = hd(M), which would not
violate the m ≤ 1 restriction. By doing this, we are, for simplicity, just presenting
the call-by-name version of the fragment, where critical pairs between π and σ
do not arise. Also some special cases of µ-reduction exist inside the fragment,
but they happen to be simultaneously σ-reductions. So we do not add a µ-rule.

This fragment gives a version λgs of the λg-calculus with explicit substitution
λgs. The β-rule of λgs is recovered as follows. Let C = {[]/y}P . Then

(λx.M)(N, y.P ) = {hd(λx.M)N/y}P
= C[hd(λx.M)N ]
→β 〈N/x〉C[hd(M)]
= 〈N/x〉〈M/y〉P .

As to the π-rule of λgs, let E = hd(M)N and C = N ′ · {[]/y}P ′. Then

M(N, x.P )(N ′, y.P ′) = {hd({hd(M)N/x}P )N ′/y}P ′

= C[hd({E/x}P )]
→π {E/x}C[hd(P )]
= {hd(M)N/x}{hd(P )N ′/y}P ′

= M(N, x.P (N ′, y.P ′)) .

The m ≤ 1-terms are the terms normal w.r.t. the following permutation rule

(ν) {ENN ′/y}P → {EN/z}{hd(z)N ′/y}P ,
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with z /∈ N ′, P . Notice that ν ⊆ µ−1. Clearly, ν is terminating (the number of
ν-redexes decreases at each step). Also local confluence is easily checked. The
ν-nf of M is written ν(M).

Combining restrictions m ≥ 1 and m ≤ 1, we arrive at the m = 1-fragment,
where substitutions have the form {hd(M)N/x}P , that is, the form of gener-
alised application. It should be obvious that the m = 1-fragment is nothing but
a version λg of λg.

4 Isomorphism

Mappings Ψ and Θ: We start with a mapping Ψ : λNat − Terms −→ λGtz −
Terms. Let Ψ(M) = t, Ψ(Ni) = ui and Ψ(P ) = v. The idea is to map, say,
{hd(M)N1N2N3/x}P to t(u1 :: u2 :: u3 :: (x)v). This is achieved with the help
of an auxiliary function Ψ : λNat −EEs× λGtz −Contexts −→ λGtz − Terms as
follows:

Ψ(x) = x Ψ(hd(M), k) = (ΨM)k
Ψ(λx.M) = λx.ΨM Ψ(EN, k) = Ψ(E,ΨN :: k)

Ψ({E/x}P ) = Ψ(E, (x)ΨP )

Next we consider a mapping Θ : λGtz−Terms −→ λNat−Terms. Let Θ(t) =
M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 :: u3 :: (x)v)
to {hd(M)N1N2N3/x}P . This is achieved with the help of an auxiliary function
Θ : λNat − EEs× λGtz − Contexts −→ λNat − Terms as follows:

Θ(x) = x Θ(E, (x)v) = {E/x}Θv
Θ(λx.t) = λx.Θt Θ(E, u :: k) = Θ(EΘu, k)
Θ(tk) = Θ(hd(Θt), k)

Contexts vs meta-contexts: LetMetaContexts be the set of meta-contexts
of λNat. It is obvious that there is a connection between contexts of λGtz and meta-
contexts of λNat. There is a function Θ : Contexts → MetaContexts defined
by Θ(x)v = {[]/x}Θv and Θu::k = Θu ·Θk, and a function Ψ : MetaContexts→
Contexts defined by Ψ{[]/x}P = (x)ΨP and ΨN ·C = ΨN :: ΨC .

We can identify each meta-context C of λNat with a function of type EEs→
Substs, where Substs is the set {M ∈ λNat : M is of the form {E/x}P}; it is the
function that sends E to C[E] (hence C(E) = C[E]). Now let k be a context of
λGtz and consider Θ( , k) : EEs → Substs. By induction on k one proves easily
that Θ( , k) and Θk are the same function, i.e.

Θk[E] = Θ(E, k) . (2)

Theorem 2 (Isomorphism). Mappings Ψ and Θ are sound, mutually inverse
bijections between the set of λGtz-terms and the set of λNat-terms. Moreover, for
each R ∈ {β, σ, π, µ}:

1. t→R t
′ in λGtz iff Θt→R Θt

′ in λNat.
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2. M →R M
′ in λNat iff ΨM →R ΨM

′ in λGtz.

Proof: For bijection, prove ΘΨM = M and ΘΨ(E, k) = Θ(E, k) by simulta-
neous induction on M and E, and prove ΨΘt = t and ΨΘ(E, k) = Ψ(E, k),
by simultaneous induction on t and k. It follows that k = ΨC iff C = Θk. As
to isomorphism, the “if” statements follow from the “only if” statements and
bijection.

The “only if” statement 1 is proved together with the claim that, if k →R k
′

in λGtz, then, for all E, Θk[E] →R Θk′ [E] in λNat. The proof is by simultane-
ous induction on t →R t′ and k →R k′, and uses the following properties of
Θ: (i) if Θ(E′, k) = Θ(E, (x)v) then Θ(E′, k@k′) = {E/x}Θ(hd(Θv), k′); (ii)
Θ(〈u/x〉t) = 〈Θu/x〉Θt; (iii) Θ([u/x]t) = [Θu/x]Θt. Here are the base cases:

Case β.

(λx.t)(u :: k) - Θ((λx.t)(u :: k)) === Θk[hd(λx.Θt)Θu]

〈u/x〉(tk)

β

?
- Θ(〈u/x〉(tk)) ==== 〈Θu/x〉Θk[hd(Θt)]

β

?

Θ((λx.t)(u :: k)) = Θ(λx.Θt, u :: k) (by def. of Θ)
= Θu::k[hd(λx.Θt)] (by (2))
= (Θu ·Θk)[hd(λx.Θt)] (by def. of Θ )
= Θk[hd(λx.Θt)Θu] (by def of C[E])

Θ(〈u/x〉(tk)) = 〈Θu/x〉Θ(tk) (by (ii))
= 〈Θu/x〉Θ(hd(Θt), k) (by def. of Θ)
= 〈Θu/x〉Θk[hd(Θt)] (by (2))

Case π. Suppose Θ(hd(Θt), k) = Θ(E, (x)v).

(tk)k′ - Θ((tk)k′) === Θk′ [hd({E/x}Θv)]

t(k@k′)

π

?
- Θ(t(k@k′)) == {E/x}Θk′ [hd(Θv)]

π

?

Θ((tk)k′) = Θ(hd(Θ(hd(Θt), k)), k′) (by def. of Θ)
= Θk′ [hd(Θ(hd(Θt), k))] (by (2))
= Θk′ [hd(Θ(E, (x)v))] (by assumption)
= Θk′ [hd({E/x}Θv)] (by def. of Θ)

Θ(t(k@k′)) = Θ(hd(Θt), k@k′) (by def. of Θ)
= {E/x}Θ(hd(Θv), k′) (by (i))
= {E/x}Θk′ [hd(Θv)] (by (2))
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Case σ: Θ(〈t/x〉v)
(ii)
= 〈Θt/x〉Θv →σ [Θt/x]Θv

(iii)
= Θ([t/x]v).

Case µ:

(x)xk - Θ(x)xk[E] == {E/x}Θk[hd(x)]

k

µ

?
- Θk[E]

µ

?

Θ(x)xk[E] = {E/x}Θ(xk) (by def. Θ )
= {E/x}Θ(hd(x), k) (by def. of Θ)
= {E/x}Θk[hd(x)] (by (2))

The “only if” statement 2 is proved together with the claim that, if E →R E
′

in λNat, then, for all k, Ψ(E, k)→R Ψ(E′, k) in λGtz. The proof is by simultaneous
induction on t→R t

′ and E →R E
′, and uses the following properties of Ψ : (i) if

Ψ(E, k′′) = Ψ(hd(M), k′) then Ψ(E, k′′@k) = Ψ(M)(k′@k); (ii) Ψ(〈N/x〉M) =
〈ΨN/x〉ΨM ; (iii) Ψ([N/x]M) = [ΨN/x]ΨM . We also need the following remark:

C = Θk ⇒ Ψ(C[E]) = Ψ(E, k) . (3)

Indeed, if C = Θk, then, by (2), C = Θ( , k). Hence, Ψ(C[E]) = Ψ(Θ(E, k)) =
Ψ(E, k). Here are the base cases of the inductive proof:

Case β: Let C = Θk.

C[hd(λx.M)N ] - Ψ(C[hd(λx.M)N ]) === (λx.ΨM)(ΨN :: k)

〈N/x〉C[hd(M)]

β

?
- Ψ(〈N/x〉C[hd(M)]) === 〈ΨN/x〉(Ψ(M)k)

β

?

Ψ(C[hd(λx.M)N ]) = Ψ(hd(λx.M)N, k) (by (3))
= (λx.ΨM)(ΨN :: k) (by def. of Ψ)

Ψ(〈N/x〉C[hd(M)]) = 〈ΨN/x〉Ψ(C[hd(M)]) (by (ii))
= 〈ΨN/x〉Ψ(hd(M), k) (by (3))
= 〈ΨN/x〉(Ψ(M)k) (by def. of Ψ)

Case π: Let C = Θk. Suppose Ψ(E, (x)ΨP ) = Ψ(hd(M), k′).

C[hd({E/x}P )] - Ψ(C[hd({E/x}P )]) === (Ψ(M)k′)k

{E/x}C[hd(P )]

π

?
- Ψ({E/x}C[hd(P )]) == (ΨM)(k′@k)

π

?
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Ψ(C[hd({E/x}P )]) = Ψ(hd({E/x}P ), k) (by (3))
= Ψ(E, (x)ΨP )k (by def. of Ψ)
= Ψ(hd(M), k′)k (by assumption)
= (Ψ(M)k′)k (by def. of Ψ)

Ψ({E/x}C[hd(P )]) = Ψ(E, (x)Ψ(C[hd(P )])) (by def. of Ψ)
= Ψ(E, (x)Ψ(hd(P ), k)) (by (3))
= Ψ(E, (x)Ψ(P )k) (by def. of Ψ)
= Ψ(E, ((x)Ψ(P ))@k) (by def. of @)
= (ΨM)(k′@k) (by (i))

Case σ: Ψ(〈M/x〉P )
(ii)
= 〈ΨM/x〉ΨP →σ [ΨM/x]ΨP

(iii)
= Ψ([M/x]P ).

Case µ: Let C = Θk.

{E/x}C[hd(x)] - Ψ({E/x}C[hd(x)]) == Ψ(E, (x)xk)

C[E]

µ

?
- Ψ(E, k)

µ

?

Ψ({E/x}C[hd(x)]) = Ψ(E, (x)Ψ(C[hd(x)])) (by def. of Ψ)
= Ψ(E, (x)Ψ(hd(x), k)) (by (3))
= Ψ(E, (x)xk) (by def. of Ψ)

�

Corollary 1 (SN). Every typable t ∈ λNat is βπσµ-SN.

Proof: From Theorems 1 and 2. �

5 Analyzing the isomorphism

Inversion of associativity: By “applicative term” we mean the following data:
a function (or head), m arguments (m ≥ 0) and a continuation (or tail). The
notion of applicative term is intended as a common abstraction to the notions
of cut in λGtz

t(u1 :: ... :: um :: (x)v) , (4)

and substitution in λNat

{hd(M)N1...Nm/x}P . (5)
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By allowing m = 0 we include in the notion of applicative term the extreme case
when there is really no application, because there is no argument.

The presentation of sequent calculus and natural deduction as systems λGtz

and λNat, respectively, reduces the difference between the two kinds of systems to
the difference between two ways of organizing applicative terms. When (4) and
(5) are regarded in the abstract way of just providing the data that constitutes an
applicative term, the only difference that remains between the two expressions
is that (4) associates to the right, so that the head t is at the surface and
the continuation (x)v is hidden at the bottom of the expression, whereas (5)
associates to the left, so that the head hd(M) is hidden at the bottom of the
expression, and the continuation x, P is at the surface. The isomorphism λGtz ∼=
λNat may, then, be described as a mere inversion of the associativity of applicative
terms.

Interpretations of λGtz: From the previous paragraph follows that an in-
terpretation of λGtz is as a λ-calculus with right associative applicative terms.
Another interpretation is as a formalized meta-calculus for λNat (and not for a
smaller natural deduction system, like λg or λgs, let alone λ). Contexts in λGtz

are the formal counterpart to meta-contexts in λNat and the interpretation of
cut given by Θ(tk) = Θk[hd(Θt)] corresponds to “fill Θt in the hole of Θk”.

Variants of the isomorphism: λGtz ∼= λNat is a particular manifestation of
the isomorphism between sequent calculus and natural deduction. For instance,
if rule π of λGtz is taken in the call-by-name version (tk)(u :: k′)→ t(k@(u :: k′))
[2], avoiding a critical pair with σ, then there is corresponding version for rule
π of λNat, namely C[hd({E/x}P )N ]→ {E/x}(C[hd(P )N ]).

Another variant of rule π is the “eager” variant, determined by a slight
change in the definition of @: ((x)V )@k = (x)V k, if V is a value (i.e. variable
or abstraction); and ((x)tk′)@k = (x)t(k′@k). So, one keeps pushing k until a
value is found.

Let {Es/xs}P denote a sequence of substitutions {E1/x1}...{En/xn}P . The
eager variant of π for natural deduction is C[hd({Es/xs}V )]→ {Es/xs}C[hd(V )].
So, the eager variant takes a sequence of substitutions out, as opposed to the
lazy variant, which takes them one by one.

Theorem 2 still holds with eager π. In the proof of the “only if” part of state-
ment 1, property (i) ofΘ becomes slightly different: ifΘ(E′, k) = {Es/xs}V then
Θ(E′, k@k′) = {Es/xs}Θ(hd(V ), k′). As to the the “only if” part of statement
2, property (i) of Ψ holds again with eager definition of k@k′, but some more
work is needed. Fix C = Θk. One proves that, if Ψ({Es/xs}V ) = (ΨM)k′, then
Ψ({Es/xs}C[V ]) = (ΨM)(k′@k). The proof has two cases, n = 1 and n > 1,
where n is the number of substitutions in {Es/xs}V . The first case is conse-
quence of property (i). The second uses an auxiliary lemma: ((z)Ψ({Es/xs}V ))@k =
(z)Ψ({Es/xs}C[V ]). This auxiliary lemma, in turn, follows from: ((z)Ψ(E, k′))@k =
(z)Ψ(E, k′@k).

Neutral fragments: The m ≤ 1-fragment λgs of λGtz and the m ≤ 1-
fragment λgs of λNat are two copies of λgs, hence isomorphic. The isomorphism
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λgs ∼= λgs is a degenerate form of Theorem 2, with Θ and Ψ translating between
t(x)v and {hd(M)/x}P , and between t(u :: (x)v) and {hd(M)N/x}P .

λgs
Θ -�
Ψ

λgs

λgs

-
�

We can see t(x)v and {hd(M)/x}P as two ways of decomposing explicit sub-
stitution:

Γ ` t : A
Γ, x : A ` v : B
Γ ;A ` (x)v : B Selection

Γ ` t(x)v : B Cut

Γ `M : A
Γ B hd(M) : A Coercion

Γ, x : A ` P : B
Γ ` {hd(M)/x}P Subst

This sheds some light on the logical status of explicit substitution. Tradition-
ally, explicit substitution has a hybrid proof-theoretical character, because it is
regarded as a form of cut, even when considered in a natural deduction setting.
The explanation of explicit substitution as a particular case of the more general
constructor of primitive substitution {E/x}P shows how it fits in a pure natural
deduction setting.

In addition, t(u :: (x)v) and {hd(M)N/x}P are two ways of decomposing
generalised elimination:

Γ ` t : A ⊃ B
Γ ` u : A

Γ, x : B ` v : C
Γ ;B ` (x)v : C Selection

Γ ;A ⊃ B ` u :: (x)v : C
Left

Γ ` t(u :: (x)v) : C Cut

Γ `M : A ⊃ B
Γ B hd(M) : A ⊃ B Coercion

Γ ` N : A
Γ B hd(M)N : B Elim

Γ, x : B ` P : C
Γ ` {hd(M)N/x}P : C Subst

The latter decomposition is pleasing for two reasons. First, all constructor of
λNat different from x and λx.M (coercion, elimination, substitution) enter the
decomposition of generalised application. Second, while MN := M(N, x.x)
says that general elimination is more general than ordinary elimination (or-
dinary elimination alone cannot express general elimination), the decomposition
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M(N, x.P ) := {hd(M)N/x}P says that, in a sense, ordinary elimination is more
primitive than generalised elimination.5

Examining the isomorphism λgs ∼= λgs, we realise that the fragments λgs

and λgs are mere notational variants of each other, to ways of writing the same
combinatorial, abstract object. This combinatorial object lives in the intersection
of λGtz and λNat, and we may say that it is neutral w.r.t the classification as a
sequent calculus or natural deduction system. At first this seems paradoxical,
because it entails that the λ-calculus is also neutral (λ ⊂ λg ⊂ λgs). But a
second thought shows that the m ≤ 1-fragments have to be neutral, because,
when one is restricted to m ≤ 1 arguments in applicative terms, one cannot tell
whether the system has a left-associative or a right-associative structure.6

Fig. 3. Particular cases of the isomorphism and important classes of terms

λGtz � Ψ,Θ - λNat

λgs
��

νν
--

Schwichtenberg nfs

βπσ

??
�Ψ Θ- A

βπσ

??

von Plato nfs

βπσ

?? ��
νν --

Herbelin nfs

??

...................

� Ψ Θ - B

??

...................

Mints nfs

??

........................
��

νν
--

Particular cases of the isomorphism: We now analyze the diagram in
Figure 3. The m ≤ 1-fragment λgs of λGtz and the m ≤ 1-fragment λgs of λNat

are identified. In both cases, the fragment consists of the ν-nfs.The λ-calculus is
absent from Figure 3 (λ-terms form a subset of λgs), but there are three sets in bi-
jective correspondence with the set of β-normal λ-terms, namely Herbelin nfs ,

5 There are also inclusions of λg into the systems λGm and λNm of [11], based on the
decompositions of generalised application as a right-principal cut + left-introduction
or multiary generalised application + coercion.

6 Similar taxonomical considerations have been made for the first time in [7], regarding
smaller fragments of sequent calculus and natural deduction.
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B and Mints nfs , i.e. the lower triangle. Herbelin nfs ∼= Mints nfs was
known [5], the bijection being the restriction of ν to Herbelin nfs . A simple
form of Theorem 2 is Herbelin nfs ∼= B . The latter bijection extends to an-
other bijection, namely Schwichtenberg nfs ∼= A , whereas Herbelin nfs ∼=
Mints nfs doesn’t extend, because many “multiary” cut-free derivations in
Schwichtenberg nfs have the same ν-normal form in von Plato nfs . The bi-

jection Schwichtenberg nfs ∼= A is in turn the residue of the isomorphism
λGtz ∼= λNat, because it is the bijection between the sets of βπσ-nfs. The dotted
arrows represent three reduction relations generated by permutative conversions.
Two of such relations have been characterised [5, 26].

6 Unification

A problem of wrong focus: Recall that applicative terms in λGtz and λNat

have the form of cuts and substitutions

t(u1 :: ... :: um · (x)v) , (6)
{hd(M)N1...Nm/x}P . (7)

respectively. In both cases there is a head, m arguments (m ≥ 0) and a tail (or
continuation). In the first case, the term is split next to the head, with the rest
of data organized as a context k; in the second case, the term is split just before
the tail, with the rest of data organized as an elimination expression E. In the
first case, the head is focused, in the second it is the tail that is focused.

Now both cut-elimination and normalisation aim at reducing heads to vari-
ables, and are a process of transforming heads. In this respect, the focus of tails
is unfortunate and explains the fact that both β and π are non-local reduction
rules in the natural deduction system λNat.

Non-local rules are bad, for instance, for the implementation of λNat, where
the search for heads has to be made explicitly. The solution we propose is to
extend λNat to a calculus where applicative terms are split at arbitrary position,
and not just around the tail. This means that both elimination expressions E
and contexts k are used in the representation of applicative terms, and this
representation turns out to unify both cuts and substitutions.

The telescopic effect: The idea of manipulating elimination expressions
E and contexts k in the same system has another motivation. Let M0 be the
substitution (7), and let Θt = M , Θui = Ni and Θv = P . There are m choices
of E, k such that M0 = Θ(E, k), ranging from the choice E = hd(M)N1...Nm
and k = (x)v to the choice E = hd(M) and k = u1 :: ... :: um :: (x)v. This
last case is particularly important, because the representation of application
M0 as Θ(hd(M), k) brings to the surface the head hd(M). In general, we will
use pattern matching of substitution with Θ(hd(M), k) to obtain the effect of
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extracting the head of the substitution, an effect we call the telescopic effect.
Similarly one extracts the tail of cuts by pattern-matching with Ψ(E, (x)v).

The telescopic effect is useful in making global rules look local. This is
achieved by manipulating simultaneously, in the meta-language, both elimina-
tion expressions E and contexts k. For instance, reduction rule π in λNat may be
defined as follows:

(π) Θ(hd({E/x}P ), k)→ {E/x}Θ(hd(P ), k) .

The calculus we introduce next manipulates expressions Θ(E, k) formally.
The unified calculus: Expressions in λU are given by:

(Terms) M,N,P ::= x |λx.M | θ(E,K)
(Elimination Expressions) E ::= hd(M) |EN
(Contexts) L,K ::= (x)P |N :: K

θ(E,K) is called a unified cut. The symbol θ is a formal counterpart of Θ. In
θ(E,K), we say that E is in focus. The new typing rule is:

Γ B E : A Γ ;A ` K : B
Γ ` θ(E,K) : B uCut

In λU, a sequent term is a term with no occurrences of EN , i.e an elimination-
free term, whereas a natural deduction term is a term with no occurrences of
N :: K, i.e. a left-introduction-free term. In sequent terms and natural deduction
terms, unified cuts have the form

MK = θ(hd(M),K) {E/x}P = θ(E, (x)P ) ,

respectively. These equations show how unified cut unifies cut and and substi-
tution. Explicit substitution

M(x)P = θ(hd(M), (x)P ) = {hd(M)/x}P ,

denoted 〈M/x〉P , is the intersection of cut and substitution. Sequent terms (resp.
natural deduction terms) dispense with the syntactic class of elimination expres-
sions E (resp. contexts K) and constitute a copy of λGtz-terms (resp. λNat-terms)
in λU. Given a λGtz-term t (resp. λNat-term M), we denote by t� (resp. M�) its
copy in λU.

The reduction rules of λU are as follows:

(β) θ(hd(λx.M), N :: K)→ 〈N/x〉θ(hd(M),K)
(π) θ(hd(θ(E,L)),K)→ θ(E,L@K)
(σ) θ(hd(N), (x)P )→ [N/x]P
(ψ) θ(EN,K)→ θ(E,N :: K)

Meta-substitution [N/x]P is defined in the expected way. So is append of con-
texts: for instance, ((x)P )@K = (x)θ(hd(P ),K) = (x)(PK). Rules β, π, and σ
require a head in focus; for this reason, they are local transformations. Rule ψ
is a step towards focusing a head. A λU-term is a ψ-nf iff it is a sequent term.
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ψ-reduction is terminating, because it decreases the number of occurrences of
EN . It is also locally confluent (to see this, let us call E,N and K the components
of a ψ-redex θ(EN,K); if two distinct ψ-redexes overlap, then one is a sub-
expression of one of the components of the other; thus, the contractions of the
two redexes commute). So ψ-reduction is confluent. We denote by ψ(M) the
unique ψ-nf of a λU-term M . ψ(M) is given by

ψ(x) = x
ψ(λx.M) = λx.ψM

ψ(θ(E,K)) = ψ(E,ψK)

ψ(hd(M),K) = (ψM)K ψ((x)P ) = (x)ψP
ψ(EN,K) = ψ(E,ψN :: K) ψ(N :: K) = ψN :: ψK

Lemma 1. For all M ∈ λNat, ψ(M�) = Ψ(M)�.

Proof: Consider the claim: for all E ∈ λNat, k ∈ λGtz, Ψ(E, k)� = ψ(E�, k�).
The two claims are proved by simultaneous induction on M and E. �

It is easy to see that sequent terms are closed for βπσ-reduction, and a λGtz-
term t βπσ-reduces in λGtz exactly as t� βπσ-reduces in λU. Let us see what
happens when one βπσ-reduces M� in λU, for M ∈ λNat.

Proposition 2. Let R ∈ {β, π, σ}.

1. In λU, if M0 →R M1 and M0 →ψ M2 then there is M3 such that M2 →R M3

and M1 →∗ψ M3.
2. In λU, if M →R N , then ψ(M)→R ψ(N).
3. If M →R N in λNat, then there are M1, N1 such that, in λU: M1 →R N1

and M� →∗ψ M1 and N� →∗ψ N1.

Proof: First we consider statement 1. We prove simultaneously three statements
of the form: if ξ0 →R ξ1 and ξ0 →ψ ξ2 then there is ξ3 such that ξ2 →R ξ3 and
ξ1 →∗ψ ξ3. One for terms ξi = Mi, another for elimination expressions ξi = Ei,
and finally one for contexts ξi = Ki. The proof is by simultaneous induction on
M0 →R M1, E0 →R E1, and K0 →R K1. We just illustrate one base case and
one inductive case, namely those cases which have more subcases.

Case π. Suppose M0 = θ(hd(θ(E,L)),K)→π θ(E,L@K) = M1 and M0 →ψ

M2. There are three subcases. (i) The ψ-reduction happens in E. Then, the
two reduction steps commute. (ii) The ψ-reduction happens in L or K. Then
the two reduction steps commute, because, for all L, L′, and K, L →ψ L′

implies L@K →ψ L′@K and K@L →ψ K@L′. (iii) E = E0N0 and M2 =
θ(hd(θ(E0, N0 :: L)),K). Then take M3 = θ(E0, N0 :: (L@K)).

Case M0 = θ(E0,K)→R θ(E1,K) = M1, with E0 →R E1. Suppose M0 →ψ

M2. There are three subcases. (i) The ψ-reduction happens in the K. Then the
two reduction steps commute. (ii) The ψ-reduction happens in the E0. Then
apply the induction hypothesis. (iii) E0 = EN and M2 = θ(E,N :: K). From
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E0 →R E1 and E0 = EN we get either E →R E′ and E1 = E′N (in this
case take M3 = θ(E′, N :: K)) or N →R N ′ and E1 = EN ′ (in this case take
M3 = θ(E,N ′ :: K)). This concludes the proof of statement 1.

Statement 2 is a corollary of statement 1 and the fact that P →∗ψ ψ(P ).
Finally we consider statement 3. First we define, for each meta-context C of

λNat, a context C� of λU by recursion on C: ({[]/x}P )� = (x)P � and (N · C)� =
N� :: C�. Next

(C[E])� →∗ψ θ(E�, C�) (∗)

is proved by induction on C. Statement 3 is proved simultaneously with another
statement: if E →R F in λNat, then there are E1, F1 such that, in λU: E1 →R F1

and E� →∗ψ E1 and F � →∗ψ F1. The proof is by simultaneous induction on
M →R N and E →R F . The inductive cases are straightforward. We just
illustrate one of the base cases.

Case β. Suppose M = C[hd(λx.P )Q]→β 〈Q/x〉C[hd(P )] = N . Then

M� = C[hd(λx.P )Q]�

→∗ψ θ((hd(λx.P )Q)�, C�) (by (*))
= θ(hd(λx.P �)Q�, C�) (by def. of ( )�)
→ψ θ(hd(λx.P �), Q� :: C�)
→β 〈Q�/x〉θ(hd(P �), C�)
= 〈Q�/x〉θ(hd(P )�, C�) (by def. of ( )�)
←∗ψ 〈Q�/x〉C[hd(P )]� (by (*))
←∗ψ (〈Q/x〉C[hd(P )])� (by def. of ( )�)
= N�

So one may take M1 = θ(hd(λx.P �), Q� :: C�) and N1 = 〈Q�/x〉θ(hd(P �), C�). �

Theorem 3 (Normalisation in λU). Suppose M1 →R1 M2 → (· · ·)→Mn →Rn

Mn+1 is a βπσ-reduction sequence in λNat. Then, the reductions in λU depicted
in Fig. 4 hold, when vertical arrows denote ψ-reduction.

Proof: By induction on n. Case n = 1. Suppose M1 →R1 M2. The diagram

M�1 M�2

1

•
??

........

R1

- •
??

........

2

ψ(M�1 )

??

.......

R1

- ψ(M�2 )

??

.......

holds, as 1 (resp. 2 ) follows from part 3 (resp. part 2) of Proposition 2.
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Fig. 4. Normalisation in λU

M1
R1- M2

R2- M3
- (· · ·) - Mn

Rn- Mn+1

M�
1 M�

2 M�
3 (· · ·) M�

n M�
n+1

•
??

.........

R1

- •
??

.........

•
??

..........

R2

- •
??

..........................

(· · ·)

•
??

............................................

Rn

- •
??

...........................................

ψ(M�
1 )

??

...........................................
R1- ψ(M�

2 )

??

..........................
R2- ψ(M�

3 )

??

..........................

- (· · ·) - ψ(M�
n)

??

.........
Rn- ψ(M�

n+1)

??

.........

Inductive case. Suppose M1 →R1 (· · ·)→Mn →Rn
Mn+1 →Rn+1 Mn+2. The

relevant part of the induction hypothesis gives:

M�n M�n+1

•
??

........

Rn
- N

??

......

ψ(M�n)

??

.......

R1

- ψ(M�n+1)

??

.......

We want
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M�n M�n+1 M�n+2

•
??

........

Rn
- N

??

......

P

??

........

Rn+1

- Q

??

......................

ψ(M�n)

??

.......................

Rn
- ψ(M�n+1)

??

.......

Rn+1

- ψ(M�n+2)

??

.......

This diagram follows from the following

M�n M�n+1 M�n+2

1

2 •
Rn+1

-

....................--
•

................--

•
??

...............

Rn
- N

??

..............

4

3 P

??

...............
Rn+1 -

......................--
Q

??

...............

5

ψ(M�n)

??

.......................

Rn
- ψ(M�n+1)

??

.......................

Rn+1

-
��..

......
......

......

ψ(M�n+2)
��..

.....
.....

....

First we build 1 , using part 3 of Proposition 2. Next we use confluence of ψ-
reduction twice, to obtain successively 2 and 3 . Finally, we apply successively
parts 1 and 2 of Proposition 2 to obtain 4 and 5 . �

Regarding Fig. 4 again, we can now compare reduction of M1 in λNat with
reduction of M�1 in λU. The latter is obtained from the former by interleaving
ψ-reduction steps. To a possibly non-local reduction step →Ri

in the former
corresponds a necessarily local reduction step→Ri

in the latter. The interleaved
ψ-reduction steps do explicitly the focusing of heads implicit in the reduction
steps at the λNat level. The reduction of ψ(M�1 ) is morally the same as the reduc-
tion of Ψ(M1) in λGtz. Fig. 4 is a refinement of the “only if” part of statement 1
in Theorem 2.

Finally, observe that part 2 of Proposition 2 allows the projection of βπσψ-
reduction sequences of λU into βπσ-reduction sequences of λGtz. So, the lifting
of Theorem 1 from λGtz to λU is immediate, having in mind, additionally, that
ψ-reduction is terminating.

26



Theorem 4. βπψ-reduction in λU is s.n. on typable terms.

Variant of the unified calculus: Consider the permutative conversions pi
of λJm [13] (which in turn are a variant of the permutative conversions of [26]),
given here for λGtz with the help of telescopic effect:

(p1) Ψ(EN, (x)y)→ y, if x 6= y
(p2) Ψ(EN, (x)λy.t)→ λy.Ψ(EN, (x)t)
(p3) Ψ(EN, (x)Ψ(E′, (y)v))→ Ψ(p3(E,N, x,E′), (y)v), if x /∈ v,

where p3(E,N, x,E′) is defined by recursion on E′ as follows: p3(E,N, x, hd(M)) =
hd(Θ(EN, (x)ΨM)) and p3(E,N, x,E′N ′) = p3(E,N, x,E′)Θ(EN, (x)ΨN ′).

For instance, if x /∈ v, then

t1(u1 :: (x)t2(u2 :: (y)v))→p3 t1(u1 :: (x)t2)(t1(u1 :: (x)u2) :: (y)v) .

Indeed, let E = hd(Θt1), N = Θu1, and F = hd(Θt2)Θu2. Then,

t1(u1 :: (x)t2(u2 :: (y)v))
= Ψ(EN, (x)Ψ(F, (y)v)) (telescopic effect)
→p3 Ψ(p3(E,N, x, F ), (y)v)
= Ψ(hd(Θ(EN, (x)t2))Θ(EN, (x)u2), (y)v) (def. of p3)
= Ψ(EN, (x)t2)(Ψ(EN, (x)u2) :: (y)v) (def. of Ψ and ΨΘ( , ) = Ψ( , ))
= t1(u1 :: (x)t2)(t1(u1 :: (x)u2) :: (y)v) (telescopic effect)

The rules pi act at the tail of applicative terms, and aim at reducing terms
Ψ(E, (x)v) to the form Ψ(E, (x)x). They are non-local rules in λGtz, contrary to
the corresponding rules in λNat. In λNat no telescopic effect is needed, one simply
defines {EN/x}λy.M → λy.{EN/x}M , etc.

A variant of the unified calculus can be defined as an extension of λGtz where
means are available for defining in a local way tail-active conversions.

(Terms) t, u, v ::= x |λx.t |ψ(e, k)
(Elimination Expressions) e, f ::= hd(t) | eu

(Contexts) k ::= (x)v |u :: k

We use lower case meta-variables to emphasize that this calculus is to be re-
garded as an extension of λGtz. ψ(e, k) is now a formal expression of the calculus,
the unified cut whose focus we now regard to be k. Of course, something new
only happens when we replace reduction rule ψ by a new rule θ for bringing
continuations to focus:

(θ) ψ(e, u :: k)→ ψ(eu, k)

The p rules now read:

(p1) ψ(eu, (x)y)→ y, if x 6= y
(p2) ψ(eu, (x)λy.t)→ λy.ψ(eu, (x)t)
(p3) ψ(eu, (x)ψ(f, (y)v))→ ψ(p3(e, u, x, f), (y)v), if x /∈ v,
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where p3(e, u, x, f) is defined by recursion on f as follows: p3(e, u, x, hd(t)) =
hd(ψ(eu, (x)t)) and p3(e, u, x, fv) = p3(e, u, x, f)ψ(eu, (x)v).

This time, a natural deduction term p-reduces in the unified calculus exactly
as it p-reduces in λNat, and the p-reduction of sequent terms in the unified calcu-
lus is interleaved with θ-steps, and has the ladder shape of Fig. 4. For instance,
let e = hd(t1), u = u1, and f = hd(t2)u2. Then,

t1(u1 :: (x)t2(u2 :: (y)v))
= ψ(hd(t1), u1 :: (x)ψ(hd(t2), u2 :: (y)v)) (abbreviation)
→2
θ ψ(eu, (x)ψ(f, (y)v))

→p3 ψ(p3(e, u, x, f), (y)v)
= ψ(hd(ψ(eu, (x)t2))ψ(eu, (x)u2), (y)v) (def. of p3)
←θ ψ(hd(ψ(eu, (x)t2)), ψ(eu, (x)u2) :: (y)v)
←2
θ ψ(hd(ψ(hd(t1), u1 :: (x)t2)), ψ(hd(t1), u1 :: (x)u2) :: (y)v)

= t1(u1 :: (x)t2)(t1(u1 :: (x)u2) :: (y)v) (abbreviation)

So, instead of telescopic effect (i.e. the search for tails in the meta-level), one
has explicit θ-steps for focusing tails.

7 Related and future work:

Natural deduction: One of the contributions of this paper is a new system of
natural deduction that combines the idea of coercion calculus with the idea of
generalised elimination rule. In one sense, von Plato’s work goes much farther
than this paper, in that [27] covers the whole language of first order logic; on the
other hand, it lacks an analysis of the correspondence between cut-elimination
and normalisation. For the logic under analysis here, von Plato’s work is supple-
mented. Not only we extended and refined system λg (and here it is quite ap-
pealing that we end up in a system where generalised application is decomposed
into modus ponens and substitution), but also we give the precise connection be-
tween generalised normalisation and cut-elimination, which is this: system λgs,
is the common core of cut-elimination in λGtz and normalisation in λNat - in
particular, it is a fragment of the former.7

Once one has the natural deduction system λNat, one can clarify the con-
nection between cut and substitution, and translate between sequent calculus
and natural deduction in a way that the classical mappings of Gentzen [15] and
Prawitz [25] never could.

Cut vs substitution, left introduction vs elimination, cut-elimination
vs normalisation: There is an entanglement in the traditional mappings be-
tween natural deduction and sequent calculus. An elimination is translated as a
combination of cut and left introduction [15] and a left introduction is translated
as a combination of elimination and meta-substitution [25]. With these mappings

7 Similarly, system λg is the common core of cut-elimination in λGm and normalisation
in λNm - in particular, it is a fragment of the former.
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one proves that normalisation is a “homomorphic” image of cut-elimination [28,
24].8

The typing system of λNat clarifies the puzzling relation between cut and
substitution. Consider rule Cut in λGtz and rule Subst in λNat. First, we observe,
as Negri and von Plato in [22], that the right cut-formula of Cut, but not the
right substitution formula in Subst, may be the conclusion of a sequence of left
introductions. Second, and here comes the novelty, we may also observe that
the left substitution formula in Subst, but not left cut-formula in Cut, may be
the conclusion of a sequence of elimination rules. So, cut is more general on the
right, whereas substitution is more general on the left.

Mapping Θ (as well as it inverse Ψ) inverts the associativity of applicative
terms, as envisaged by Herbelin, and establishes bijective correspondences be-
tween occurrences of left introduction u :: k (resp. of cut tk) in the source
term and occurrences of elimination EN (resp. of substitution {E/x}P ) in the
source term (inversely for Ψ). So the entanglement of traditional mappings is
solved, and normalization (in λNat) becomes the isomorphic image, under Θ, of
cut-elimination (in λGtz). This result improves, for the logic examined here, the
classical results of Zucker and Pottinger [28, 24].

Herbelin’s programme: The system λNat also allows us to complete what
we have called in [9] and in the introduction of this paper Herbelin’s programme.
As compared to [16], we covered full sequent calculus, where the constraints on
left introduction that define Herbelin’s fragment LJT are dropped. Already [1]
and [7, 8] considered implicitly Herbelin’s programme. The improvement over
these works is that the spine calculus of [1], when restricted to the logic of this
paper, and the sequent systems in [7, 8] are all fragments of Herbelin’s LJT and,
therefore, are under the restrictions already mentioned.

Unity of structural proof theory: Negri and von Plato dedicate a chapter
of [22] to “diversity and unity in structural proof theory”. As a way of restor-
ing the unity of structural proof theory, they propose the “uniform” calculus, a
system generalising both sequent calculus and the system of natural deduction
with generalised elimination rules. λU achieves a similar goal but with a radi-
cally different approach. While the approach in the uniform calculus is to retain
generalised elimination rules and extend introduction rules to “generalised intro-
duction rules”, the approach in λU is to break the generalised elimination rule
and unify one of its components, substitution, with cut.

Applications and future work: An issue that deserves further considera-
tion is the use of languages λGtz and λNat in practice. As emphasized in [1], the
spine calculus, Herbelin’s λ and - we add - λGtz, give a useful representation of
λ-terms for procedures that act on the head of applicative terms, like normal-
isation or unification. Conversely, λNat gives a useful representation of λ-terms
for procedures that act on the tail of applicative terms, like permutative con-
version. It seems that the role of languages like λGtz or λNat is not as languages
in which someone writes his programs, but either as internal languages for sym-

8 For a study of the traditional mappings between sequent calculus and natural de-
duction, and some of their optimizations, see [10].

29



bolic systems, like theorem provers, or as intermediate languages for compilers
of functional languages. On the other hand, languages λGtz and λNat are good
tools for doing proof theory efficiently, as this paper shows.

We have seen that λU is useful as a natural deduction system where the
search for heads is made explicit. But if searching for heads is all we want, it
is better to use λGtz instead, where heads are always available. The real use for
λU is in hybrid situations, for instance, when one wants to study the interaction
between cut-elimination and permutative conversions [12]. A simpler example is
the µ rule, given next with telescopic effect:

Θ(E, (x)Θ(hd(x), k))→ Θ(E, k), if x /∈ k .

Observe the µ-redex. We analyze the tail of the outer applicative term and
the head of the inner applicative term. This rules needs a mix of head and tail
focus. Maybe a good system for dealing with such rules is a variant of the unified
calculus with reduction modulo the equation θ(EN,K) = θ(E,N :: K).

8 Conclusions

Let us conclude with some reflection on two topics concerning the relationship
between the λ-calculus and structural proof theory, specifically: (i) the λ-calculus
(in an extended sense) as a vehicle for expressing the unity of structural proof
theory; and conversely, (ii) the apparent diversity, and the deep unity of struc-
tural proof theory as determining the internal structure of the λ-calculus.

Radical answers: One way of looking at the Curry-Howard correspondence
is as a methodology for giving systems of formal deduction a uniform presen-
tation in the technical framework of typed λ-calculi. Such a presentation has a
specific, fixed treatment of certain technical matters (what objects are derived?
how are the structural rules dealt with?) which are thus abstracted away when
two presentations are compared. This is why one finds in Herbelin’s paper [16]
- one of the first papers where a clear understanding of the Curry-Howard for
sequent calculus is achieved - an immediate, sharp indication of what the differ-
ence between sequent calculus and natural deduction amounts to, only possible
because the fog of irrelevant, little differences had been cleared away.

Herbelin’s seminal suggestion in [16] is that the (computational) difference
between sequent calculus and natural deduction may be reduced to a mere ques-
tion of representation of λ-terms, when these are conceived in a sufficiently
extended sense. This suggestion is fully supported and developed here, where we
proposed an abstract, robust extension of the concept of λ-term (under two con-
crete representations: λGtz-terms and λNat-terms), and the concomitant typing
and reduction machinery.

Such reduction of the difference between sequent calculus and natural de-
duction to a question of representation allows a radical answer to long-standing
problems of structural proof-theory: if normalisation is extended as we propose

30



in λNat, then the meaning of λGtz ∼= λNat is that cut-elimination and normalisa-
tion are really the same process, they only look different because they operate
with different representations of the same objects.

This answer shows how deep is the unity of structural proof theory, but
immediately leads to other observations: the natural deduction representation,
implemented in λNat, is, from the point of view of executing normalisation, simply
wrong, because it focuses on the wrong end of applicative terms (exactly as the
sequent calculus representation, implemented in λGtz, is wrong, from the point
of view of implementing tail-active permutative conversions).

One finds syntactic remedies for the defects of the systems λNat and λGtz, if
the two proof-system are unified into a single one, a process which, again, may
be described as, and reduced to, a further extension of the concept of λ-term,
as implemented in λU. So, remedies are found by realizing that the unity of
structural proof theory is even deeper; and systems λNat and λGtz, together with
their defects, are just the result of taking partial views of that unity.

Fig. 5. Unifying systems and neutral fragments
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Associativity dilemma: Fig. 5 collects the extensions of λ-calculus found in
the present proof-theoretical investigation. Fig. 5 updates Fig. 1 by including the
neutral fragments λg (which subsumes λ) and λgs (but notice that arrows for the
isomorphism Θ, Ψ are omitted). Another interpretation of Fig. 5 is as showing
different views of the concept of the λ-calculus, determined by various treatments
of applications and substitution, among which the ordinary λ-calculus (with its
ordinary treatment of application and substitution) is just a particular instance.
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The question we address now is: how much of the architecture of Fig 5 is
determined by the alternative between sequent calculus and natural deduction?
Of course one might immediately say that such architecture holds also in the
untyped setting, where the question is meaningless. So we reformulate the ques-
tion by replacing the dilemma between sequent calculus and natural deduction
by the more general dilemma between a right-associative and a left-associative
implementation of the multiarity facility.

Disregarding λ, we have a cube where each system in the upper face (e.g. λgs)
is a version with explicit substitution of the corresponding system in the lower
face (e.g. λg). Starting at λgs and moving upwards, there are two alternative
systems implementing the multiarity facility (λGtz or λNat), and then a system
where these alternatives somehow coexist (λU). Similarly if we start at λg.

At the left column we have the right-associative systems (λGtz, λGm), at
the right column the left-associative systems (λNat, λNm), and in the central
column the systems that are largely insensitive to the associativity dilemma.
As we said before, the neutral fragments λgs and λg have too restricted sets
of terms, where the dilemma is not observable. In the unifying systems λU and
λU , the dilemma is partially avoided because the set of terms is sufficiently large
to comprehend both a right-associative system and a left-associative system.
However, for instance in λU, one still has a choice to make: one can give the
left-to-right orientation to the equation

θ(EN,K) = θ(E,N :: K) , (8)

which gives λU the character of an extension of λNat, or the opposite orientation,
as in the variant of λU proposed above, which gives the system the character of
an extensions of λGtz.

In some sense, equation (8) concentrates the whole associativity dilemma (in
particular, the sequent calculus/natural deduction dilemma). There is an easy
way of seeing this. We have argued that the fragments λgs and λgs should be
identified (as we did in Fig. 5). This is the same to say that, in the definition
of mappings Θ and Ψ , the only equations that do any work are Θ(E, u :: k) =
Θ(EΘu, k) and Ψ(EN, k) = Ψ(E,ΨN :: k); now in λU these two equations
collapse to (8). Only a variant of λU where βπσ-reduction is defined modulo
equation (8) - a system where there is simultaneous access to the head and the
tail of applicative terms - would be truly insensitive to the associativity dilemma.
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