
Turing is Among Us

Luís Moniz Pereira

Turing’s Relevance - 1
  Turing's present-day and all-time relevance arises from the

timelessness of the issues he tackled, and the innovative
light he shed upon them.

  Turing first defined the algorithmic limits of computability,
when determined via an effective mechanism, and showed
the generality of his definition by proving its equivalence
to other general, but less algorithmic, non-mechanical,
more abstract formulations of computability.

Turing’s Relevance - 2
  His originality lies too in the simplicity of the mechanism

invoked —a Turing Machine (today a program)—
and the proof of existence of a Universal Turing Machine
(today a digital computer), which can immitate any other
Turing Machine, i.e. execute any program.

  Indeed, Turing Machines simply rely on a finite-state
automaton (like a vending machine), and an unbound
paper tape of discrete squares (like a paper roll), with at
most one rewritable symbol on each square.

Turing’s Relevance - 3

  Turing also first implicitly introduced the perspective of
'functionalism’, by showing what counts is the realizability
of functions, independently of the hardware which
embodies them.

  This realizability lies in the very simplicity of his
mechanism of choice, in relying solely on the manipulation
of symbols—discrete as the fingers of one hand—
where both data and instructions are represented with
symbols, both being subject to manipulation.

  Data and instructions are stored in memory, and
instructions double as data and as rules for acting—the
stored program idea.

Turing’s Relevance - 4
  No one has invented a computational mechanical process

with such general properties, which cannot be
approximated with arbitrary precision by aTuring Machine.

  In these days of discrete-time quantization, computational
biological processes, and proof of ever expanding universe
—automata and tape—the Turing Machine reigns supreme.

  Universal functionalism enables the bringing together of
the ghosts in the several embodied machines—silicon,
biological, extra-terrestrial or otherwise—to promote
their symbiotic epistemic co-evolution, for they partake of
the same theoretic functionalism.

  Turing is truly and forever among us.

Turing’s Relevance - 5
  Turing dared ask if a machine could think. His contributions

to understanding and answering this and other questions
defy conventional classification. At the start of the XXI
century, the 1936 concept of Turing Machine appears not
only in mathematics and computer science, but in cognitive
science and theoretical biology.

  'Computing machinery and intelligence' (1950), which
defined the Turing test, is a cornerstone of the theory of AI.

  Turing played a vital role in the outcome of WWII, and
produced single-handedly a far-sighted plan for construction
and use of an electronic computer. His thoughts, then a
generation ahead of his time, are still very much alive today.

Alan Turing and Computation - 1

  Gödel left outstanding Hilbert's question of decidability,
the Entscheidungsproblem, namely if there exists a
definite method, applicable to a proposition, to decide if it
is provable.

  The question requires a precise definition of method. This
Turing achieved in 1936 with the Turing machine, in his
‘On Computable Numbers, with an Application to the
Entscheidungsproblem’.

  Turing recast the question not in terms of proofs, but of
computing numbers, a clear claim to have found an idea
central to mathematics. As his title states, the
Entscheidungsproblem was only an application of a new
idea, that of computability.

Alan Turing and Computation - 2
  A 'Turing machine' is a finite state automaton supplied

with a 'tape' (the analogue of paper) running through it,
and divided into sections (the 'squares') each capable of
bearing a 'symbol'.

  At any moment there is just one ’scanned square in the
machine’. The 'scanned symbol’ on it is the only one the
machine is 'directly aware’ of.

  Turing specifies precisely the repertoire of actions
available to the imagined machine. An action is totally
determined by the 'configuration' it is in, and the symbol it
is currently scanning. It is this complete determination
that makes it 'a machine'.

Alan Turing and Computation - 3

  Turing claims that a finite repertoire of symbols actually
allows a countable infinity of symbols, but not an infinity
of immediately recognisable symbols.

  Note that the tape needs to be of unlimited length,
although at any time the number of symbols on it is finite.
The computable numbers are then defined as those
infinite decimals which can be printed by a Turing
machine, starting with a blank tape.

  Turing thus approached the question of computable
functions in the opposite direction from the usual, that is,
from the point of view of the numbers produced as a
result, not from the point of view of which functions can
be constructed from a set of primitive ones.

Alan Turing and Computation - 4
  Turing introduced two fundamental assumptions:

discreteness of time and of state of mind. A Turing machine
embodies the relationship between an unbound array of
symbols in space and a sequence of events in time,
regulated by a finite number of mental states.

  'On Computable Numbers' (rather than 'On Computable
Functions') signalled a fundamental shift. Before, things were
done to numbers. Afterwards, numbers began doing things.

  By showing that a machine could be encoded as a number,
and a number decoded as a machine, 'On Computable
Numbers' led to numbers (now called "software”) that
were "computable”, in a way that was entirely new.

Alan Turing and Computation - 5

  With his definition of computable it can be shown that non
computable numbers exist. Crucially, the table of
behaviour of aTuring machine is finite. Thus, all the possible
tables of behaviour can be put in alphabetical order,
showing that the computable numbers are countable. Since
the reals are uncountable, almost all are uncomputable.

  The problem is identifying those Turing machines which fail
to produce infinitely many digits. This is not a computable
operation: no Turing machine exists that can inspect the
table of any other machine to decide if it will produce
infinitely many digits. If one existed, it could be applied to
itself, and this can be used to get a contradiction. The
halting problem cannot be decided by a Turing machine.

Alan Turing and Computation - 6
  From this discovery of a problem undecidable by a

machine, one can employ the calculus of mathematical
logic and answer the Entscheidungsproblem in the negative.

  Alonzo Church announced the same conclusion regarding
the Entscheidungsproblem. Church's thesis was the claim
that effective calculability could be identified with the
operations of his very elegant and surprising formalism,
that of the λ-calculus—from which Lisp arose.

  Turing equated his result to Church’s. "Computability by a
Turing machine," wrote Church, "has the advantage of
making the identification with the effectiveness in the
ordinary [intuitive] sense evident immediately.”

Alan Turing and Computation - 7
  Church's thesis is sometimes called the Church-Turing

thesis, but the Turing thesis is distinct, bringing the physical
world into the picture with a claim of what can be done.

  Attempts, by different approaches, to formalize the a priori
'intuitive’ notion of computable function proved equivalent,
forming a consensus that the intuition was captured.
Among others: Church λ-definability, Turing computability,
Post canonical systems, Smullyan formal elementary
systems, Herbränd-Gödel-Kleene general recursiveness.

  Turing opened the field of computability, offered an analysis
of mental activity, and a practical implication: the idea of the
computer via the concept of Universal Turing Machine.

The Universal Machine - 1
  The idea of the Universal machine is easily indicated.

Once the specification of any Turing machine is given as a
table of behaviour, tracing the operation of that machine
becomes a mechanical matter of looking up entries in the
table, and of mimicking them.

  Because it is mechanical, a Turing machine can do it: that
is, a single Turing machine may be designed to have the
property that, when supplied with the table of behaviour
of another Turing machine, it will do whatever that other
Turing machine would have done.

  Turing called such a machine the Universal machine.

The Universal Machine - 2
  The Universal machine gives Turing claim to have invented

the principle of the computer, and not just abstractly.
  One cannot study his machines without seeing them as

executable computer programs, stored in symbols along
with the data on the tape: the 'modifiable stored program'.

  The Universal machine is the computer where any
programs may run. Symbols describe both a program's
instructions and the actions they trigger on the Universal
machine.

  Also, programs can be manipulated on the tape, even self-
modifiable—a possibility AI only recently began to explore.

Machine Functionalism
  Turing machines made all formal proofs 'mechanical’.

In1936 such mechanical operations were to be taken as
trivial, putting under scrutiny the non-mechanical steps.

  Later Turing abandoned the idea that moments of intuition
were uncomputable operations, deciding the computable
encompassed far more than could be captured by explicit
instruction notes, and enough to include all that human
brains did, however creative or original.

  Sufficiently complex machines will have the ability for
evolving behaviour never explicitly programmed for. The
brain features relevant to thinking are those of the discrete-
state-machine description level. Physical embodiment is
irrelevant—what is known as 'machine functionalism'.

Gödel, Computability, and Turing - 1

  From 1929 to 1930, Gödel had already solved most of the
fundamental problems raised by Hilbert’s school.
One issue remaining was that of finding a precise concept
to characterize the intuitive notion of computability.

  Gödel was surprised by Turing’s solution, more elegant
and conclusive than he had expected.

  Gödel fully understands, beginning of the ‘30s, that the
concept of formal system is intimately tied up with that of
mechanical procedure.

  He considers Alan Turing’s work on computable numbers
an important complement of his own work on the limits
of formalization.

Gödel, Computability, and Turing - 2
  Over the years, Gödel regularly credited Turing’s 1936

article as the definitive work that captures the intuitive
concept of computability, and the only author to present
persuasive arguments about the adequacy of the precise
concept he defined.

  Regarding the concept of mechanical procedure, Gödel’s
incompleteness theorems also naturally begged for an
exact definition (as Turing would come to produce) by
which one could say that they applied to every formal
system, i.e. every system on which proofs could be
verified by means of an automatic procedure.

Gödel, Computability, and Turing - 3
  Turing attempted a way out from Gödel’s incompleteness

theorem. The idea is that of adding to the initial system
successive axioms, incrementally making it more complete,
doing non-deterministic steps once in a while by consulting
"a kind of oracle, that cannot be a machine."

  Each "true but not demonstrable" assertion is added as a
new axiom. Once a new axiom is added, a new assertion of
such a type will be produced to be taken in consideration.

  Turing showed, however, that undecidable statements
resistant to the assistance of an external oracle could still
be constructed, and the Entscheidungsproblem would remain
unsolved.

Gödel, Computability, and Turing - 4

  This work, however, had a pleasantly persistent side effect:
the introduction of the concept of ‘oracle Turing machine’,
precisely so it could be allowed to ask and obtain from
the exterior the answer to an insoluble problem from
within.

  It introduced the notion of relative computability, or
relative insolvability, which opened a new domain in
mathematical logic, and in computer science.

  The connection, made by S.A. Cook in 1971, between
Turing machines and the propositional calculus, would give
rise to the study of central questions about
computational complexity.

Is Mathematical Insight Algorithmic? - 1

  It is likely that Gödel would agree with Penrose’s judgment
that mathematical insight could not be the product of an
algorithm. Indeed, Gödel apparently believed that the
human mind could not even be the product of natural
evolution.

  However, in his Gibbs lecture, in 1951, Gödel openly
contradicts Penrose:

“On the basis of what has been proven so far, it remains
possible that a theorem proving machine, indeed equivalent
to mathematical insight, can exist (and even be empirically

discovered), although that cannot be proven, nor even proven
that it only obtains correct theorems of the finitary number

theory.”

Is Mathematical Insight Algorithmic? - 2

  Restricting discussion on the limits of rationality—in
contrast to insight—computer science that sees reason in
mechanical terms has received the most attention.
It is at the core of AI, and relevant to Turing's achievement
of separating mind and machine.

  AI would thus be mainly interested in the computability
viewpoint, involving only a limited part of mathematics and
logic.

  But AI’s limits cannot be reduced to this scope. It is
essential to distinguish algorithms for problem-solving and
algorithms simpliciter: sets of rules to follow in a systematic
automatic way, self-modifiable like Turing ventured, without
necessarily having a specific well-defined problem to solve.

The Software/Hardware Distinction - 1
  The software/hardware distinction—of form and function,

present in any machine—appears clear-cut in the digital
computer. Diversity of technologies in computers
employed to achieve one same function confirms it.

  A program is executable in physically different machines
because at the program level of discourse the details of its
execution, below a certain level of analysis, are irrelevant.
In crude analogy, ink colour and handwriting are irrelevant
to the message being conveyed.

  But ‘hardware’ is not necessarily things physical, but rather
that which, at the level of analysis, is considered fixed, given,
and whose analysability is irrelevant for some purpose.

The Software/Hardware Distinction - 2

  In a computer, the software prevails over the hardware.
Though the hardware supports and causes the execution
of the software, the initiative belongs, more times than
not, to the software. It is the software that chooses and
provokes the coming into activity of the appropriate
hardware at each step—Turing’s stored program.

  Such activity consists in consulting the instructions stored
in memory, and in executing the software instructions in
the hardware, with the result that instruction-selected
hardware is provoked into activity, closing the circle.

  This way, the teleology of the software is kept in charge,
notwithstanding the underlying causality of the physical
hardware.

Logic and Consciousness - 1

  “How to introduce consciousness in computers?”
In the 80's, William Reinhardt questioned how much a
Turing machine could know about itself. He conjectured
that in arithmetic plus a knowledge operator, a Turing
machine can prove "I know I am a Turing machine."
Timothy Carlson proved the conjecture in the 90’s.

  Many models have been produced based on artificial
neural networks, on emergent properties of purely
reactive systems, and many others, in an attempt to
escape the tyranny of GOFAI (‘Good Old Fashioned AI’),
rooted in Turing's symbol computationalism—itself arisen
to answer in the negative Hilbert's Entscheidungsproblem
on the decidability of logic augmented with arithmetic.

Logic and Consciousness - 2

  There is a catch to these models: Their implementation by
proponents ends up, with no particular qualms, being on a
computer, which cannot help but use symbolic processing
to simulate their paradigms.

  The relationship of this argument to logic is ensured by
functionalism: Logic can be implemented on top of a
symbol processing system, independently of the particular
physical substrate. And neural networks can implement a
Universal Turing machine, if not logic directly.

  Even if human consciousness does not operate directly on
logic, that does not mean we won't be forced to use logic,
amongst ourselves, to provide a rigorous description of
that process.

Functionalism - 1

  The thesis of multiple realizability says a mental state can
be 'realized' or 'implemented' by different physical states.
Beings with different physical constitutions can thus be in
the same mental state, and can hence symbiotically
cooperate epistemic-wise.

  The first functionalist theory of mind was put forth by
Hilary Putnam in1960, and inspired by the analogies he
noted between the mind and the theoretical "machines”
developed by Alan Turing, now called Universal Turing
machines.

  In this light, machines are physical models of abstract
processes.

Functionalism - 2
  In 1984 Putnam changed his mind, elaborating an assault

computationalism. Putnam's argument fails though.
  What mathematicians and philosophers have failed to

appreciate is that the Gödel theorems show that no one
—Gödel susceptible or not—can prove the consistency
of Peano arithmetic without constructing an infinite proof
tree, thus putting a limitation on finitary humans.

  Anti-functionalists employing Gödel’s theorems are
doomed to failure. Unless we can construct infinite proof
trees we are limited by Gödel's theorems, even if we are
not computing machines to which they directly apply.

  This point has resisted appreciation by anti-functionalists.

Functionalism - 3
  Despite Putnam's rejection of functionalism, it has

continued to flourish and been developed into numerous
versions by thinkers as diverse as David Marr, Daniel
Dennett, Jerry Fodor, and David Lewis.

  Functionalism helped lay the foundations for modern
cognitive science, and is the dominant theory of mind in
philosophy today.

  In permitting mental states to be multiply realized,
functionalism offers an account of mental states
compatible with materialism, but without limiting the class
of minds to creatures with brains like ours.

Evolutionary Psychology and Logic
  Logic provides the overall conceptual cupola, a generic

module that fluidly articulates together the specific
emerged modules identified by evolutionary psychology.

  It is mirrored by the general computability of Turing's
Universal machines, which can execute any program,
compute any computable function.

  How does natural selection anticipate our future needs?
By creating a cognitive machine, called brain, that can
create models of the world, and even of itself.

  Plus process hypotheticals, like a Universal Turing Machine
can mimic any Turing machine, and a computer run any
programs. This plasticity provides its universal versatility.

Evolutionary Computation - 1
  Turing's approach to machine intelligence, in his 1948

'Intelligent Machinery’, was as unhampered as his take on
computable numbers in 1936.

  “Does incompleteness of formal systems limit the abilities
of computers to duplicate the intelligence and creativity of
the human mind?” Turing summarized his position by
saying "in other words then, if a machine is expected to be
infallible, it cannot also be intelligent.”

  Instead of trying to build infallible machines, we should be
developing fallible machines able to learn from their
mistakes. "The possibility of letting the machine alter its own
instructions provides the mechanism for this."

Evolutionary Computation - 2
  Turing drew a parallel between intelligence and "the

genetical or evolutionary search by which a combination
of genes is looked for, the criterion being survival value.

  The remarkable success of this search confirms to some
extent the idea that intellectual activity consists mainly of
different kinds of search.”

  Evolutionary computation would lead to intelligent
machines, with the help of outside oracles.

  The path to artificial intelligence, suggested Turing, is to
construct a machine with the curiosity of a child, and let
intelligence evolve.

Evolutionary Computation - 3
  Turing’s work poses a deep question: “Does computation

with discrete symbols give a complete account of our
conception of the physical world? Is the world as we see it
computable?”

  The Internet search engine is a finite-state deterministic
machine, except at those junctures where people,
individually and collectively, make a non-deterministic click
choice as to which results are selected as meaningful.

  These clicks are then immediately incorporated into the
state of the deterministic machine, which grows ever so
incrementally more knowledgeable with each click.

  This is what Turing defined as an oracle machine.

Natural Philosophy
  Alan Turing's philosophy might appear the ultimate in

reductionism, in its atomizing of mental process, its scorn
for the non-material.

  Yet it depends upon a synthesis of vision running against
the grain of an intellectual world split into many verbal or
mathematical or technical specialisms.

  His many interests: from the computable, to
morphogenesis, to quantum mechanics, to the cognitive
mind, show a deep ambition for a an overarching natural
philosophy synthesis.

Symbiotic Epistemology - 1

  Epistemology will eventually have the ability to be shared,
be it with robots, aliens or any other entity who must
perform cognition to go on existing and program its
future.

  Creating situated computers and robots means carrying
out our own cognitive evolution by new means.
With the virtue of engendering symbiotic, co-evolving, and
self-accelerating loops.

  Computerized robots reify our scientific theories, making
them objective, repeatable, and a part of a commonly
constructed extended reality, built upon multi-disciplinary
unified science.

Symbiotic Epistemology - 2

  AI and Cognitive Science, by building such entities, provide
a huge and stimulating step towards furthering the unity
of science, through the very effort of that construction.

  In these days of discrete-time quantization, of
computational biological processes, and of ever expanding
universe—the automata and the tape—the Turing
Machine reigns supreme.

  Universal functionalism—Turing's essence—is what
enables the bringing together of the ghosts in the several
embodied machines (silicon, biological, extra-terrestrial or
otherwise) to promote their symbiotic epistemic co-
evolution, since they partake of the same theoretic
functionalism.

Turing is truly and forever among us !

THANKS !

