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Alan Mathison Turing (23 June 1912 – 7 June 1954)

Chief contributions

The Turing machine, including a
definition of computability, the
concepts of universality and the
stored program computer (1936)
Cracking the Enigma code
(1939–42)
The Turing test and contributions
in artificial intelligence and brain
modeling (1948–50)



Brief Chronology of Alan Turing’s Life

1912, 23 June: Birth, Paddington, London
1931-34: Undergraduate at King’s College, Cambridge University
1932-35: Quantum mechanics, probability, logic
1935: Elected fellow of King’s College, Cambridge
1936: The Turing machine, computability, universal machine
1936-38: Princeton, PhD in logic, algebra, number theory
1938-39: Cambridge, Bletchley Park, work on German Enigma
1939-40: The Bombe, machine for Enigma decryption
1939-42: Breaking of U-boat Enigma, saving battle of the Atlantic
1943-45: Anglo-American crypto consultant
1945: National Physical Laboratory, London
1946: Computer and software design
1947-48: Programming, neural nets, and artificial intelligence
1948: Manchester University
1949: First serious mathematical use of a computer
1950: The Turing Test for machine intelligence
1951: Elected Fellow of the Royal Society
1952: Arrested for sexual deviancy, loss of security clearance
1954, 7 June: Suicide by cyanide poisoning, Wilmslow, Cheshire



This Talk

A. M. Turing. On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc. 42 (1936), pp.
230Ð265. Erratum: Ibid. 43 (1937), pp. 544Ð546.

The context

Universality and self-reference in competing formalisms of the time

Turing’s definition of computable reals



Prehistory

Friedrich Ludwig
Gottlob Frege
(1848–1925)

German mathematician,
logician, and philosopher



Frege’s Concept of “Proof”

A sequence of statements in a formal language

ϕ0, ϕ1, ϕ2, . . . , ϕn

such that each ϕi is either

an axiom (basic assumption)

follows from statements earlier in the list by a rule of inference



Prehistory

Georg Ferdinand
Ludwig Philipp Cantor

(1845–1918)



Sets, Ordinals, and Cardinals

Cantor introduced the concept of cardinality (size) of a set

Two sets are the same size if there is a one-to-one correspondence
between them

There are infinitely many different sizes of infinite sets

No one shall expel us from the paradise that Cantor has created for us.
—David Hilbert



Cantor’s Diagonalization Argument

.1 0 1 1 1 1 0 1 0 1 0 1 ...

.0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0 ...

.0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 ...

.1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 ...

.1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 ...

.0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 ...

.0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 ...

.0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0 ...
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.0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 ...

...
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Turn of the Century — The Quest for Formalization

Bertrand Arthur William Russell
3rd Earl Russell
(1872–1970)

Welsh logician,
mathematician
and philosopher



Comprehension

If ϕ(x) is a property, one can form its extension

{x | ϕ(x)}.

For any y ,

y ∈ {x | ϕ(x)} ⇔ ϕ(y).



Russell’s Paradox

Let

b = {x | x 6∈ x}.

Then

b ∈ b ⇔ b ∈ {x | x 6∈ x} ⇔ b 6∈ b.



Other Paradoxes

Burali–Forti paradox The ordinal number of the set of all ordinals must
be an ordinal, and must be the largest ordinal; but there is no largest
ordinal.

Cantor’s paradox The cardinal number of the set of all sets must be the
greatest possible cardinal. But for any set A, the cardinal number of the
power set of A (set of all subsets of A) > cardinal number of A.



Turn of the Century — The Quest for Formalization

Alfred North Whitehead
(1861–1947)





Turn of the Century — The Quest for Formalization

David Hilbert
(1862–1943)

German
mathematician



Hilbert’s Second Problem

“When we are engaged in investigating the foundations of a science, we
must set up a system of axioms which contains an exact and complete
description of the relations subsisting between the elementary ideas of
that science. . . But above all I wish to designate the following as the
most important among the numerous questions which can be asked with
regard to the axioms: To prove that they are not contradictory, that is,
that a definite number of logical steps based upon them can never lead to
contradictory results. In geometry, the proof of the compatibility of the
axioms can be effected by constructing a suitable field of numbers, such
that analogous relations between the numbers of this field correspond to
the geometrical axioms. . . On the other hand a direct method is needed
for the proof of the compatibility of the arithmetical axioms.”



Hilbert’s Second Problem (Paraphrased)

Show that Peano Arithmetic is consistent (not self-contradictory).

That is, show that there is no Frege-style proof

ϕ0, ϕ1, ϕ2, . . . , ϕn, . . . ,¬ϕn



Hilbert’s Tenth Problem

Is there a procedure to determine whether a given a set of Diophantine
equations are solvable?



The Entscheidungsproblem (Hilbert, 1928)

Given a deductive system for a logic and a sentence ϕ in that logic, can
one decide whether ϕ is provable?

“For the mathematician there is no Ignorabimus, and, in my opinion, not
at all for natural science either. . . The true reason why [no one] has suc-
ceeded in finding an unsolvable problem is, in my opinion, that there is
no unsolvable problem. In contrast to the foolish Ignoramibus, our credo
avers:

Wir müssen wissen, wir werden wissen!
(We must know, we shall know.)”

—David Hilbert, Königsberg, September 1930, opening address to the
Society of German Scientists and Physicians

This question was the main inspiration for Turing’s work.



Formalizing Computation

proved that the
Entscheidungsproblem is
undecidable for Peano
arithmetic
articulated Church’s thesis,
later called the
Church–Turing thesis
created the λ-calculus

Alonzo Church
(1903–1995)

American mathematician
and logician



Formalizing Computation

Kurt Gödel (1906–1978)
Austrian logician, mathematician,

philosopher of mathematics

the completeness theorem
the incompleteness theorem
µ-recursive functions



The µ-Recursive Functions

A collection of number-theoretic functions Nk → N.

Successor s : N→ N, s(x) = x + 1 is computable.

Zero z : N0 → N, z( ) = 0 is computable.

Projections πk
n : Nn → N, πk

n (x1, . . . , xn) = xk , 1 ≤ k ≤ n, are
computable.

Composition If f : Nk → N and g1, . . . , gk : Nn → N are
computable, then so is f (g1, . . . , gk) : Nn → N that on
x = x1, . . . , xn gives f (g1(x), . . . , gk(x)).

Primitive recursion If hi : Nn−1 → N and gi : Nn+k → N are
computable, 1 ≤ i ≤ k , then so are fi : Nn → N, 1 ≤ i ≤ k, defined
by mutual induction:

fi (0, x) = hi (x),

fi (x + 1, x) = gi (x , x , f1(x , x), . . . , fk(x , x)),

where x = x2, . . . , xn.



The µ-Recursive Functions

Unbounded minimization If g : Nn+1 → N is computable, then so is
f : Nn → N that on input x = x1, . . . , xn gives the least y such that
g(z , x) is defined for all z < y and g(y , x) = 0 if such a y exists and
is undefined otherwise. We denote this by f (x) = µy .(g(y , x) = 0).

Church (1936) published a proof of the equivalence of the µ-recursive
functions and the λ-calculus, but attributed the result to Kleene.



Other Equivalent Formalisms

Post systems (Emil Post 1936)

type 0 grammars (Noam Chomsky 1956)

combinatory logic (Schönfinkel 1925, Haskell Curry 1929)



Turing’s 1936 Paper

A. M. Turing. On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc. 42 (1936), pp.
230Ð265. Erratum: Ibid. 43 (1937), pp. 544Ð546.

introduced Turing machines

proved the existence of a universal Turing machine

defined computable reals and showed that all commonly known reals
(e.g. e, π) are computable

proved undecidability of the halting problem (and other problems)
using a direct application of Cantor’s diagonalization argument

showed that Turing machines and the λ-calculus are computationally
equivalent, thereby giving force to Church’s thesis

gave a much simpler proof of the undecidability of the
Entscheidungsproblem



The Turing Machine (Basic Model)

` a b b a b a · · ·

%
6

Q

two-way, read/write



Nondeterminism

If at each stage the motion of a machine (in the sense of §1) is com-
pletely determined by the configuration, we shall call the machine an
“automatic machine” (or a-machine). For some purposes we might use
machines (choice machines or c-machines) whose motion is only partially
determined by the configuration (hence the use of the word “possible” in
§1). When such a machine reaches one of these ambiguous configurations,
it cannot go on until some arbitrary choice has been made by an external
operator. This would be the case if we were using machines to deal with
axiomatic systems. In this paper I deal only with automatic machines, and
will therefore often omit the prefix a-.



Universality, or Programs as Data

Each of these systems is powerful enough that programs can be written
that manipulate other programs encoded as data

system programs data
λ-calculus λ-terms λ-terms

combinatory logic combinator symbols combinator symbols
µ-recursive functions Gödel numberings natural numbers
Turing machines Turing machines strings

In Turing machines: There is an encoding of Turing machines M as
strings x and a universal simulator U that on input x#y simulates Mx
(the machine with code x) on input y

Led to the notion of stored-program computer, the prevailing architecture
of most computers in existence today



Self-Reference

If Turing machines can compute with the codes of other Turing
machines, then they can compute with their own codes.

Example: Quines (self-printing programs)

C
char *s="char *s=%c%s%c;
main()printf(s,34,s,34,10);%c";
main()printf(s,34,s,34,10);

Standard ML
let val s="let val s=#$#
in String.translate(fn x=>if Char.ord x=36 then s
else implode [if Char.ord x=35 then Char.chr 34 else x])s end"
in String.translate(fn x=>if Char.ord x=36 then s
else implode [if Char.ord x=35 then Char.chr 34 else x])s end



Self-Reference

Java
public class PrintSelf
static StringBuffer self = new StringBuffer("public class PrintSelf
static StringBuffer self = new StringBuffer();
static char quote = ’!’;
public static void main(String[] args)
quote++; self.insert(69, self); self.insert(69, quote);
self.insert(318, quote); System.out.println(self); ");
static char quote = ’!’;
public static void main(String[] args)
quote++; self.insert(69, self); self.insert(69, quote);
self.insert(318, quote); System.out.println(self);



Self-Reference

Stephen Cole Kleene
(1909–1994)

Kleene’s theorem
(equivalence of automata
and regular expressions)
Kleene’s theorem
(the recursion theorem)
Kleene’s theorem
(inductive = Π1

1 in N)



The Recursion Theorem (Kleene, 1938)

Theorem
For any total computable function σ, there exists a Turing machine Mx
such that Mx and Mσ(x) compute the same (partial) function.

Proof.
Let Mv be a Turing machine that on input x computes the code of
another Turing machine that on input y does the following.

1 Runs Mx on input x , using the universal simulator.
2 If it halts with output Mx(x), apply σ to get σ(Mx(x)).
3 Runs the machine with that code on y , using the universal simulator.

Note that Mv does not do 1-3 itself, it just computes the code of a
machine that does so. Then

MMv (x)(y) =

{
Mσ(Mx (x))(y) if Mx(x) halts,
undefined, otherwise.

In particular, MMv (v)(y) = Mσ(Mv (v))(y), since Mv is total.



Fixpoints in the λ-Calculus

The traditional fixpoint combinator Y satisfies

Y σ = (λx .σ(xx))(λx .σ(xx))

This is a fixpoint of σ:

(λx .σ(xx))(λx .σ(xx)) → σ((λx .σ(xx))(λx .σ(xx)))

This does not correspond to the Kleene construction. It is bad because it
forces a lazy evaluation strategy. The one that corresponds to the Kleene
construction is

v = λx .λy .σ(xx)y .

Then

vv = (λx .λy .σ(xx)y)v → λy .σ(vv)y
vvy → (λy .σ(vv)y)y → σ(vv)y .



Gödel’s Incompleteness Theorem (1933)

Gödel used exactly the same technology to prove his incompleteness
theorem.

Theorem
1 For Peano arithmetic or any sufficiently powerful deductive system

for number theory, there exist sentences that are true but not
provablea.

2 No sufficiently powerful consistent deductive system can prove its
own consistency.

aunless the system is inconsistent, in which case everything is provable

The second theorem solves Hilbert’s second problem negatively.



Gödel’s Incompleteness Theorem (1933)

Let ϕ be a number-theoretic sentence. Let

� ϕ ⇔ ϕ is true in N
` ϕ ⇔ ϕ is provable in Peano arithmetic (PA).

Can rewrite 1 as:

There exists ϕ such that � ϕ but 6` ϕ (unless PA is inconsistent).



Gödel’s Fixpoint Lemma

Let ’ϕ’ be a numeric code for the formula ϕ. The coding scheme is
chosed so that formulas of number theory can talk about other formulas
in terms of their codes, manipulate them, do substitutions, etc.

Lemma (Gödel’s Fixpoint Lemma)
For any formula σ with one free variable x, there exists a fixpoint ϕ of σ;
that is, a sentence ϕ such that

` ϕ ↔ σ(’ϕ’).

The sentence ϕ says, “I satisfy σ(x).” Moreover, the equivalence is
provable in PA.



Proof of the Fixpoint Lemma

Let x0 be a fixed variable. Let subst(x , y , z) be a formula with three free
variables x , y , z that says:

“The number z is the code of the formula obtained by
substituting the constant whose value is x for all free
occurrences of the variable x0 in the formula whose code is y .”

For example, if ’x0 + 4x ’ = 724, then subst(7, 724, 581) would be true if
’7 + 4x ’ = 581.

Now define

τ(x) = ∀y subst(x , x , y)→ σ(y) ϕ = τ(’τ(x0)’).



Proof of the Fixpoint Lemma

τ(x) = ∀y subst(x , x , y)→ σ(y) ϕ = τ(’τ(x0)’).

The sentence ϕ is the desired fixpoint:

ϕ ⇔ τ(’τ(x0)’)
⇔ ∀y subst(’τ(x0)’, ’τ(x0)’, y)→ σ(y)

⇔ ∀y y = ’τ(’τ(x0)’)’→ σ(y)

⇔ ∀y y = ’ϕ’→ σ(y)

⇔ σ(’ϕ’).

We have argued semantically, but the whole argument can be carried out
in PA, thus

` ϕ ↔ σ(’ϕ’).



Proof of the First Incompleteness Theorem

Theorem (Gödel’s First Incompleteness Theorem)
Suppose PA is consistent. There exists a number-theoretic sentence ϕ
that is true but not provable.

Proof.
One can construct a sentence provable(x) such that

` ϕ ⇔ ` provable(’ϕ’) (1)

for all ϕ. Take ϕ to be a fixpoint of ¬provable(x). Then

` ϕ ↔ ¬provable(’ϕ’) (2)

by the fixpoint lemmaa. Combining (1) and (2),

` ϕ ⇒ ` ⊥,

a contradiction, therefore ϕ is not provable. By (2), it is true.

aϕ says: “I am not provable.”



Turing’s Proof

Proof.
Let Con(PA) be the set of theorems of PA, and let Th(N) be the set of
true statements of number theory.

Con(PA) is recursively enumerable: one could build a Turing machine
that runs forever and constructs longer and longer proofs, emitting new
theorems as they are discovered.

But Th(N) is not recursively enumerable: if it were, say by a machine M,
then it would be decidable: to decide ϕ, just run M on both ’ϕ’ and
’¬ϕ’. One of them is true and will eventually be enumerated. And we
know it is not decidable, because we can express the halting problem.

So Con(PA) 6= Th(N). Either there is a ϕ ∈ Th(N)\Con(PA), in which
case we are done, or there is a ϕ ∈ Con(PA)\Th(N), in which case
¬ϕ ∈ Th(N)\Con(PA), and we are also done.



Q. Why are Turing Machines So Great?

A. Programmability!
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Turing’s Notion of Computable Real Numbers

Definition (Turing 1936)
A computable real α is given by a Turing machine that eventually writes
down all the digits in the binary expansion of α.

Alternative definitions:

Definition
A computable Cauchy sequence consists of computable total functions
α : N→ Q and f : N→ N such that for all n and for all m, k ≥ f (n),
|αm − αk | < 1/n.

Definition
A computable convergent interval sequence consists of a computable
total interval-valued function [α, β] : N→ Q2 such that for all n,
[αn+1, βn+1] ⊆ [αn, βn] and βn − αn < 1/n.



Turing’s Notion of Computable Real Numbers

The latter two definitions (Cauchy sequences and interval sequences) are
equivalent: one can go back and forth effectively between
representations.

Unfortunately, the Turing representation (enumeration of digits)
effectively determines the other two, but not vice versa!

Q. Does this mean there are fewer Turing reals than Cauchy sequences
and interval sequences?

A. Yes. . . and no. . .
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Turing’s Notion of Computable Real Numbers

Theorem (Turing 1936)
Every Cauchy sequence converges to a Turing real.

Proof.
Let α be the limit of the Cauchy sequence. If α is rational, then it is
clearly computable, as its digit sequence is ultimately periodic. If α is
irrational, then eventually arbitrarily long prefixes of the expansion are
determined.



Turing’s Erratum (1937) Fixes the Problem (?)

Use a different representation: output a sequence cn ∈ {−1, 1}. The
number represented is

c0 ·m +
∞∑

i=m

ci · (2/3)i

where m is the number of leading −1’s!



Obrigado!


