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Introduction Newton-Bentley’s correspondence

Introduction: Newton-Bentley’s correspondence

Newton-Bentley’s correspondence led Newton to abandon the Stoic
Cosmos of a finite distribution of matter in infinite space and to
adopt the Atomist Universe in which matter is distributed
throughout infinite space.
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Introduction Newton-Bentley’s correspondence

Letter 1

If the distribution of matter were finite, then the matter on
the outside of this space would by its gravity tend toward the
matter on the inside, and by consequence, fall down into the
middle of the whole space, and there compose one great
spherical mass... But if the matter was evenly diffused through
an infinite space, it would never convene into one mass but some
of it into one mass and some of it into another so as to make an
infinite number of great masses scattered at great distances from
one to another throughout all of infinite space. And thus might
the Sun and fixed stars be formed.
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Introduction Newton-Bentley’s correspondence

Letter 2

Newton had fully agreed with Bentley that gravity
meant providence had created a universe of great precision.

The hypothesis of deriving the frame of the world by
mechanical principles from matter evenly spread through the
heavens being inconsistent with my system, I had considered it
very little before your letters put me upon it, and therefore
trouble you with a line or two more about it...
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Introduction Newton-Bentley’s correspondence

Letter 3

Newton elaborated earlier arguments that a divine
power was essential in the design of initial conditions.

... this frame of things could not always subsist without a
divine power to conserve it.
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Introduction Newton-Bentley’s correspondence

Letter 3

Figure: Sensorium Dei in Newton’s metaphysics.
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Introduction Aim of this talk

Given the initial conditions with infinite precision...

Ω A human being (a) can not, in general, prove properties of the
universe, such like its trajectory in phase space will cross a given finite
region, and (b) can not, in general, even identify all the possible laws
of Physics.
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The Turing Machine

The Turing Machine
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The Turing Machine How it works

The Turing machine: How it works

q

q0, qhalt

Finite Control

input tape

working tape

n = |x|

input size

1 0 1 1 0 t t t t t . . .

1 X 1 Y 0 t t t t t . . .
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The Turing Machine How it works

Time constructible: The exponential

qa

p0 p1 p2 q1

q2 q3

0;t;t → R; 0̇, N ;N

t;t;t → N ;N ;N

0; 0̇;t → N ;N ;N

t; 0̇;t → N ;N ;N

0; 0̇;t → R;N ; 0̇, N
0; 0̇; 0̇→ R;R;R

t; 0̇; 0̇→ N ;N ;N

; 0; 0̇→ N ;L;N

;t; 0̇→ N ;L;N

;t; 0→ N ; 0, R;L

;t;t →; 0, R;L

; 0;→ N ;R; 0, R
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The Turing Machine How it works

Sending pi away!

“
:0−− > N0−− > D
: While 1
: rand∗2− 1−− > X
: rand∗2− 1−− > Y
: If sqrt(x2 + y2) =< 1
: N + 1−− > N
: End
: D + 1−− > D
: Disp (N/D ∗ 4)
:End”

Poe, E.

Near a Raven

Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.

During my rather long nap – the weirdest tap!
An ominous vibrating sound disturbing my chamber’s antedoor.

“This”, I whispered quietly, “I ignore”.

Perfectly, the intellect remembers: the ghostly fires, a glittering ember.
Inflamed by lightning’s outbursts, windows cast penumbras upon this floor.

Sorrowful, as one mistreated, unhappy thoughts I heeded:
That inimitable lesson in elegance – Lenore –

Is delighting, exciting... nevermore.

(Mike Keith, 1995)
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The Turing Machine Specifying a Turing machine

Specifying a Turing machine

Turing machine with k > 2 tapes, with an output tape; dynamic map

δ : Q× Γk−1 → Q× Γk−1 × {L,N,R}k

Example (Iterating the Collatz function: TM without output tape)

input n;

while n 6= 1 do if even(n) then n := n/2 else n := 3n+ 1
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The Turing Machine Semantics of an algorithm

Semantics of an algorithm

Computable functions, (total) recursive functions, R
Each Turing machine M (with an output tape) computes a function
fM : {0, 1}? → {0, 1}? (in other words, a function fM : N→ N); if the
machine does not halt on an input x, then it is said that fM is not defined
at x.

Bijection between N and {0, 1}?

Take a binary word, e.g., 0101, affix a leftmost 1 (10101), and read it in
binary having subtracted 1 (20).
Take any number in decimal, e.g., 20, add 1, write it in binary (10101),
remove the leftmost 1, and read the result as a binary word (0101).
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The Turing Machine Universal Turing machine

Theorem

There is a countable infinite number of computable functions, but an
uncountable number of non-computable functions. (I.e., most of the
functions f : {0, 1}? → {0, 1}? are non-algorithmic.)

Theorem (Universal Turing machine)

There exists an universal Turing machine U that receives as input 〈M, x〉,
the binary code of a Turing machine M and a binary word x, such that,
for every such M and for every such x, it simulates M on input x:

U(〈M, x〉) ≡ M(x)
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The Turing Machine Growing rate and the halting problem

Growing rate and the halting problem

Theorem (Busy Beaver)

The Turing machine can not compute functions with arbitrary growing
rate. There is a well-known established limit of growing rate for
computable functions.

Theorem (The halting problem)

The halting function, namely the function

f(〈y, x〉) =

{
1 if My halts on x
0 otherwise

is not computable.
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The Turing Machine Iterating the Collatz function yet again

Collatz function yet again

Example (Iterating the Collatz function)

input n;

while n 6= 1 do if even(n) then n := n/2 else n = 3n+ 1

Sequences of numbers produced for different inputs

4, 2, 1 HALT

5, 16, 8, 4, 2, 1 HALT

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 HALT
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The Turing Machine Decidable and semidecidable sets

Decidable and semidecidable sets

Definition (Decidable set)

A set A (e.g., a subset of {0, 1}?) is said to be decidable if the (characteristic)
function (of A)

ξA(x) =

{
1 if x ∈ A
0 if x /∈ A

is Turing computable.

Definition (Semidecidable set)

A set A (e.g., a subset of {0, 1}?) is said to be semidecidable if the (partial
characteristic) function (of A)

ξ/A(x) =

{
1 if x ∈ A
⊥ if x /∈ A

is Turing computable.
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The Turing Machine Diophantine sets

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

〈m1, . . . ,mk〉 ∈ D iff ∃x1, . . . , xn ∈ N [ p(m1, . . . ,mk, x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)
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〈m1, . . . ,mk〉 ∈ D iff ∃x1, . . . , xn ∈ N [ p(m1, . . . ,mk, x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

x ∈ Composite iff ∃y, z ∈ N− {0} [ (y + 1)(z + 1)− x = 0 ]
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Definition (Diophantine sets)
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integer coefficients, such that,

〈m1, . . . ,mk〉 ∈ D iff ∃x1, . . . , xn ∈ N [ p(m1, . . . ,mk, x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

x|y iff ∃z ∈ N− {0} [ xz − y = 0 ]
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The Turing Machine Diophantine sets

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with
integer coefficients, such that,

〈m1, . . . ,mk〉 ∈ D iff ∃x1, . . . , xn ∈ N [ p(m1, . . . ,mk, x1, . . . , xn) = 0 ]

Example (Composite numbers, divisible numbers, prime numbers, etc.)

x|y and x < y iff ∃u, v ∈ N− {0} [ (xu− y)2 + (y − x− v)2 = 0 ]
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The Turing Machine Diophantine sets

Diophantine sets

Theorem (Davis, Putnam, Robinson, Matiyasevich (1970))

A set is Diophantine if and only if it is semidecidable.
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The Turing Machine Halting Problem in bounded space

Halting Problem in bounded space

q

q0, qhalt

Finite Control

input tape

working tape

working tape

1 0 1 1 0 t t t t t . . .

n = |x|

input size

1 X 1 Y 0 t t t t t . . .

z1 . . . . . . . zs(n) t · · ·

s(n)

bs(n) ≥ #Confs(n)
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The Turing Machine Halting Problem in bounded space

Halting Problem in bounded space

Theorem

The halting problem of Turing machines bounded in space is decidable.

Proof:

#Confs(n) = |Q| × 3s(n) × s(n)× n
∈ O(2O(s(n) × n)

= 2O(s(n))

= bs(n)

�
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The Turing Machine Conclusions of the section

Conclusions of the section

1 The halting problem of Turing machines is decidable in bounded
space;

2 The halting problem becomes interesting only when all the infinite
tape is potentially used;

3 These are the important facts to take into consideration when we try
to embed an infinite tape Turing machine into the physical space.
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Undecidability in Analysis and Physics

Undecidability in Analysis and Physics
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Undecidability in Analysis and Physics Expressions

Undecidability in Analysis

Let E be a set of expressions denoting real, single valued, partially defined
functions of one variable and let Φ be the set of functions denoted by
expressions in E .

Assumptions

1 Φ contains the identity function, the rational numbers, and is closed
under addition, subtraction, multiplication, and composition;

2 If A,B ∈ E , then there is an effective procedure for finding
expressions in E to denote A(x)±B(x), A(x)×B(x), A(B(x)).
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Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(x) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(x) ≡ A(x).

25/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(x) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(x) ≡ A(x).

25/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(x) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(x) ≡ A(x).

25/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

The two big problems

1 The identity problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether A(x) ≡ 0.

2 The integration problem for (E ,Φ) is the problem of deciding, given
A ∈ E , whether there is function f ∈ Φ such that f ′(x) ≡ A(x).

25/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Conditions on Φ

1 Φ contains π and the real-valued function sin(x);

2 Φ contains µ such that µ(x) = |x| for x 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.

26/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Conditions on Φ

1 Φ contains π and the real-valued function sin(x);

2 Φ contains µ such that µ(x) = |x| for x 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.

26/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Conditions on Φ

1 Φ contains π and the real-valued function sin(x);

2 Φ contains µ such that µ(x) = |x| for x 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.

26/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Conditions on Φ

1 Φ contains π and the real-valued function sin(x);

2 Φ contains µ such that µ(x) = |x| for x 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.

26/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Conditions on Φ

1 Φ contains π and the real-valued function sin(x);

2 Φ contains µ such that µ(x) = |x| for x 6= 0;

3 Φ contains β, a totally defined function such that no f ∈ Φ and no
interval I are such that f ′ ≡ β in I.

26/ 76



Undecidability in Analysis and Physics The two big problems

Undecidability in Analysis

Theorem

1 If Φ satisfies condition 1, then the problem given an expression A ∈ E ,
decide if there is a real number x such that A(x) < 0 is undecidable;

2 If Φ satisfies conditions 1 and 2, then the identity problem for (E ,Φ)
is undecidable;

3 If Φ satisfies conditions 1, 2 and 3, then the integration problem for
(E ,Φ) is undecidable.
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Undecidability in Analysis and Physics Introducing the basic functions

Existence

E is the smallest class of expressions obtained by iteration of addition,
subtraction, multiplication, and composition, starting with x, ex,
sin(x) and |x|, and expressions for the rational numbers;

Φ is the class of functions of a real variable usually denoted by the
expressions above; take β(x) = ex

2
and µ(x) = |x|.
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Undecidability in Analysis and Physics The analytic machinery

The analytic machinery

h(x) = x sin(x)

g(x) = x sin(x3)

x1 = h(x)

x2 = h ◦ g(x)

x3 = h ◦ g ◦ g(x)

...

xn−1 = h ◦
n− 2︷ ︸︸ ︷

g ◦ . . . ◦ g(x)

xn =

n︷ ︸︸ ︷
g ◦ . . . ◦ g(x)
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Undecidability in Analysis and Physics The analytic machinery

The analytic machinery

f [p](m,x1, . . . , xn) = (n+ 1)4{p(m,x1, . . . , xn)2

+

n∑
i=1

sin2(πxi) ( g(m,x1, . . . , xn) )4}

F [p](m,x1, . . . , xn) = f [p](m,x21, . . . , x
2
n)

G[p](m,x) = F [p](m,x1(x), . . . , xn(x))
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Undecidability in Analysis and Physics The analytic machinery

The analytic machinery

Theorem

∃x1, . . . , xn ∈ N p(m,x1, . . . , xn) = 0

iff

∃x ∈ R G[p](m,x) ≤ 1

iff

∀z > 0 ∃x ∈ R G[p](m,x) ≤ z

Theorem (Richardson, 1968)

There is a elementary function of two variables, G(m,x), such that, as m
varies over N, there is no algorithm for deciding whether is a real number
x such that G(m,x) ≤ 1/2.
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Undecidability in Analysis and Physics Richardson’s results

Richardson’s results (1)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the
real-valued functions of expressions |x| and sin(x), and is closed under
addition, subtraction, multiplication, and composition, then the identity
problem for (E ,Φ) is undecidable.

Proof: Take B(m,x) = |G(m,x)− 1| − (G(m,x)− 1). We have that
∃x G(m,x) < 1 if and only if B(m,x) ≡/ 0. �
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Undecidability in Analysis and Physics Richardson’s results

Richardson’s results (2)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the
real-valued functions of expressions |x|, ex and sin(x), and it is closed
under addition, subtraction, multiplication, and composition, then the
integration problem for (E ,Φ) is undecidable.

Proof: If such integration problem were solvable, we would be able to
decide, for each m ∈ N, whether there were a function f ∈ Φ so that

f ′(x) = ex
2

(1− (2
.
− 2G(m,x)))

�
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Undecidability in Analysis and Physics Undecidability in Physics

Undecidability in Physics

Are there general methods to test for the integrability of a
given Hamiltonian? The answer, for the moment, is no. We can
turn the question around, however, and ask if methods can be
found to construct potentials that give rise to integrable
Hamiltonians. The answer is that a method exists, at least for
restricted class of problems, but the method becomes rapidly
very tedious as the forms allowed for the integrals of the motion
are expanded. (A. J. Lichtenberg and M. A. Liberman, Regular and

Stochastic Motion.)
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Undecidability in Analysis and Physics Reachability

Undecidability in Physics

Theorem

There is no general algorithmic procedure to determine whether an
arbitrary motion in the 〈x, y〉-plane, m(t) = 〈x(t), y(t)〉, will cross the
y-axis.

will the particle ever
cross the y-axis?

x

y
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Undecidability in Analysis and Physics Reachability

Motion in the plane

Proof: Take xm(t) = G(m, t)− 1. There is no general decision procedure
to check whether one has, given an arbitrary m ∈ N, xm(t) < 0 for some
t. Take m(t) = 〈xm(t), 12gt

2〉. �
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Off Infinite in Finite Time
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Off Infinite in Finite Time

Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value t = t? where analytic continuation of the
solution fails. It requires a distance rij(t) to become arbitrarily small as
t→ t?.

Example (Example and conjecture)

E.g., a collision is a singularity. But are all singularities collisions? Problem
raised in the turn XIX/XX by Painlevé and Zeipel.
The way to the solution was provided by Sundman, Wintner, McGehee,
Gerver, Saari, Xia.
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The way to the solution was provided by Sundman, Wintner, McGehee,
Gerver, Saari, Xia.

38/ 76



Off Infinite in Finite Time

Non-collision singularity

Let

rmin(t) = mini 6=j rij(t)

We can have

lim inft→t? rmin(t) = 0

lim supt→t? rmin(t) > r > 0
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Off Infinite in Finite Time

3-D solution, Zhihong Xia [Xia92]

m3

m2

m1
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Off Infinite in Finite Time

2-D solution, Joseph Gerver [Ger91]

N−gon binary star

the asteroid
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Off Infinite in Finite Time

Topology

Theorem (Uncountably many topologies, Warren Smith [Smi06])

N point masses in the plane, for some finite fixed value of N , whose initial
positions, masses, and velocities lie inside a cube in R7n, can describe an
uncountably infinite number of topological distinct trajectories in 1
second. In contrast, a Turing machine simulator can only output one of a
finite number of possible outputs, in a finite timespan. The initial location
and velocities of the bodies required to force a future trajectory of
described topological type, are computable real numbers.
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Off Infinite in Finite Time

TYPE I Topology

binary

B

B later

C

C later

TYPE 1
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Off Infinite in Finite Time

TYPE II Topology

TYPE 2
binary
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Off Infinite in Finite Time

Singularity

TM:

;

;

M3

M2

M1: Arbitrary Turing machine that outputs
its state transitions
as a binary sequence

topology bit sequence in 1s

real numbers describing N body initial velocity and position data

trajectory topology describing bit sequence (finite if M1 halts)
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Off Infinite in Finite Time

The halting revisited

Description of M3

Given the initial real number data in such a form that M3 can access
more bits on demand, by some integration scheme, M3 simulates the
motion of the n-body system to sufficient accuracy to be confident it
knows the topology of the trajectories the bodies take in 1s.

Theorem (Solving the halting problem in 1s)

M3 halts if and only if the N bodies do not reach the singularity in 1s.
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Off Infinite in Finite Time

Church-Turing thesis

Abstract of Warren Smith’s paper on the n-body
problem. Church’s thesis is at the foundation of computer
science. We point out that any particular set of physical laws,
Church’s thesis need not merely be postulated, in fact it may be
decidable. Trying to do so is valuable. In Newton’s laws of
physics with point masses, we outline a proof that Church’s
thesis is false; physics is unsimulable. But with certain more
realistic laws of motion, incorporating some relativistic effects,
the extended Church’s thesis is true.
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Off Infinite in Finite Time Conclusions of the section

Conclusions of the section

Philosophic question

If Warren’s proof had been done in the beginning of the XX century, would
the physicists have tried to reformulate Newtonian physics to make
Physics simulatable and reestablish the Church-Turing thesis?

CT as refutation tool

Can we use a computational perspective (such like CT) as a refutation
tool of a scientific theory? If not, what is the meaning of a non
simulatable scientific theory?
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The Scientist Concept
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The Scientist concept The idea

The idea

A ‘function’ M embeds an algorithmic physical law whenever M, on
inputting the observations/measurements of an experiment, outputs
a new ‘programme’ e, which simulates the instance of the physical
law ‘encoded’ in the input (denoted by a text containing numbers).

The new ‘programme’ {e}, on input of some values assigned to the
magnitudes of the involved physical concepts, outputs the predicted value
of the derived physical concept for which the law was stated.
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The Scientist concept The idea

Boyle’s law

Boyle’s law

The pressure of an ideal gas inside a flexible container, maintained at a
constant temperature during a process of expansion or contraction, is
proportional the the inverse of its volume.

Boyle’s law :

pV = const

The scientist ‘Boyle’, on inputting text like this
〈5, 25〉#〈10, 15〉#〈20, 1

10〉# . . . , outputs the code e for the instance of
Boyle’s law with the constant 2.
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The Scientist concept Text et al.

Scientists work with text!

Text et al.

1 A text T for a function is a map of type N→ [(N×N) ∪ {#}], where
the elements of the graph of a function ψ, 〈t, ψ(t)〉, for t, ψ(t) ∈ N,
are given separated by #. By T [t] we denote the sequence of the first
t elements of T .

2 The set of all prefixes of text for functions is
INIT = {T [t] : T is a text for a function and t ∈ N}.
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The Scientist concept Text et al.

Scientist

Definition (Scientist)

A scientist is a function (possibly partial, not necessarily computable) of
type INIT → N.
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The Scientist concept Text et al.

Depicting a scientist

SCIENTIST M

φe(x) = 2x

After some order p ∈ N
0#2#4#6# . . . Output stabilizes

. . . e

General Identification

Figure: For all t ≥ p, scientist M on input ψ[t] outputs code e of ψ.
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The Scientist concept Convergence of a scientist to an hypothesis

Success for functions

Definition (Scientific success on a single function, Gold [Gol67])

Let ψ : N→ N a total function. We say that scientist M identifies ψ if
there exists an e ∈ N and an order p such that, for t ≥ p, M(ψ[t]) = e
and φe = ψ.

Definition (Scientific success on a collection of functions, Gold [Gol67])

Let S be a set of total functions. We say that scientist M identifies S just
in case she identifies every ψ ∈ S.
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The Scientist concept Convergence of a scientist to an hypothesis

Scientist Boyle

SCIENTIST M

Boyle

φe is an instance of Boyle’s law

After some order p ∈ N
〈5, 2

5
〉#〈10, 1

5
〉#〈20, 1

10
〉# . . . Output stabilizes

. . . e

EX -identification

Figure: For all t ≥ p, scientist M on input Volume[Pressure] outputs the instance of Boyle’s
law for the particular ideal gas under consideration.
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The Scientist concept Convergence of a scientist to an hypothesis

Popper on precision in [Pop35]

Assume that the consequences of two theories differ so little
in all fields of application that the very small differences between
the calculated observable events cannot be detected, owing to
the fact that the degree of precision attainable in our
measurements is not sufficiently high. It will then be impossible
to decide by experiments between the two theories, without first
improving our technique of measurements. This shows that the
prevailing technique of measurement determines a certain range
— a region within which discrepancies between observations are
permitted by the theory.
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The Scientist concept Convergence of a scientist to an hypothesis

Scientist Van der Walls

SCIENTIST M

Van der Walls

φe is an instance of Van der Walls law

After some order p ∈ N
〈p0, V0〉#〈p1, V1〉#〈pk, Vk〉# . . . Output stabilizes

. . . e

EX -identification

Figure: For all t ≥ p, scientist M on input Volume[Pressure] outputs the instance of Van der

Walls’ law for the particular gas under consideration: (p+ an2

V 2 )(V − nb) = const.
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The Scientist concept Convergence of a scientist to an hypothesis

Van der Walls gas

Figure: Van der Walls constitutive equation.
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The Scientist concept Convergence of a scientist to an hypothesis

EXplain

Definition (EX n-identification, Gold [Gol67], Case and Smith
[CS78, CS83])

A set S of (total) recursive functions is said to belong to class EX n, if
there exists a scientist M such that, for each ψ ∈ S, there exists an order
p ∈ N such that, for all t ≥ p, M on input ψ[t] outputs the same
n-variant code for ψ.

Definition (EX ?-identification, Blum and Blum [BB75], Case and Smith
[CS78, CS83])

A set S of (total) recursive functions is said to belong to class EX ?, if
each function ψ ∈ S belongs to EX n for some n ∈ N.
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The Scientist concept Convergence of a scientist to an hypothesis

EX nplain

SCIENTIST M

φe =n ψ

After some order p ∈ N
ψ(0)#ψ(1)# . . .#ψ(p)# . . . Output stabilizes

. . . e0 . . . ek . . . e

S ⊆ R
ψ ∈ S

EX n-identification

Figure: For all t ≥ p, scientist M on input ψ[t] outputs code e of an n-variant of
ψ, i.e., φe =n ψ.
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The Scientist concept Unification of theories

Non-union theorem

Proposition (Blum and Blum [BB75], Jain et al. [JORS99])

The class EX is not closed under union.
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The Scientist concept Unification of theories

Proof: We prove that AEZ ∪ SD is not EX -identifiable.

function f :

Function f(e, x : N) : N;
Var σ : list of N× N;
Begin

σ := 〈0, e〉;
While true Do Begin

Find the least τ ∈ INIT , τ ⊃ σ, such that M(τ) 6= M(σ);
σ := τ ;
If x ∈ dom(σ̂) Then Return σ̂(x)

End
End
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The Scientist concept Unification of theories

Non-union theorem

Proposition

R /∈ EX .
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The Scientist concept Unification of theories

Unification of theories

From what was argued above we can state:

Theorem (Unification of scientific laws)

Unification of scientific laws (as algorithms) is not always possible within
the paradigm EX .
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The Scientist concept Unification of theories

For the team in EX 1

Proof: Take M1 as the scientist which outputs ψ(0) as his unique
conjecture, the first element of the input subgraph. Scientist M1 will be
‘EX -incorrect’ for functions which differ from φψ(0) exactly in one point.
For M2 we consider a more sophisticated scientist...

M2 Outputs Programme :

If x = i, Then Output ψ(i), Else Output {ψ(0)}(x).
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The Scientist concept Behaviourally Correct classes

BC -identification

Definition (BC n-identification, Case and Smith [CS78, CS83])

We say that a scientist M BC n-identifies a function ψ ∈ R, if there exists
an order p ∈ N such that, for all t ≥ p, φM(ψ[t]) is a n-variant code for ψ.
We say that a scientist M BC n-identifies a set of functions S ⊆ R, if, for
all ψ ∈ S, there exists an order p ∈ N such that, for all t ≥ p, φM(ψ[t]) is a
n-variant code for ψ.

Definition (BC ?-identification, Case and Smith [CS78, CS83])

A set S of recursive functions is said to belong to class BC ?, if each
function ψ ∈ S belongs to BC n for some n ∈ N.
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The Scientist concept Behaviourally Correct classes

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith
[CS78, CS83], Harrington [CS83])

R /∈ EX = EX 0 ⊂ · · · ⊂ EX n ⊂ · · · ⊂ EX ? ⊂ BC 63 R

R /∈ BC = BC 0 ⊂ · · · ⊂ BC n ⊂ · · · ⊂ BC ? 3 R

John Case writes in [Cas11]:

Hence, tolerating anomalies strictly increases the inferring power as does relaxing
the restriction of (syntactic) convergence to single programmes. Physicists use of
slightly faulty explanations is vindicated!
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The Scientist concept Behaviourally Correct classes

R ∈ BC ?

Proposition (Leo Harrington)

R ∈ BC ?.
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Popper’s Refutation Principle
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Popper’s Refutation Principle Falsifiability

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within
the epistemological theory I advocate. We need them in order to decide whether
a theory is to be called falsifiable, i.e. empirical [...] And we also need them for
the corroboration of falsifying hypothesis, and thus for the falsification of theories
[...]

Basic statements must therefore satisfy the following conditions: (a) From a
universal statement without initial conditions, no basic statement can be
deduced. On the other hand, (b) a universal statement and a basic statement can
contradict each other. Condition (b) can only be satisfied if it is possible to derive
the negation of a basic statement from the theory which it contradicts. From this
and condition (a) it follows that a basic statement must have a logical form such
that its negation cannot be a basic statement in its turn.
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Popper’s refutability principle

Popper’s refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist M may not be refutable (!), for

1 It is not known if the instance φe is undefined on some y;

2 Programme {e} on input y does not halt, i.e., one can not prepare any
experimental apparatus to refute “theory M on y”, given a basic statement
such as φe(y) 6= ψ(y), where φe(y) is the prediction and ψ(y) is the
observation, since it is not even known with generality if {e}(y) halts or not
and, consequently, produce a prediction refutable by observation.

John Case adds in [Cas11]:

Hence, thanks to the unsolvability of the Halting Problem (see [Rog67]), Popper’s
Refutability Principle (in [Pop35]) is violated in a way Popper didn’t consider
([CS78, CS83])!
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