Centro de Matemática da Universidade do Minho

SCIENTIST AS ALGORITHM

José Félix Costa

Departamento de Matemática, Instituto Superior Técnico

CMAF - Centro de Matemática e Aplicações Fundamentais da Faculdade de Ciências

Introduction: Newton-Bentley's correspondence

Introduction: Newton-Bentley's correspondence

Newton-Bentley's correspondence led Newton to abandon the Stoic Cosmos of a finite distribution of matter in infinite space and to adopt the Atomist Universe in which matter is distributed throughout infinite space.

Letter 1

If the distribution of matter were finite, then the matter on the outside of this space would by its gravity tend toward the matter on the inside, and by consequence, fall down into the middle of the whole space, and there compose one great spherical mass... But if the matter was evenly diffused through an infinite space, it would never convene into one mass but some of it into one mass and some of it into another so as to make an infinite number of great masses scattered at great distances from one to another throughout all of infinite space. And thus might the Sun and fixed stars be formed.

Letter 1

If the distribution of matter were finite, then the matter on the outside of this space would by its gravity tend toward the matter on the inside, and by consequence, fall down into the middle of the whole space, and there compose one great spherical mass... But if the matter was evenly diffused through an infinite space, it would never convene into one mass but some of it into one mass and some of it into another so as to make an infinite number of great masses scattered at great distances from one to another throughout all of infinite space. And thus might the Sun and fixed stars be formed.

Letter 2

Newton had fully agreed with Bentley that gravity meant providence had created a universe of great precisio

The hypothesis of deriving the frame of the world by mechanical principles from matter evenly spread through the heavens being inconsistent with my system, I had considered it very little before your letters put me upon it, and therefore trouble you with a line or two more about it...

Letter 2

Newton had fully agreed with Bentley that gravity meant providence had created a universe of great precision.

The hypothesis of deriving the frame of the world by mechanical principles from matter evenly spread through the heavens being inconsistent with my system, I had considered it very little before your letters put me upon it, and therefore trouble you with a line or two more about it...

Letter 2

Newton had fully agreed with Bentley that gravity meant providence had created a universe of great precision.

The hypothesis of deriving the frame of the world by mechanical principles from matter evenly spread through the heavens being inconsistent with my system, I had considered it very little before your letters put me upon it, and therefore trouble you with a line or two more about it...

Letter 3

> Newton elaborated earlier arguments that a divine power was essential in the design of initial conditions.
> this frame of things could not always subsist without a divine power to conserve it.

Letter 3

Newton elaborated earlier arguments that a divine power was essential in the design of initial conditions.

```
    this frame of things could not always subsist without a
divine power to conserve it.
```


Letter 3

Newton elaborated earlier arguments that a divine power was essential in the design of initial conditions.

... this frame of things could not always subsist without a divine power to conserve it.

Letter 3

Figure: Sensorium Dei in Newton's metaphysics.

Given the initial conditions with infinite precision...

Given the initial conditions with infinite precision...

Ω A human being (a) can not, in general, prove properties of the universe, such like its trajectory in phase space will cross a given finite region, and (b) can not, in general, even identify all the possible laws of Physics.

Given the initial conditions with infinite precision...

Ω A human being (a) can not, in general, prove properties of the universe, such like its trajectory in phase space will cross a given finite region, and

Given the initial conditions with infinite precision...

Ω A human being (a) can not, in general, prove properties of the universe, such like its trajectory in phase space will cross a given finite region, and (b) can not, in general, even identify all the possible laws of Physics.

The Turing Machine

The Turing machine: How it works

input size

Time constructible: The exponential

Sending pi away!

16

$$
: 0-->N 0-->D
$$

: While 1
: \quad rand $* 2-1-->X$
: \quad rand $* 2-1-->Y$
: If $\operatorname{sqrt}\left(x^{2}+y^{2}\right)=<1$
: $\quad N+1-->N$

: End

: $D+1-->D$
: $\quad \operatorname{Disp}(N / D * 4)$
:End"

Poe, E.

Near a Raven

Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.
During my rather long nap - the weirdest tap!
An ominous vibrating sound disturbing my chamber's antedoor.
"This", I whispered quietly, "I ignore".

Perfectly, the intellect remembers: the ghostly fires, a glittering ember.
Inflamed by lightning's outbursts, windows cast penumbras upon this floor.
Sorrowful, as one mistreated, unhappy thoughts I heeded:
That inimitable lesson in elegance - Lenore -
Is delighting, exciting... nevermore.

Specifying a Turing machine

Turing machine with $k>2$ tapes, with an output tape; dynamic map

Example (Iterating the Collatz function: TM without output tape)

input n :
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n:=3 n+1$

Specifying a Turing machine

> Turing machine with $k>2$ tapes, with an output tape; dynamic map
> $\delta: Q \times \Gamma^{k-1} \rightarrow Q \times \Gamma^{k-1} \times\{L, N, R\}^{k}$

Example (Iterating the Collatz function: TM without output tape)

Specifying a Turing machine

> Turing machine with $k>2$ tapes, with an output tape; dynamic map
> $\delta: Q \times \Gamma^{k-1} \rightarrow Q \times \Gamma^{k-1} \times\{L, N, R\}^{k}$

Example (Iterating the Collatz function: TM without output tape)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n:=3 n+1$

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}

Each Turing machine \mathcal{M} (with an output tape) computes a function

Bijection between \mathbb{N} and $\{0,1\}^{\star}$

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}
Each Turing machine \mathcal{M} (with an output tape) computes a function $f_{\mathcal{M}}:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ (in other words, a function $f_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N}$);

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}

Each Turing machine \mathcal{M} (with an output tape) computes a function $f_{\mathcal{M}}:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ (in other words, a function $f_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N}$); if the machine does not halt on an input x, then it is said that $f_{\mathcal{M}}$ is not defined at x.

Bijection between \mathbb{N} and

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}
Each Turing machine \mathcal{M} (with an output tape) computes a function $f_{\mathcal{M}}:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ (in other words, a function $f_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N}$); if the machine does not halt on an input x, then it is said that $f_{\mathcal{M}}$ is not defined at x.

Bijection between \mathbb{N} and $\{0,1\}^{\star}$
Take a binary word, e.g., 0101, affix a leftmost 1 (10101), and read it in binary having subtracted 1 (20). Take any number in decimal, e.g., 20, add 1, write it in binary (10101), remove the leftmost 1 , and read the result as a binary word (0101)

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}
Each Turing machine \mathcal{M} (with an output tape) computes a function $f_{\mathcal{M}}:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ (in other words, a function $f_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N}$); if the machine does not halt on an input x, then it is said that $f_{\mathcal{M}}$ is not defined at x.

Bijection between \mathbb{N} and $\{0,1\}^{\star}$

Take a binary word, e.g., 0101, affix a leftmost 1 (10101), and read it in binary having subtracted 1 (20).

Semantics of an algorithm

Computable functions, (total) recursive functions, \mathcal{R}

Each Turing machine \mathcal{M} (with an output tape) computes a function $f_{\mathcal{M}}:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ (in other words, a function $f_{\mathcal{M}}: \mathbb{N} \rightarrow \mathbb{N}$); if the machine does not halt on an input x, then it is said that $f_{\mathcal{M}}$ is not defined at x.

Bijection between \mathbb{N} and $\{0,1\}^{\star}$

Take a binary word, e.g., 0101, affix a leftmost 1 (10101), and read it in binary having subtracted 1 (20).
Take any number in decimal, e.g., 20, add 1, write it in binary (10101), remove the leftmost 1 , and read the result as a binary word (0101).

Theorem

```
There is a countable infinite number of computable functions, but an
uncountable number of non-computable functions. (I.e., most of the
functions f:{0,1\mp@subsup{}}{}{*}->{0,1\mp@subsup{}}{}{\star}}\mathrm{ are non-algorithmic.)
```


Theorem (Universal Turing machine)

There exists an universal Turing machine \mathcal{U} that receives as input $\langle\mathcal{M}, x\rangle$, the binary code of a Turing machine \mathcal{M} and a binary word x, such that, for every such \mathcal{M} and for every such x, it simulates \mathcal{M} on input x :

Theorem

There is a countable infinite number of computable functions, but an uncountable number of non-computable functions. (I.e., most of the functions $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ are non-algorithmic.)

> Theorem (Universal Turing machine)
> There exists an universal Turing machine \mathcal{U} that receives as input $\langle\mathcal{M}, x$ the binary code of a Turing machine \mathcal{M} and a binary word x, such that, for every such \mathcal{M} and for every such x, it simulates \mathcal{M} on input x

Theorem

There is a countable infinite number of computable functions, but an uncountable number of non-computable functions. (I.e., most of the functions $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ are non-algorithmic.)

Theorem (Universal Turing machine)

There exists an universal Turing machine \mathcal{U} that receives as input $\langle\mathcal{M}, x\rangle$, the binary code of a Turing machine \mathcal{M} and a binary word x, such that, for every such \mathcal{M} and for every such x, it simulates \mathcal{M} on input x :

Theorem

There is a countable infinite number of computable functions, but an uncountable number of non-computable functions. (I.e., most of the functions $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ are non-algorithmic.)

Theorem (Universal Turing machine)

There exists an universal Turing machine \mathcal{U} that receives as input $\langle\mathcal{M}, x\rangle$, the binary code of a Turing machine \mathcal{M} and a binary word x, such that, for every such \mathcal{M} and for every such x, it simulates \mathcal{M} on input x :

$$
\mathcal{U}(\langle\mathcal{M}, x\rangle) \equiv \mathcal{M}(x)
$$

Growing rate and the halting problem

Theorem (Busy Beaver)

```
The Turing machine can not compute functions with
    There is a well-known established limit of growing rate for
computable functions.
```


Theorem (The halting problem)

The halting function, namely the function

$$
f(\langle y, x\rangle)= \begin{cases}1 & \text { if } \mathcal{M}_{y} \text { halts on } x \\ 0 & \text { otherwise }\end{cases}
$$

is not computable.

Growing rate and the halting problem

Theorem (Busy Beaver)

The Turing machine can not compute functions with arbitrary growing rate. There is a well-known established limit of growing rate for computable functions.

Growing rate and the halting problem

Theorem (Busy Beaver)

The Turing machine can not compute functions with arbitrary growing rate. There is a well-known established limit of growing rate for computable functions.

Theorem (The halting problem)

The halting function, namely the function

$$
f(\langle y, x\rangle)= \begin{cases}1 & \text { if } \mathcal{M}_{y} \text { halts on } x \\ 0 & \text { otherwise }\end{cases}
$$

is not computable.

Collatz function yet again

Example (Iterating the Collatz function)

while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

Sequences of numbers produced for different inputs

Collatz function yet again

Example (Iterating the Collatz function)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

Sequences of numbers produced for different inputs

Collatz function yet again

Example (Iterating the Collatz function)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

```
Sequences of numbers produced for different inputs
```



```
5, 16, 8, 4, 2, 1 HALT
\(\square\)
```


Collatz function yet again

Example (Iterating the Collatz function)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

Sequences of numbers produced for different inputs

 4, 2, 1 HALT5, 16, 8, 4, 2, 1 HALT
\square

Collatz function yet again

Example (Iterating the Collatz function)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

Sequences of numbers produced for different inputs

4, 2, 1 HALT
5, 16, 8, 4, 2, 1 HALT
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 HALT

Collatz function yet again

Example (Iterating the Collatz function)

input n;
while $n \neq 1$ do if $\operatorname{even}(n)$ then $n:=n / 2$ else $n=3 n+1$

Sequences of numbers produced for different inputs

4, 2, 1 HALT
5, 16, 8, 4, 2, 1 HALT
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 HALT

Decidable and semidecidable sets

Definition (Decidable set)

A set $A\left(\right.$ e.g., a subset of $\left.\{0,1\}^{*}\right)$ is said to be decidable if the (characteristic) function (of A)

Definition (Semidecidable set)

A set A (e.g., a subset of $\{0.1\}^{*}$) is said to be semidecidable if the (partial characteristic) function (of A)

Decidable and semidecidable sets

Definition (Decidable set)

A set A (e.g., a subset of $\{0,1\}^{\star}$) is said to be decidable if the (characteristic) function (of A)

$$
\xi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

is Turing computable.

Definition (Semidecidable set)

A set A (e.g.. a subset of $\left.\{0.1\}^{*}\right)$ is said to be semidecidable if the (partia
characteristic) function (of A)

is Turing computable

Decidable and semidecidable sets

Definition (Decidable set)

A set A (e.g., a subset of $\{0,1\}^{\star}$) is said to be decidable if the (characteristic) function (of A)

$$
\xi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

is Turing computable.

Definition (Semidecidable set)

A set A (e.g., a subset of $\{0,1\}^{\star}$) is said to be semidecidable if the (partial characteristic) function (of A)

$$
\oiint_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ \perp & \text { if } x \notin A\end{cases}
$$

is Turing computable.

Diophantine sets

Definition (Diophantine sets)

```
We say that a relation D is Dic phantine if there exists a polynomial p with
```

integer coefficients, such that,
$\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D$ iff $\exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right.$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with integer coefficients, such that,

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D \text { iff } \exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right]
$$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with integer coefficients, such that,

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D \text { iff } \exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right]
$$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with integer coefficients, such that,

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D \text { iff } \exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right]
$$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

$$
x \in \text { Composite iff } \exists y, z \in \mathbb{N}-\{0\}[(y+1)(z+1)-x=0]
$$

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with integer coefficients, such that,

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D \text { iff } \exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right]
$$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

$$
x \mid y \quad \text { iff } \quad \exists z \in \mathbb{N}-\{0\}[x z-y=0]
$$

Diophantine sets

Definition (Diophantine sets)

We say that a relation D is Diophantine if there exists a polynomial p with integer coefficients, such that,

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle \in D \text { iff } \exists x_{1}, \ldots, x_{n} \in \mathbb{N}\left[p\left(m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{n}\right)=0\right]
$$

Example (Composite numbers, divisible numbers, prime numbers, etc.)

$$
x \mid y \text { and } x<y \quad \text { iff } \exists u, v \in \mathbb{N}-\{0\}\left[(x u-y)^{2}+(y-x-v)^{2}=0\right]
$$

Diophantine sets

Theorem (Davis, Putnam, Robinson, Matiyasevich (1970))

A set is Diophantine if and only if it is semidecidable.

Diophantine sets

Theorem (Davis, Putnam, Robinson, Matiyasevich (1970)) A set is Diophantine if and only if it is semidecidable.

Halting Problem in bounded space

$$
b^{s(n)} \geq \# \operatorname{Conf}_{s}(n)
$$

Finite Control

q0, qhalt

input size

Halting Problem in bounded space

Theorem
 The halting problem of Turing machines bounded in space is decidable.

Halting Problem in bounded space

Theorem

The halting problem of Turing machines bounded in space is decidable.

Halting Problem in bounded space

Theorem

The halting problem of Turing machines bounded in space is decidable.

Proof:

$$
\begin{aligned}
\# \operatorname{Conf}_{s}(n) & =|Q| \times 3^{s(n)} \times s(n) \times n \\
& \in O\left(2^{O(s(n)} \times n\right) \\
& =2^{O(s(n))} \\
& =b^{s(n)}
\end{aligned}
$$

Conclusions of the section

> 1 The halting problem of Turing machines is decidable in bounded space;

> 2 The halting problem becomes interesting only when all the infinite tape is potentially used;

> 3 These are the important facts to take into consideration when we try to embed an infinite tape Turing machine into the physical space.

Conclusions of the section

1 The halting problem of Turing machines is decidable in bounded space;

2 The halting problem becomes interesting only when all the infinite tape is potentially used;

3 These are the important facts to take into consideration when we try to embed an infinite tape Turing machine into the physical space.

Conclusions of the section

1 The halting problem of Turing machines is decidable in bounded space;

2 The halting problem becomes interesting only when all the infinite tape is potentially used;

3 These are the important facts to take into consideration when we try to embed an infinite tape Turing machine into the physical space.

Conclusions of the section

1 The halting problem of Turing machines is decidable in bounded space;

2 The halting problem becomes interesting only when all the infinite tape is potentially used;

3 These are the important facts to take into consideration when we try to embed an infinite tape Turing machine into the physical space.

Undecidability in Analysis and Physics

Undecidability in Analysis

Let \mathcal{E} be a set of expressions denoting real, single valued, partially defined functions of one variable and let Φ be the set of functions denoted by expressions in \mathcal{E}.

Assumptions

Undecidability in Analysis

Let \mathcal{E} be a set of expressions denoting real, single valued, partially defined functions of one variable and let Φ be the set of functions denoted by expressions in \mathcal{E}.

Assumptions

Undecidability in Analysis

Let \mathcal{E} be a set of expressions denoting real, single valued, partially defined functions of one variable and let Φ be the set of functions denoted by expressions in \mathcal{E}.

Assumptions
 Φ contains the identity function, the rational numbers, and is closed under addition, subtraction, multiplication, and composition; 2 If $A, B \in \mathcal{E}$, then there is an effective procedure for finding expressions in \mathcal{E} to denote $A(x) \pm B(x), A(x) \times B(x), A(B(x))$.

Undecidability in Analysis

Let \mathcal{E} be a set of expressions denoting real, single valued, partially defined functions of one variable and let Φ be the set of functions denoted by expressions in \mathcal{E}.

Assumptions

1Φ contains the identity function, the rational numbers, and is closed under addition, subtraction, multiplication, and composition;
 expressions in \mathcal{E} to denote

Undecidability in Analysis

Let \mathcal{E} be a set of expressions denoting real, single valued, partially defined functions of one variable and let Φ be the set of functions denoted by expressions in \mathcal{E}.

Assumptions

1Φ contains the identity function, the rational numbers, and is closed under addition, subtraction, multiplication, and composition;
2 If $A, B \in \mathcal{E}$, then there is an effective procedure for finding expressions in \mathcal{E} to denote $A(x) \pm B(x), A(x) \times B(x), A(B(x))$.

Undecidability in Analysis

The two big problems

Undecidability in Analysis

The two big problems

1 The identity problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether $A(x) \equiv 0$.
2 The integration problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether there is function $f \in \Phi$ such that $f^{\prime}(x) \equiv A(x)$.

Undecidability in Analysis

The two big problems
1 The identity problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether $A(x) \equiv 0$.
2 The integration problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether there is function $f \in \Phi$ such that $f^{\prime}(x) \equiv A(x)$.

Undecidability in Analysis

The two big problems
1 The identity problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether $A(x) \equiv 0$.
2 The integration problem for (\mathcal{E}, Φ) is the problem of deciding, given $A \in \mathcal{E}$, whether there is function $f \in \Phi$ such that $f^{\prime}(x) \equiv A(x)$.

Undecidability in Analysis

Conditions on Φ

Undecidability in Analysis

Conditions on Φ

```
\(1 \Phi\) contains \(\pi\) and the real-valued function \(\sin (x)\);
\(2 \Phi\) contains \(\mu\) such that \(\mu(x)=|x|\) for \(x \neq 0\);
3 © contains \(\beta, a\) totally defined function such that no \(f \in \Phi\) and no
interval \(\mathcal{I}\) are such that \(f^{\prime} \equiv \beta\) in \(\mathcal{I}\).
```


Undecidability in Analysis

Conditions on Φ

1Φ contains π and the real-valued function $\sin (x)$;
2Φ contains μ such that $\mu(x)=|x|$ for $x \neq 0$;
3Φ contains β, a totally defined function such that no $f \in \Phi$ and no interval \mathcal{I} are such that $f^{\prime} \equiv \beta$ in \mathcal{I}.

Undecidability in Analysis

Conditions on Φ

1Φ contains π and the real-valued function $\sin (x)$;
2Φ contains μ such that $\mu(x)=|x|$ for $x \neq 0$;

$$
\begin{aligned}
& \Phi \text { contains } \beta \text {, a totally defined function such that no } f \in \Phi \text { and no } \\
& \text { interval } \mathcal{I} \text { are such that } f^{\prime} \equiv \beta \text { in } \mathcal{I} \text {. }
\end{aligned}
$$

Undecidability in Analysis

Conditions on Φ

1Φ contains π and the real-valued function $\sin (x)$;
2Φ contains μ such that $\mu(x)=|x|$ for $x \neq 0$;
3Φ contains β, a totally defined function such that no $f \in \Phi$ and no interval \mathcal{I} are such that $f^{\prime} \equiv \beta$ in \mathcal{I}.

Undecidability in Analysis

Theorem

Undecidability in Analysis

Theorem

1 If Φ satisfies condition 1, then the problem given an expression $A \in \mathcal{E}$, decide if there is a real number x such that $A(x)<0$ is undecidable;

2 If Φ satisfies conditions 1 and 2, then the identity problem for (\mathcal{E}, Φ) is undecidable;

3 If Φ satisfies conditions 1, 2 and 3, then the integration problem for (\mathcal{E}, Φ) is undecidable.

Undecidability in Analysis

Theorem

1 If Φ satisfies condition 1, then the problem given an expression $A \in \mathcal{E}$, decide if there is a real number x such that $A(x)<0$ is undecidable;

Undecidability in Analysis

Theorem

1 If Φ satisfies condition 1, then the problem given an expression $A \in \mathcal{E}$, decide if there is a real number x such that $A(x)<0$ is undecidable;
2 If Φ satisfies conditions 1 and 2, then the identity problem for (\mathcal{E}, Φ) is undecidable;

3 If Φ satisfies

Undecidability in Analysis

Theorem

1 If Φ satisfies condition 1, then the problem given an expression $A \in \mathcal{E}$, decide if there is a real number x such that $A(x)<0$ is undecidable;
2 If Φ satisfies conditions 1 and 2, then the identity problem for (\mathcal{E}, Φ) is undecidable;

3 If Φ satisfies conditions 1, 2 and 3, then the integration problem for (\mathcal{E}, Φ) is undecidable.

Existence

Existence

\mathcal{E} is the smallest class of expressions obtained by iteration of addition, subtraction, multiplication, and composition, starting with x, e^{x}, $\sin (x)$ and $|x|$, and expressions for the rational numbers;
Φ is the class of functions of a real variable usually denoted by the expressions above; take

Existence

\mathcal{E} is the smallest class of expressions obtained by iteration of addition, subtraction, multiplication, and composition, starting with x, e^{x}, $\sin (x)$ and $|x|$, and expressions for the rational numbers;
Φ is the class of functions of a real variable usually denoted by the expressions above; take $\beta(x)=e^{x^{2}}$ and $\mu(x)=|x|$.

The analytic machinery

The analytic machinery

$$
\begin{aligned}
h(x) & =x \sin (x) \\
g(x) & =x \sin \left(x^{3}\right) \\
x_{1} & =h(x) \\
x_{2} & =h \circ g(x) \\
x_{3} & =h \circ g \circ g(x) \\
& \ldots \\
x_{n-1} & =h \circ \overbrace{g \circ \ldots \circ g}^{n-2}(x) \\
x_{n} & =\overbrace{g \circ \ldots \circ g}^{n}(x)
\end{aligned}
$$

The analytic machinery

The analytic machinery

$$
\begin{aligned}
f[p]\left(m, x_{1}, \ldots, x_{n}\right)= & (n+1)^{4}\left\{p\left(m, x_{1}, \ldots, x_{n}\right)^{2}\right. \\
& \left.+\sum_{i=1}^{n} \sin ^{2}\left(\pi x_{i}\right)\left(g\left(m, x_{1}, \ldots, x_{n}\right)\right)^{4}\right\} \\
F[p]\left(m, x_{1}, \ldots, x_{n}\right)= & f[p]\left(m, x_{1}^{2}, \ldots, x_{n}^{2}\right) \\
G[p](m, x)= & F[p]\left(m, x_{1}(x), \ldots, x_{n}(x)\right)
\end{aligned}
$$

The analytic machinery

Theorem

Theorem (Richardson, 1968)

There is a elementary function of two variables, $G(m, x)$, such that, as m varies over \mathbb{N}, there is no algorithm for deciding whether is a real number x such that $G(m, x) \leq 1 / 2$.

The analytic machinery

Theorem

$$
\begin{aligned}
\exists x_{1}, \ldots, x_{n} \in \mathbb{N} p\left(m, x_{1}, \ldots, x_{n}\right) & =0 \\
& \text { iff } \\
\exists x \in \mathbb{R} G[p](m, x) & \leq 1 \\
& \text { iff } \\
\forall z>0 \exists x \in \mathbb{R} G[p](m, x) & \leq z
\end{aligned}
$$

Theorem (Richardson, 1968)

There is a elementary function of two variables, $G(m, x)$, such that, as m varies over \mathbb{N}, there is no algorithm for deciding whether is a real number x such that $G(m, x) \leq 1 / 2$.

The analytic machinery

Theorem

$$
\begin{aligned}
\exists x_{1}, \ldots, x_{n} \in \mathbb{N} p\left(m, x_{1}, \ldots, x_{n}\right) & =0 \\
& \text { iff } \\
\exists x \in \mathbb{R} G[p](m, x) & \leq 1 \\
& \text { iff } \\
\forall z>0 \exists x \in \mathbb{R} G[p](m, x) & \leq z
\end{aligned}
$$

Theorem (Richardson, 1968)

There is a elementary function of two variables, $G(m, x)$, such that, as m varies over \mathbb{N}, there is no algorithm for deciding whether is a real number x such that $G(m, x) \leq 1 / 2$.

Richardson's results (1)

```
Theorem (Richardson [Ric68])
If 历 contains the identitw function, the rational numbers, n, the
real-valued functions of expressions }|x|\mathrm{ and sin }(x)\mathrm{ , and is closed under
addition, subtraction, multiplication, and composition, then the identity
problem for (\mathcal{E},\Phi) is undecidable.
```

Proof: Take $B(m, x)=|G(m, x)-1|-(G(m, x)-1)$. We have that
$\exists x G(m, x)<1$ if and only if $B(m, x) \not \equiv 0$.

Richardson's results (1)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the real-valued functions of expressions $|x|$ and $\sin (x)$, and is closed under addition, subtraction, multiplication, and composition, then the identity problem for (\mathcal{E}, Φ) is undecidable.

Richardson's results (1)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the real-valued functions of expressions $|x|$ and $\sin (x)$, and is closed under addition, subtraction, multiplication, and composition, then the identity problem for (\mathcal{E}, Φ) is undecidable.

Proof: Take $B(m, x)=|G(m, x)-1|-(G(m, x)-1)$. We have that $\exists x G(m, x)<1$ if and only if $B(m, x) \not \equiv 0$.

Richardson's results (2)

```
Theorem (Richardson [Ric68])
If \Phi contains the identitv function, the rational numbers,n, the
real-valued functions of expressions }x,x,\mp@subsup{e}{}{x}\mathrm{ and sin (x), and it is closed
under addition, subtraction, multiplication, and composition, then the
integration problem for (\mathcal{E},\Phi) is undecidable.
```

Proof: If such integration problem were solvable, we would be able to decide, for each $m \in \mathbb{N}$, whether there were a function $f \in \Phi$ so that

$$
f^{\prime}(x)=e^{x^{2}}(1-(2-2 G(m, x)))
$$

Richardson's results (2)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the real-valued functions of expressions $|x|, e^{x}$ and $\sin (x)$, and it is closed under addition, subtraction, multiplication, and composition, then the integration problem for (\mathcal{E}, Φ) is undecidable.

> Proof: If such integration problem were solvable, we would be able to decide, for each $m \in \mathbb{N}$, whether there were a function $f \in \Phi$ so that

Richardson's results (2)

Theorem (Richardson [Ric68])

If Φ contains the identity function, the rational numbers, π, the real-valued functions of expressions $|x|, e^{x}$ and $\sin (x)$, and it is closed under addition, subtraction, multiplication, and composition, then the integration problem for (\mathcal{E}, Φ) is undecidable.

Proof: If such integration problem were solvable, we would be able to decide, for each $m \in \mathbb{N}$, whether there were a function $f \in \Phi$ so that

$$
f^{\prime}(x)=e^{x^{2}}(1-(2-2 G(m, x)))
$$

Undecidability in Physics

Are there general methods to test for the integrability of a given Hamiltonian? The answer, for the moment, is no. We can turn the question around, however, and ask if methods can be found to construct potentials that give rise to integrable Hamiltonians. The answer is that a method exists, at least for restricted class of problems, but the method becomes rapidly very tedious as the forms allowed for the integrals of the motion are expanded. (A. J. Lichtenberg and M. A. Liberman, Regular and Stochastic Motion.)

Undecidability in Physics

Theorem

```
There is no general algorithmic procedure to determine whether an
arbitrary motion in the }\langlex,y\rangle\mathrm{ -plane, m(t) = <x(t),y(t)\, will cross the
```

y-axis.

Undecidability in Physics

Theorem

There is no general algorithmic procedure to determine whether an arbitrary motion in the $\langle x, y\rangle$-plane, $m(t)=\langle x(t), y(t)\rangle$, will cross the y-axis.

Undecidability in Physics

Theorem

There is no general algorithmic procedure to determine whether an arbitrary motion in the $\langle x, y\rangle$-plane, $m(t)=\langle x(t), y(t)\rangle$, will cross the y-axis.

Undecidability in Physics

Theorem

There is no general algorithmic procedure to determine whether an arbitrary motion in the $\langle x, y\rangle$-plane, $m(t)=\langle x(t), y(t)\rangle$, will cross the y-axis.

Motion in the plane

\square
Proof: Take $x_{m}(t)=G(m, t)-1$. There is no general decision procedure to check whether one has, given an arbitrary $m \in \mathbb{N}, x_{m}(t)<0$ for some t. Take $m(t)=\left\langle x_{m}(t), \frac{1}{2} g t^{2}\right\rangle$.

Motion in the plane

Proof: Take $x_{m}(t)=G(m, t)-1$. There is no general decision procedure to check whether one has, given an arbitrary $m \in \mathbb{N}, x_{m}(t)<0$ for some t. Take $m(t)=\left\langle x_{m}(t), \frac{1}{2} g t^{2}\right\rangle$.

Off Infinite in Finite Time

Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value $t=t^{*}$ where analytic continuation of the solution fails. It requires a distance $r_{i j}(t)$ to become arbitrarily small as $t \rightarrow t^{\star}$.

Example (Example and conjecture)

a collision is a singularity.
Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value $t=t^{\star}$ where analytic continuation of the solution fails. It requires a distance $r_{i j}(t)$ to become arbitrarily small as $t \rightarrow t^{\star}$.

Example (Example and conjecture)
E.g., a collision is a singularity.

Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value $t=t^{\star}$ where analytic continuation of the solution fails. It requires a distance $r_{i j}(t)$ to become arbitrarily small as $t \rightarrow t^{\star}$.

Example (Example and conjecture)

E.g., a collision is a singularity. But are all singularities collisions?

Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value $t=t^{\star}$ where analytic continuation of the solution fails. It requires a distance $r_{i j}(t)$ to become arbitrarily small as $t \rightarrow t^{\star}$.

Example (Example and conjecture)

E.g., a collision is a singularity. But are all singularities collisions? Problem raised in the turn XIX/XX by Painlevé and Zeipel.

Off Infinite in Finite Time

Definition (Singularity)

A singularity is a time value $t=t^{\star}$ where analytic continuation of the solution fails. It requires a distance $r_{i j}(t)$ to become arbitrarily small as $t \rightarrow t^{\star}$.

Example (Example and conjecture)

E.g., a collision is a singularity. But are all singularities collisions? Problem raised in the turn XIX/XX by Painlevé and Zeipel.
The way to the solution was provided by Sundman, Wintner, McGehee, Gerver, Saari, Xia.

Non-collision singularity

Non-collision singularity

Let

We can have

- $\lim \sup _{t \rightarrow t^{\star}}$

Non-collision singularity

Let
- $r_{\text {min }}(t)=\min _{i \neq j} r_{i j}(t)$

We can have

- $\lim \sup _{t \rightarrow t^{\star}} r_{\min }(t)>r>0$

Non-collision singularity

Let
- $r_{\text {min }}(t)=\min _{i \neq j} r_{i j}(t)$

We can have

Non-collision singularity

Let

- $r_{\text {min }}(t)=\min _{i \neq j} r_{i j}(t)$

We can have

- $\liminf _{t \rightarrow t^{\star}} r_{\text {min }}(t)=0$

Non-collision singularity

Let

- $r_{\text {min }}(t)=\min _{i \neq j} r_{i j}(t)$

We can have

- $\liminf _{t \rightarrow t^{\star}} r_{\text {min }}(t)=0$
- $\lim \sup _{t \rightarrow t^{\star}} r_{\min }(t)>r>0$

3-D solution, Zhihong Xia [Xia92]

2-D solution, Joseph Gerver [Ger91]

2-D solution, Joseph Gerver [Ger91]

Topology

Theorem (Uncountably many topologies, Warren Smith [Smi06])

Topology

Theorem (Uncountably many topologies, Warren Smith [Smi06])

N point masses in the plane, for some finite fixed value of N, whose initial positions, masses, and velocities lie inside a cube in $\mathbb{R}^{7 n}$, can describe an uncountably infinite number of topological distinct trajectories in 1 second. In contrast, a Turing machine simulator can only output one of a finite number of possible outputs, in a finite timespan. The initial location and velocities of the bodies required to force a future trajectory of described topological type, are computable real numbers.

Topology

Theorem (Uncountably many topologies, Warren Smith [SmiO6])
 N point masses in the plane, for some finite fixed value of N, whose initial positions, masses, and velocities lie inside a cube in $\mathbb{R}^{7 n}$, can describe an uncountably infinite number of topological distinct trajectories in 1 second.

Topology

Theorem (Uncountably many topologies, Warren Smith [Smi06])

N point masses in the plane, for some finite fixed value of N, whose initial positions, masses, and velocities lie inside a cube in $\mathbb{R}^{7 n}$, can describe an uncountably infinite number of topological distinct trajectories in 1 second. In contrast, a Turing machine simulator can only output one of a finite number of possible outputs, in a finite timespan.
described topological type, are computable real numbers.

Topology

Theorem (Uncountably many topologies, Warren Smith [Smi06])

N point masses in the plane, for some finite fixed value of N, whose initial positions, masses, and velocities lie inside a cube in $\mathbb{R}^{7 n}$, can describe an uncountably infinite number of topological distinct trajectories in 1 second. In contrast, a Turing machine simulator can only output one of a finite number of possible outputs, in a finite timespan. The initial location and velocities of the bodies required to force a future trajectory of described topological type, are computable real numbers.

TYPE I Topology

TYPE II Topology

Singularity

TM:

The halting revisited

Description of \mathcal{M}_{3}

Given the initial real number data in such a form that \mathcal{M}_{3} can access more bits on demand, by some integration scheme, \mathcal{M}_{3} simulates the motion of the n-body system to sufficient accuracy to be confident it knows the topology of the trajectories the bodies take in $1 s$.

Theorem (Solving the halting problem in 1 s)
 \mathcal{M}_{3} halts if and only if the N bodies do not reach the singularity in $1 s$.

The halting revisited

Description of \mathcal{M}_{3}

Given the initial real number data in such a form that \mathcal{M}_{3} can access more bits on demand, by some integration scheme, \mathcal{M}_{3} simulates the motion of the n-body system to sufficient accuracy to be confident it knows the topology of the trajectories the bodies take in $1 s$.

The halting revisited

Description of \mathcal{M}_{3}

Given the initial real number data in such a form that \mathcal{M}_{3} can access more bits on demand, by some integration scheme, \mathcal{M}_{3} simulates the motion of the n-body system to sufficient accuracy to be confident it knows the topology of the trajectories the bodies take in $1 s$.

Theorem (Solving the halting problem in 1s)
 \mathcal{M}_{3} halts if and only if the N bodies do not reach the singularity in $1 s$.

Church-Turing thesis

Abstract of Warren Smith's paper on the n-body problem. Church's thesis is at the foundation of computer science. We point out that any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable. Trying to do so is valuable. In Newton's laws of physics with point masses, we outline a proof that Church's thesis is false; physics is unsimulable. But with certain more realistic laws of motion, incorporating some relativistic effects, the extended Church's thesis is true.

Church-Turing thesis

Abstract of Warren Smith's paper on the n-body

problem. Church's thesis is at the foundation of computer science. We point out that any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable.
physics with point masses, we outline a proof that Church's thesis is false; physics is unsimulable.

Church-Turing thesis

Abstract of Warren Smith's paper on the n-body

problem. Church's thesis is at the foundation of computer science. We point out that any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable. Trying to do so is valuable.
physics with point masses, we outline a proof that Church's
thesis is false; physics is unsimulable.

Church-Turing thesis

Abstract of Warren Smith's paper on the n-body

problem. Church's thesis is at the foundation of computer science. We point out that any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable. Trying to do so is valuable. In Newton's laws of physics with point masses, we outline a proof that Church's thesis is false; physics is unsimulable.

Church-Turing thesis

Abstract of Warren Smith's paper on the n-body

problem. Church's thesis is at the foundation of computer science. We point out that any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable. Trying to do so is valuable. In Newton's laws of physics with point masses, we outline a proof that Church's thesis is false; physics is unsimulable. But with certain more realistic laws of motion, incorporating some relativistic effects, the extended Church's thesis is true.

Conclusions of the section

```
Philosophic question
If M/arren's proof had been done in the beginning of the XX century, would
the physicists have tried to reformulate Newtonian physics to make
Physics simulatable and reestablish the Church-Turing thesis?
```

CT as refutation tool
Can we uce a comnutational perspective (such like CT) as a refutation
tool of a scientific theory?

Conclusions of the section

Philosophic question
If Warren's proof had been done in the beginning of the XX century, would the physicists have tried to reformulate Newtonian physics to make Physics simulatable and reestablish the Church-Turing thesis?

CT as refutation tool

Conclusions of the section

Philosophic question

If Warren's proof had been done in the beginning of the XX century, would the physicists have tried to reformulate Newtonian physics to make Physics simulatable and reestablish the Church-Turing thesis?

CT as refutation tool

Can we use a computational perspective (such like CT) as a refutation tool of a scientific theory?

Conclusions of the section

Philosophic question

If Warren's proof had been done in the beginning of the XX century, would the physicists have tried to reformulate Newtonian physics to make Physics simulatable and reestablish the Church-Turing thesis?

CT as refutation tool

Can we use a computational perspective (such like CT) as a refutation tool of a scientific theory? If not, what is the meaning of a non simulatable scientific theory?

The Scientist Concept

The idea

A 'function' \mathcal{M} embeds an algorithmic physical law whenever \mathcal{M}, on inputting the observations/measurements of an experiment. outputs a new 'programme' e, which simulates the instance of the physical law 'encoded' in the input (denoted by a text containing numbers).
 The new 'programme' $\{e\}$, on input of some values assigned to the magnitudes of the involved physical concepts, outputs the predicted value of the derived physical concept for which the law was stated.

The idea

A 'function' \mathcal{M} embeds an algorithmic physical law whenever \mathcal{M}, on inputting the observations/measurements of an experiment, outputs a new 'programme' e, which simulates the instance of the physical law 'encoded' in the input (denoted by a text containing numbers).

The new 'programme' $\{e\}$, on input of some values assigned to the magnitudes of the involved physical concepts, outputs the predicted value of the derived physical concept for which the law was stated.

The idea

A 'function' \mathcal{M} embeds an algorithmic physical law whenever \mathcal{M}, on inputting the observations/measurements of an experiment, outputs a new 'programme' e, which simulates the instance of the physical law 'encoded' in the input (denoted by a text containing numbers).

The new 'programme' $\{e\}$, on input of some values assigned to the magnitudes of the involved physical concepts, outputs the predicted value of the derived physical concept for which the law was stated.

Boyle's law

Boyle's law

The pressure of an ideal gas inside a flexible container, maintained at a constant temperature during a process of expansion or contraction, is proportional the the inverse of its volume.

Boyle's law

Boyle's law

The pressure of an ideal gas inside a flexible container, maintained at a constant temperature during a process of expansion or contraction, is proportional the the inverse of its volume.

The scientist 'Boyle', on inputting text like this

Boyle's law

Boyle's law

The pressure of an ideal gas inside a flexible container, maintained at a constant temperature during a process of expansion or contraction, is proportional the the inverse of its volume.

BOYLE'S LAW :

$$
p V=\mathrm{const}
$$

The scientist 'Boyle', on inputting text like this

Boyle's law

Boyle's law

The pressure of an ideal gas inside a flexible container, maintained at a constant temperature during a process of expansion or contraction, is proportional the the inverse of its volume.
BOYLE'S LAW :

$$
p V=c o n s t
$$

The scientist 'Boyle', on inputting text like this $\left\langle 5, \frac{2}{5}\right\rangle \#\left\langle 10, \frac{1}{5}\right\rangle \#\left\langle 20, \frac{1}{10}\right\rangle \# \ldots$, outputs the code e for the instance of Boyle's law with the constant 2.

Scientists work with text!

Text et al.

1 A text T for a function is a map of type $\mathbb{N} \rightarrow[(\mathbb{N} \times \mathbb{N}) \cup\{\#\}]$, where the elements of the graph of a function $\psi,\langle t, \psi(t)\rangle$, for $t, \psi(t) \in \mathbb{N}$, are given separated by \#.

2 The set of all prefixes of text for functions is $I N I T=\{T[t]: T$ is a text for a function and $t \in \mathbb{N}\}$.

Scientists work with text!

Text et al.

1 A text T for a function is a map of type $\mathbb{N} \rightarrow[(\mathbb{N} \times \mathbb{N}) \cup\{\#\}]$, where the elements of the graph of a function $\psi,\langle t, \psi(t)\rangle$, for $t, \psi(t) \in \mathbb{N}$, are given separated by \#.

2 The set of all prefixes of text for functions is INIT $=\{T[t]: T$ is a text for a function and $t \in \mathbb{N}\}$.

Scientists work with text!

Text et al.

1 A text T for a function is a map of type $\mathbb{N} \rightarrow[(\mathbb{N} \times \mathbb{N}) \cup\{\#\}]$, where the elements of the graph of a function $\psi,\langle t, \psi(t)\rangle$, for $t, \psi(t) \in \mathbb{N}$, are given separated by $\#$. By $T[t]$ we denote the sequence of the first t elements of T.

2 The set of all prefixes of text for functions is $I N I T=\{T[t]: T$ is a text for a function and $t \in \mathbb{N}\}$.

Scientists work with text!

Text et al.

1 A text T for a function is a map of type $\mathbb{N} \rightarrow[(\mathbb{N} \times \mathbb{N}) \cup\{\#\}]$, where the elements of the graph of a function $\psi,\langle t, \psi(t)\rangle$, for $t, \psi(t) \in \mathbb{N}$, are given separated by $\#$. By $T[t]$ we denote the sequence of the first t elements of T.

2 The set of all prefixes of text for functions is $I N I T=\{T[t]: T$ is a text for a function and $t \in \mathbb{N}\}$.

Scientist

Definition (Scientist)

A scientist is a function (possibly partial, not necessarily computable) of type INIT $\rightarrow \mathbb{N}$.

Scientist

Definition (Scientist)
A scientist is a function (possibly partial, not necessarily computable) of type $I N I T \rightarrow \mathbb{N}$.

Depicting a scientist

General Identification

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of ψ.

Depicting a scientist

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of ψ.

Depicting a scientist

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of ψ.

Depicting a scientist

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of ψ.

Depicting a scientist

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of ψ.

Success for functions

Definition (Scientific success on a single function, Gold [Gol67]) Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ a total function. We say that scientist \mathcal{M} identifies ψ if there exists an $e \in \mathbb{N}$ and an order p such that, for $t \geq p, \mathcal{M}(\psi[t])=e$

Definition (Scientific success on a collection of functions, Gold [Gol67])
Let S be a set of total functions. We say that scientist \mathcal{M} identifies S just in case she identifies every $\psi \in S$.

Success for functions

Definition (Scientific success on a single function, Gold [Gol67])

Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ a total function. We say that scientist \mathcal{M} identifies ψ if there exists an $e \in \mathbb{N}$ and an order p such that, for $t \geq p, \mathcal{M}(\psi[t])=e$ and $\phi_{e}=\psi$.

Success for functions

Definition (Scientific success on a single function, Gold [Gol67])

Let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ a total function. We say that scientist \mathcal{M} identifies ψ if there exists an $e \in \mathbb{N}$ and an order p such that, for $t \geq p, \mathcal{M}(\psi[t])=e$ and $\phi_{e}=\psi$.

Definition (Scientific success on a collection of functions, Gold [Gol67])

Let S be a set of total functions. We say that scientist \mathcal{M} identifies S just in case she identifies every $\psi \in S$.

Scientist Boyle

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Boyle's law for the particular ideal gas under consideration.

Scientist Boyle

$E X$-identification

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Boyle's law for the particular ideal gas under consideration.

Scientist Boyle

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Boyle's law for the particular ideal gas under consideration.

Scientist Boyle

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Boyle's law for the particular ideal gas under consideration.

Scientist Boyle

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Boyle's law for the particular ideal gas under consideration.

Popper on precision in [Pop35]

Assume that the consequences of two theories differ so little in all fields of application that the very small differences between the calculated observable events cannot be detected, owing to the fact that the degree of precision attainable in our measurements is not sufficiently high. It will then be impossible
 improving our technique of measurements. This shows that the prevailing technique of measurement determines a certain range - a region within which discrepancies between observations are permitted by the theory.

Popper on precision in [Pop35]

Assume that the consequences of two theories differ so little in all fields of application that the very small differences between the calculated observable events cannot be detected, owing to the fact that the degree of precision attainable in our measurements is not sufficiently high. It will then be impossible to decide by experiments between the two theories, without first improving our technique of measurements. This shows that the prevailing technique of measurement determines a certain range - a region within which discrepancies between observations are permitted by the theory.

Scientist Van der Walls

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume [Pressure] outputs the instance of Van der Nalls' law for the particular gas under consideration: $\left(n+\frac{a n^{2}}{V^{2}}\right)(T-n b)=$ const.

Scientist Van der Walls

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Van der Walls' law for the particular gas under consideration: $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=$ const.

Scientist Van der Walls

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Van der Walls' law for the particular gas under consideration: $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=$ const.

Scientist Van der Walls

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Van der Walls' law for the particular gas under consideration: $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=$ const.

Scientist Van der Walls

ϕ_{e} is an instance of Van der Walls law

Figure: For all $t \geq p$, scientist \mathcal{M} on input Volume[Pressure] outputs the instance of Van der Walls' law for the particular gas under consideration: $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=$ const.

Van der Walls gas

Figure: Van der Walls constitutive equation.

EXplain

```
Definition (EX n}\mathrm{ -identification, Gold [Gol67], Case and Smith
[CS78, CS83])
A set S of (total) recursive functions is said to belong to class EX n}\mathrm{ , if
there exists a scientist }\mathcal{M}\mathrm{ such that, for each }\psi\inS\mathrm{ , there exists an order
```



```
n-variant code for }\psi\mathrm{ .
```

Definition ($E X^{\star}$-identification, Blum and Blum [BB75], Case and Smith
[CS78, CS83])
A set S of (total) recursive functions is said to belong to class $E X^{*}$, if
each function $\psi \in S$ belongs to $E X^{n}$ for some $n \in \mathbb{N}$.

EXplain

Definition ($E X^{n}$-identification, Gold [Gol67], Case and Smith [CS78, CS83])

A set S of (total) recursive functions is said to belong to class $E X^{n}$, if there exists a scientist \mathcal{M} such that, for each $\psi \in S$, there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \mathcal{M}$ on input $\psi[t]$ outputs the same n-variant code for ψ.

EXplain

Definition ($E X^{n}$-identification, Gold [Gol67], Case and Smith [CS78, CS83])

A set S of (total) recursive functions is said to belong to class $E X^{n}$, if there exists a scientist \mathcal{M} such that, for each $\psi \in S$, there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \mathcal{M}$ on input $\psi[t]$ outputs the same n-variant code for ψ.

Definition ($E X^{\star}$-identification, Blum and Blum [BB75], Case and Smith [CS78, CS83])

A set S of (total) recursive functions is said to belong to class $E X^{\star}$, if each function $\psi \in S$ belongs to $E X^{n}$ for some $n \in \mathbb{N}$.

$E X^{n}$ plain

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of an n-variant of ψ, i.e., $\phi_{e}=$ $-n$

$E X^{n}$ plain

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of an n-variant of ψ, i.e., $\phi_{e}={ }^{n} \psi$.

$E X^{n}$ plain

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of an n-variant of ψ, i.e., $\phi_{e}={ }^{n} \psi$.

$E X^{n}$ plain

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of an n-variant of ψ, i.e., $\phi_{e}={ }^{n} \psi$.

$E X^{n}$ plain

Figure: For all $t \geq p$, scientist \mathcal{M} on input $\psi[t]$ outputs code e of an n-variant of ψ, i.e., $\phi_{e}={ }^{n} \psi$.

Non-union theorem

Proposition (Blum and Blum [BB75], Jain et al. [JORS99])
The class EX is not closed under union.

Proof: We prove that $\mathcal{A E Z} \cup \mathcal{S D}$ is not $E X$-identifiable.

Proof: We prove that $\mathcal{A E Z} \cup \mathcal{S D}$ is not $E X$-identifiable.

FUNCTION f :

Function $f(e, x: \mathbb{N}): \mathbb{N}$;
Var σ : list of $\mathbb{N} \times \mathbb{N}$;
Begin
$\sigma:=\langle 0, e\rangle ;$
While true Do Begin
Find the least $\tau \in I N I T, \tau \supset \sigma$, such that $\mathcal{M}(\tau) \neq \mathcal{M}(\sigma)$;
$\sigma:=\tau$;
If $x \in \operatorname{dom}(\widehat{\sigma})$ Then Return $\widehat{\sigma}(x)$
End
End

Non-union theorem

Proposition

Non-union theorem

Proposition

$\mathcal{R} \notin E X$.

Unification of theories

From what was argued above we can state:
Theorem (Unification of scientific laws)
Unification of scientific laws (as algorithms) is not always possible within the paradigm EX

Unification of theories

From what was argued above we can state:
Theorem (Unification of scientific laws)
Unification of scientific laws (as algorithms) is not always possible within the paradigm EX.

For the team in $E X^{1}$

Proof: Take \mathcal{M}_{1} as the scientist which outputs $\psi(0)$ as his unique conjecture, the first element of the input subgraph. Scientist \mathcal{M}_{1} will be 'EX-incorrect' for functions which differ from $\phi_{\psi(0)}$ exactly in one point. For \mathcal{M}_{2} we consider a more sophisticated scientist...

```
M
If }x=i\mathrm{ , Then Output }\psi(i)\mathrm{ , Else Output { }\psi(0)}(x)
```


For the team in $E X^{1}$

Proof: Take \mathcal{M}_{1} as the scientist which outputs $\psi(0)$ as his unique conjecture, the first element of the input subgraph. Scientist \mathcal{M}_{1} will be ' $E X$-incorrect' for functions which differ from $\phi_{\psi(0)}$ exactly in one point. For \mathcal{M}_{2} we consider a more sophisticated scientist...

For the team in $E X^{1}$

Proof: Take \mathcal{M}_{1} as the scientist which outputs $\psi(0)$ as his unique conjecture, the first element of the input subgraph. Scientist \mathcal{M}_{1} will be ' $E X$-incorrect' for functions which differ from $\phi_{\psi(0)}$ exactly in one point. For \mathcal{M}_{2} we consider a more sophisticated scientist...

$$
\mathcal{M}_{2} \text { Outputs Programme: }
$$

If $x=i$, Then Output $\psi(i)$, Else Output $\{\psi(0)\}(x)$.

$B C$-identification

Definition ($B C^{n}$-identification, Case and Smith [CS78, CS83])

Definition ($B C^{\star}$-identification, Case and Smith [CS78, CS83])

 A set S of recursive functions is said to belong to class $B C^{\star}$, if each function $\psi \in S$ belongs to $B C^{n}$ for some $n \in \mathbb{N}$.
$B C$-identification

Definition ($B C^{n}$-identification, Case and Smith [CS78, CS83])

We say that a scientist $\mathcal{M} B C^{n}$-identifies a function $\psi \in \mathcal{R}$, if there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t)}$ is a n-variant code for ψ. We say that a scientist $\mathcal{M} B C^{n}$-identifies a set of functions $S \subseteq \mathcal{R}$, if, for all $\psi \in S$, there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ.

Definition (BC ${ }^{\star}$-identification, Case and Smith [CS78, CS83])

A set S of recursive functions is said to belong to class $B C^{\star}$, if each function $\psi \in S$ belongs to $B C^{n}$ for some $n \in \mathbb{N}$.

$B C$-identification

Definition ($B C^{n}$-identification, Case and Smith [CS78, CS83])

We say that a scientist $\mathcal{M} B C^{n}$-identifies a function $\psi \in \mathcal{R}$, if there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ.
\square
 function $\psi \in S$ belongs to $B C^{n}$ for some $n \in \mathbb{N}$.

$B C$-identification

Definition ($B C^{n}$-identification, Case and Smith [CS78, CS83])

We say that a scientist $\mathcal{M} B C^{n}$-identifies a function $\psi \in \mathcal{R}$, if there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ. We say that a scientist $\mathcal{M} B C^{n}$-identifies a set of functions $S \subseteq \mathcal{R}$, if, for all $\psi \in S$, there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ.

$B C$-identification

Definition ($B C^{n}$-identification, Case and Smith [CS78, CS83])

We say that a scientist $\mathcal{M} B C^{n}$-identifies a function $\psi \in \mathcal{R}$, if there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ. We say that a scientist $\mathcal{M} B C^{n}$-identifies a set of functions $S \subseteq \mathcal{R}$, if, for all $\psi \in S$, there exists an order $p \in \mathbb{N}$ such that, for all $t \geq p, \phi_{\mathcal{M}(\psi[t])}$ is a n-variant code for ψ.

Definition ($B C^{\star}$-identification, Case and Smith [CS78, CS83])

A set S of recursive functions is said to belong to class $B C^{\star}$, if each function $\psi \in S$ belongs to $B C^{n}$ for some $n \in \mathbb{N}$.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

John Case writes in [Cas11]:
 Hence, tolerating anomalies st ictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C
$$

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{gathered}
E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \\
B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star}
\end{gathered}
$$

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{gathered}
\mathcal{R} \notin E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \\
B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star}
\end{gathered}
$$

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{aligned}
& \mathcal{R} \notin E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \not \supset \mathcal{R} \\
& \mathcal{R} \notin B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star}
\end{aligned}
$$

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{gathered}
\mathcal{R} \notin E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \not \supset \mathcal{R} \\
\mathcal{R} \notin B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star} \ni \mathcal{R}
\end{gathered}
$$

John Case writes in [Cas11]
 Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{gathered}
\mathcal{R} \notin E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \not \supset \mathcal{R} \\
\mathcal{R} \notin B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star} \ni \mathcal{R}
\end{gathered}
$$

John Case writes in [Cas11]:
Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes.

Non-collapsing hierarchy

Proposition (The hierarchy of scientists, mainly from Case and Smith [CS78, CS83], Harrington [CS83])

$$
\begin{gathered}
\mathcal{R} \notin E X=E X^{0} \subset \cdots \subset E X^{n} \subset \cdots \subset E X^{\star} \subset B C \not \supset \mathcal{R} \\
\mathcal{R} \notin B C=B C^{0} \subset \cdots \subset B C^{n} \subset \cdots \subset B C^{\star} \ni \mathcal{R}
\end{gathered}
$$

John Case writes in [Cas11]:
Hence, tolerating anomalies strictly increases the inferring power as does relaxing the restriction of (syntactic) convergence to single programmes. Physicists use of slightly faulty explanations is vindicated!

$\mathcal{R} \in B C^{\star}$

Proposition (Leo Harrington)

$\mathcal{R} \in B C^{\star}$

Proposition (Leo Harrington)

$\mathcal{R} \in B C^{\star}$.

Popper's Refutation Principle

Falsifiability

Popper states in the kernel of [Pop35]:

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]
\qquad

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]

Basic statements must therefore satisfy the following conditions: (a) From a universal statement without initial conditions, no basic statement can be deduced.

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]

Basic statements must therefore satisfy the following conditions: (a) From a universal statement without initial conditions, no basic statement can be deduced. On the other hand, (b) a universal statement and a basic statement can contradict each other.
that its negation cannot be a basic statement in its turn

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]

Basic statements must therefore satisfy the following conditions: (a) From a universal statement without initial conditions, no basic statement can be deduced. On the other hand, (b) a universal statement and a basic statement can contradict each other. Condition (b) can only be satisfied if it is possible to derive the negation of a basic statement from the theory which it contradicts.
that its negation cannot be a basic statement in its turn

Falsifiability

Popper states in the kernel of [Pop35]:

It has already been briefly indicated what rôle the basic statements play within the epistemological theory I advocate. We need them in order to decide whether a theory is to be called falsifiable, i.e. empirical [...] And we also need them for the corroboration of falsifying hypothesis, and thus for the falsification of theories [...]

Basic statements must therefore satisfy the following conditions: (a) From a universal statement without initial conditions, no basic statement can be deduced. On the other hand, (b) a universal statement and a basic statement can contradict each other. Condition (b) can only be satisfied if it is possible to derive the negation of a basic statement from the theory which it contradicts. From this and condition (a) it follows that a basic statement must have a logical form such that its negation cannot be a basic statement in its turn.

Popper's refutability principle

Popper's refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist \mathcal{M} may not be refutable (!), for

```
John Case adds in [Cas11]:
Hence, thanks to the unsolvability of the Halting Problem (see [Rog67]), Popper's
Refutability Principle (in [Pop35]) is violated in a way Popper didn't consider ([CS78, CS83])!
```


Popper's refutability principle

Popper's refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist \mathcal{M} may not be refutable (!), for

```
1 It is not known if the instance }\mp@subsup{\phi}{e}{}\mathrm{ is undefined on some y;
```

```
Programme {e} on input }y\mathrm{ does not halt, i.e., one can not prepare any
experimental apparatus to refute "theory \mathcal{M}}\mathrm{ on }y\mathrm{ ", given a basic statement
such as \mp@subsup{\phi}{e}{}(y)\not=\psi(y), where \mp@subsup{\phi}{e}{}(y)\mathrm{ is the prediction and}
observation, since it is not even known with generality if {e}(y) halts or not
```

and, consequently, produce a prediction refutable by observation.

John Case adds in [Cas11]

Hence thanks to the unsolvability of the Halting Problem (see [Rog67]), Popper's Refutability Principle (in [Pop35]) is violated in a way Popper didn't consider ([CS78, CS83])!

Popper's refutability principle

Popper's refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist \mathcal{M} may not be refutable (!), for
1 It is not known if the instance ϕ_{e} is undefined on some y;

\square
John Case adds in [Cas11]
Hence, thanks to the unsolvability of the Halting Problem (see [Rog67]), Popper's Refutability Principle (in [Pop35]) is violated in a way Popper didn't consider ([CS78, CS83])!

Popper's refutability principle

Popper's refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist \mathcal{M} may not be refutable (!), for
1 It is not known if the instance ϕ_{e} is undefined on some y;
2 Programme $\{e\}$ on input y does not halt, i.e., one can not prepare any experimental apparatus to refute "theory \mathcal{M} on y ", given a basic statement such as $\phi_{e}(y) \neq \psi(y)$, where $\phi_{e}(y)$ is the prediction and $\psi(y)$ is the observation, since it is not even known with generality if $\{e\}(y)$ halts or not and, consequently, produce a prediction refutable by observation.

Popper's refutability principle

Popper's refutability principle, Case and Smith [CS78, CS83]

The theory embedded in scientist \mathcal{M} may not be refutable (!), for
1 It is not known if the instance ϕ_{e} is undefined on some y;
2 Programme $\{e\}$ on input y does not halt, i.e., one can not prepare any experimental apparatus to refute "theory \mathcal{M} on y ", given a basic statement such as $\phi_{e}(y) \neq \psi(y)$, where $\phi_{e}(y)$ is the prediction and $\psi(y)$ is the observation, since it is not even known with generality if $\{e\}(y)$ halts or not and, consequently, produce a prediction refutable by observation.

John Case adds in [Cas11]:

Hence, thanks to the unsolvability of the Halting Problem (see [Rog67]), Popper's Refutability Principle (in [Pop35]) is violated in a way Popper didn't consider ([CS78, CS83])!

Bibliography I

[BB75] Lenore Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and Control, 28:125-155, 1975.
[Cas11] John Case. Algorithmic scientific inference, within our computable expected reality, 2011. Technical Report, SUNY/Buffalo.
[CS78] John Case and Carl Smith. Anomaly hierarchies of mechanized inductive inference. In Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, pages 314-319. ACM, San Diego, California, USA, 1978.
[CS83] John Case and Carl Smith. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science, 25(2):193-220, 1983.

Bibliography II

[Ger91] Joseph Gerver. The existence of pseudo-collisions in the plane. Journal of Differential Equations, 89:1-68, 1991.
[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447-474, 1967.
[JORS99] Sanjay Jain, Daniel N. Osherson, James S. Royer, and Arun Sharma. Systems That Learn. An Introduction to Learning Theory. The MIT Press, second edition, 1999.
[Pop35] Karl R. Popper. The Logic of Scientific Discovery. Routledge, 1935. First English edition published in 1959 by Hutchinson \& Co. First published by Routledge in 1992.
[Ric68] Daniel Richardson. Some undecidable problems involving elementary functions of a real variable. The Journal of Symbolic Logic, 33(4):514-520, 1968.

Bibliography III

[Rog67] Karl R. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New York, 1967. Reprinted in 1987 by MIT Press.
[Smi06] Warren Smith. Church's thesis meets the N-body problem. Applied Mathematics and Computation, 178(1):154-183, 2006.
[Xia92] Zhihong Xia. The existence of noncollision singularities in Newtonian systems. The Annals of Mathematics, Second Series, 135(3):411-468, 1992.

