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Centro de Matemática, Universidade do Minho,

Campus de Gualtar, 4700-320 Braga, Portugal.

E-mail: jcosta@math.uminho.pt

M. ZEITOUN
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The notion of reducibility for a pseudovariety has been introduced as an abstract
property which may be used to prove decidability results for various pseudovariety
constructions. This paper is a survey of recent results establishing this and the

stronger property of complete reducibility for specific pseudovarieties.

1. Introduction

One of the most fruitful settings for the applications of the theory of finite

semigroups in computer science has been formalized by Eilenberg in [25].

The classification of rational languages according to several natural com-

binatorial properties is translated in terms of the pseudovarieties of finite

semigroups to which their syntactic semigroups belong. Several combinato-

rial constructions on rational languages correspond to algebraic operations

on semigroups which have counterparts as operations on pseudovarieties.

See [25, 28, 33, 1] for background and examples.

To establish decidability results for certain pseudovariety constructions,

one is often led to a decision problem which consists in determining whether

a system of equations of some suitable type with rational constraints admits

a solution modulo every semigroup of a given pseudovariety V. A stan-
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dard compactness argument allows us to transfer this problem to deciding

whether the system has a solution in a fixed free pro-V semigroup ΩAV.

Since such semigroups are usually uncountable, these decision problems

are hard to handle directly but a successful approach has been devised by

Almeida and Steinberg [12, 11]. Under mild hypotheses on V (recursive

enumerability) and on the type of equations (recursive enumerability of the

corresponding signature, as well as computability of its operations), it is

easy to exhibit a semi-algorithm to enumerate the systems which do not

have solutions. So, the question amounts to determining whether there is

also a semi-algorithm to enumerate those systems that do have solutions.

Since there are too many candidates for solutions, the next idea is to reduce

the universe where solutions need to be sought. This leads to the reducibil-

ity property: if the system admits a solution then it admits a solution of

a special type. The universe of candidates for solutions that is most of-

ten encountered consists of the smallest subsemigroup of the free profinite

semigroup ΩAS containing the free generators which is closed under unary

pseudo-inversion s 7→ sω−1. If the reducibility property holds for every

finite system of equations, then we say that V is completely reducible. For

the method to be successful, besides this reducibility property, one needs

the decidability of a word problem so as to be able to determine whether a

candidate for a solution is actually a solution.

This paper is a survey of reducibility results for pseudovarieties. We also

present a sketch of a proof that the pseudovariety R, of all finite R-trivial

semigroups, is completely reducible. The proof is inspired by Makanin’s

algorithm to decide whether a finite system of word equations with rational

constraints has a solution in the free semigroup [30, 31, 29]. It suggests

new connections between Finite Semigroup Theory and Combinatorics on

Words which deserve further investigation. The full details of the proof will

appear elsewhere [6].

2. How we are led to systems of equations

We start by illustrating with two examples how decision problems for sys-

tems of equations come up when trying to prove decidability of pseudovari-

ety constructions through bases of pseudoidentities for such pseudovarieties.

Let Sl denote the pseudovariety [[x2 = x, xy = yx]] of all finite semilat-

tices. Given any pseudovariety V, the Basis Theorem for semidirect prod-

ucts [16]a gives the following basis of pseudoidentities for the semidirect

aThe proof of the Basis Theorem is known to have a gap in its full generality, although
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product of Sl with V:

Sl ∗ V = [[wu2 = wu, wuv = wvu : V |= wu = wv = w]].

Thus, to check whether a given finite semigroup S belongs to Sl ∗ V, it

suffices to verify the following condition:

let w̄, ū, v̄ ∈ S be such that at least one of the inequalities w̄ū2 6= w̄ū

and w̄ūv̄ 6= w̄v̄ū holds; then there are no elements w, u, v ∈ ΩAS

and evaluation of the generators A in S such that:

(1) w, u, v are evaluated to w̄, ū, v̄, respectively;

(2) V |= wu = wv = w.

Thus, we are led to consider the system of equations zx = zy = z upon

whose variables x, y, z we impose constraints in the semigroup S. We would

like to be able to decide whether there is some solution of the system mod-

ulo V in the sense that the above conditions (1) and (2) hold.

A similar example is provided by Mal’cev products. Bases of pseu-

doidentities for Mal’cev products have been described by Pin and Weil [34]:

Sl©m V = [[u2 = u, uv = vu : V |= u2 = u = v]].

Here, the system consists of the equations x2 = x = y. But, otherwise, the

nature of the decision problem is the same: to be able to decide whether,

imposing constraints for the variables in a given finite semigroup, the system

admits a solution modulo every semigroup from V.

The type of equations that appear depends on the operation on pseu-

dovarieties that one is interested in computing and on a certain parameter

from the “other” pseudovariety. In the above cases, the parameter is re-

spectively a graphb

z xy

upon which a basis of pseudoidentities for the globalc gSl may be written,

and the “rank” of the pseudovariety Sl, that is the minimum number of

variables in a basis of pseudoidentities defining it.

its validity remains open. See [3, 42, 36] for further information.
bWe associate a system of equations to a finite directed graph by viewing each edge and

each vertex as a variable and writing the equation xy = z for each edge x
y
−→ z.

cThe global of a pseudovariety of semigroups is the pseudovariety of semigroupoids which

it generates and the restriction under which the Basis Theorem for semidirect products
is known to be valid is that the global of the first factor admit a basis of pseudoidentities
over graphs with a bounded number of vertices.
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In general, we are given a finite system of equations ui = vi (i ∈ I)

over a finite set X of variables for which constraints are chosen in a given

finite semigroup S: sx (x ∈ X). By a solution of the system modulo an

A-generated profinite semigroup T we mean a mapping ϕ : X → ΩAS into

the free profinite semigroup ΩAS over the set A, together with a continuous

homomorphism ψ : ΩAS → S such that the following conditions hold:

(1) ∀x ∈ X, ψ(ϕ(x)) = sx;

(2) ∀i ∈ I, θϕ̂(ui) = θϕ̂(vi),

where ϕ̂ is the unique extension of ϕ to a continuous homomorphism ΩXS →

ΩAS and θ : ΩAS → T is the unique continuous homomorphism determined

by the choice of generators. In case T = ΩAV, we speak of a solution

modulo V. The problem is to decide whether such a solution exists.

There are a number of reformulations and generalizations which we

proceed to present. See [3] for further details. First, it suffices to consider

onto continuous homomorphisms ψ : ΩAS → S, in which case the existence

of a solution modulo V is independent of the finite set A. Second, for a fixed

onto continuous homomorphism ψ : ΩAS → S, the constraints may be lifted

to constraint sets in ΩAS which are therefore clopen subsets of ΩAS, that

is closures of rational languages of the free semigroup A+. In this form, the

problem is formulated entirely as a problem in the free profinite semigroup

ΩAS: the analogous problem with constraints given by clopen subsets of a

fixed free profinite semigroup ΩAS, where solutions modulo V are sought,

is equivalent to the original problem. It may be useful to have variables for

which there is no room for choice for their values, that is they play the role

of parameters. The equations ui = vi may be given by pseudowords,d that

is we may consider pseudo-equations instead of word equations.

As mentioned in the Introduction, it is not hard to obtain a semi-

algorithm for non-solvability. If the system has a solution in ΩAS modulo

V then it also has a solution modulo any A-generated semigroup from V:

every solution modulo V has that property. By a compactness theorem,

the converse is also true. For a specific A-generated semigroup T from V,

the problem of existence of solutions modulo T can be solved by checking

a finite number of candidates. Thus, the existence of solutions modulo V

for finite systems of word equations is (theoretically) decidable if we can

dElements of ΩAS may be called pseudowords when they are viewed as combinatorial
entities generalizing finite words, or implicit operations if they are identified with such
operations via their natural interpretation as operations on finite semigroups.



April 9, 2006 19:22 Proceedings Trim Size: 9in x 6in Almeida-Costa-Zeitoun-CSL2005-revised

5

also exhibit a semi-algorithm that enumerates the solvable systems. The

difficulty is that, ΩAS being uncountable for every non-empty set A, there

are too many candidates for solutions. Moreover, we need to be able to

determine whether a candidate for a solution modulo V actually has this

property, namely whether it satisfies the constraints and the equations,

modulo V. The first difficulty is overcome if we can reduce the existence

of solutions modulo V in ΩAS to the existence of solutions modulo V in

some recursively enumerable subset of ΩAS. A setting for performing such

a reduction was proposed in [11]: a subalgebra Ωσ
AS of ΩAS for an implicit

signature σ, that is a signature consisting of binary multiplication together

with some implicit operations, which have a natural interpretation in ev-

ery finite semigroup. The computational requirements for such a signature

are: (1) it should be recursively enumerable (so that we may enumerate

the members of Ωσ
AS); (2) its operations should be computable in finite

semigroups (so that we may check the constraints); (3) the word problem

for Ωσ
AV should be solvable (so that we may verify whether the equations

hold modulo V).

We say that V is σ-reducible with respect to a class of equation systems

if the existence of a solution modulo V of any system in the class entails

the existence of a solution in σ-terms. In case the class consists of all finite

systems of equations of σ-terms (with parameters also given by σ-terms),

we say that V is completely σ-reducible. If the class consists of all systems of

equations associated with finite graphs, then we say that V is σ-reducible.

An example of a common candidate for such a signature consists of

multiplication together with the unary pseudo-inversion x 7→ xω−1. It is

called the canonical signature and denoted κ; whether it is suitable or not

depends on the pseudovariety V, as we need the word problem for Ωκ
AV

and the appropriate κ-reducibility property. Here are some examples: the

pseudovariety G of all finite groups is κ-reducible [17]e but not completely

eFor groups, κ-reducibility admits a different type of formulation which was originally
established by Ash; the equivalence between the two formulations can be found in [11].
Ash obtained his results as a means to prove the Rhodes Type II Conjecture, whose his-
tory and relevance is explained in [26]. Independently and roughly at the same time, the
conjecture was also proved by Ribes and Zalesskĭı [37] through the theory of profinite
groups. In turn, their result was translated into a result in Model Theory which was ex-
tended by Herwig and Lascar [27] into a deep result about the existence of extensions to
automorphisms (of perhaps larger finite structures) of partial automorphisms of finite re-

lational structures, together with a technical formulation of the same result as a property
about free groups, which explains the connection with the Ribes and Zalesskĭı Theorem.
The formal equivalence of the latter with Ash’s Theorem was recognized in [7, 8]. The
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κ-reducible [24]; for a prime p, the pseudovariety Gp of all finite p-groups is

not κ-reducible but it is σ-reducible for a certain infinite signature σ [2]; the

pseudovariety Ab of all finite Abelian groups is completely κ-reducible [9];

the pseudovariety OCR of all finite orthodox completely regular semigroups

is κ-reducible [13]; the pseudovariety CR of all finite completely regular

semigroups is κ-reducible [14]f ; the pseudovariety LSl of all finite semigroups

S whose local subsemigroups eSe are semilattices is κ-reducible [23]; the

pseudovariety R is κ-reducible [5]; the pseudovariety J of all finite J -trivial

semigroups is completely κ-reducible [3]. The κ-reducibility of the pseu-

dovariety A of all finite aperiodic semigroups was announced by J. Rhodes

in 1997 but no proof has yet been published. The word problem for Ωκ
AA

was solved by McCammond [32] and, independently, by Zhil’tsov [43].

Although the join operation is not as amenable to decidability proofs

through reducibility arguments as the semidirect and Mal’cev products,

there have been investigations in this direction. Both proofs of decidability

of J ∨ G [4, 38], obtained independently, use some form of reducibility of G

and J. The same approach has also been used to study other joins [40, 5].

3. Simplifications

There are a number of simplifications of the problem which we proceed to

examine. See [6] for details.

A first simplification consists in observing that parameters may be

captured by adding extra variables and constraining them suitably: σ-

reducibility for systems without parameters implies σ-reducibility for sys-

tems with parameters given by σ-terms.

Say that a pseudovariety is weakly cancellable if, whenever it satisfies

the pseudoidentity u1#u2 = v1#v2, where the letter # does not occur in

u1, u2, v1, v2, it also satisfies the pseudoidentities u1 = v1 and u2 = v2.

Many familiar pseudovarieties are weakly cancellable: A, R, J, CR, DA

(finite semigroups in which regular elements are idempotent), DO (finite

semigroups in which regular D-classes are orthodox subsemigroups), DS

(finite semigroups in which regular D-classes are subsemigroups), and lo-

cally extensible pseudovarieties of groups in the sense of [22].g If V is weakly

connections between the two approaches to the Type II Conjecture have been extensively
investigated by Steinberg, later joined by Auinger [41, 39, 20, 18, 21].
fAs has been observed by K. Auinger in a private communication, the stronger version of
κ-reducibility for G which is needed in [14] can be established using the methods of [7, 8].
gSee the Appendix for a characterization of weak cancellability in pseudovarieties of
groups.
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cancellable and σ-reducible for systems consisting of just one equation of

σ-terms, without any parameters, then V is completely σ-reducible.

Another simplification stems from the relationship between the canon-

ical signature κ and the alternative signature in which the unary pseudo-

inversion is replaced by the ω-power operation x 7→ xω = xω−1x. Since,

for finite aperiodic semigroups, the two operations coincide, the following

result is not surprising, although it does require a proof: if V is an aperiodic

pseudovariety, then V is κ-reducible for an arbitrary system if and only if

it is reducible for the same system with respect to the signature consisting

of multiplication and the operation x 7→ xω.

4. Further simplifications for the case of R

In this paper, we pay special attention to the case of the pseudovariety R,

for which there are also some specific simplifications of the reducibility

problem which apply.

From the general simplifications of the preceding section, we know that,

if R is κ-reducible for systems consisting of a single equation of κ-terms

without parameters, then R is completely κ-reducible. In fact, it suffices to

consider word equations. The idea is to express that an initial subterm t is

an ω-power of u by the word equation ut = t. This leads to a finite system of

word equations which may then be transformed into a single word equation

taking into account that R is weakly cancellable.

For a pseudoword w ∈ ΩAS, let c(w) be the set of all letters a ∈ A

which are factors of w and let ~c(w) = {a ∈ A : R |= wa = w}.

A solution δ modulo R of the equation u = v is said to be R-reduced

with respect to u = v if it has the following property: for every factor xy

of uv, where x and y are variables, if z is the first letter of δ(y), then R 6|=

δ(x)z = δ(x). Suppose that R is κ-reducible for systems of word equations

without parameters which involve one general equation u = v and all other

equations of the form xy = x, where x and y are variables, and which admit

solutions modulo R which are R-reduced with respect to the equation u = v.

Then R is completely κ-reducible. The idea here is to factorize each δ(x)

as a1u1a2u2 · · · anx
unx

where the ai are letters and indicate their leftmost

occurrences in δ(x). One may introduce nx new variables yx,i to represent

the intermediate factors ui (depending on x) as well as variables za to

represent the individual letters a from the alphabet. Upon the variable yx,i

is imposed a constraint which requires that c(yx,i) ⊆ {a1, . . . , ai}. In turn,

the variables za are constrained to be equal to a. In the original equation,
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for each two-letter factor x1x2, we expand the variable x2 according to the

factorization of its value in a solution δ modulo R, replacing x2 by the

associated product zam
yx2,m · · · zanx2

yx2,nx2
, where am is the first letter in

δ(x2) which does not belong to ~c(δ(x1)), dropping x2 altogether at that

position in the equation if c(δ(x2)) ⊆ ~c(δ(x1)). The resulting finite system

of word equations may be compressed into a single word equation by the

tricks of the preceding section. To retain the information about the value

of each ~c(δ(x)), we add the equations yx,nx
za = yx,nx

whenever a ∈ ~c(δ(x)).

5. Complete reducibility of R

The aim of the remainder of the paper is to sketch a proof of the following

result from [6]. Weaker forms were previously established in [10] and [5].

Theorem 1. The pseudovariety R is completely κ-reducible.

In the sequel, we try as much as possible to formulate the arguments in

a more general setting, thus referring to a general pseudovariety V.

Let u = x1 · · ·xr, v = xr+1 · · ·xs, where the xi are not necessarily

distinct variables from a set X . Suppose that ϕ : X → ΩAS is a solution of

the equation u = v modulo a given pseudovariety V, satisfying prescribed

constraints in a finite semigroup S. Suppose that V determines some kind

of unique factorization in the free profinite semigroup ΩAS and that we

may assume that the solution is such that the resulting factorizations of u

and v under the solution are of that kind. Then the two factorizations must

match. For example, if we have a solution of the equation xyzx = yzxy,

then the two factorizations of the common value of the words xyzx and

yzxy must match, say as indicated in the following diagram:

x y z x

y z x y

The factorizations of the value of a variable corresponding to its different

occurrences in the equation must also be matched and this leads to the

successive refinement of factorizations. How to manage the propagation of

these factorizations which, for pseudowords, may perhaps have to be carried

ad infinitum?

For R the propagation of factorizations has been successfully handled

in [5] in the case of systems of equations associated with finite graphs. The

case of arbitrary word equations is much more delicate. The management of
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the propagation of factorizations is done by adapting ideas from Makanin’s

algorithm to decide whether a finite system of word equations with rational

constraints admits a solution in the free monoid [30, 31]. There is a recent

more efficient (PSPACE) algorithm, due to Plandowski [35]. Since we are

concerned at present with an abstract property rather than the construction

of an algorithm, there is no complexity issue for us, and so we preferred to

use Makanin’s ideas, with which we are more familiar, and which, perhaps

therefore, seem more adjusted to the current problem.

One of the simple ideas in Makanin’s algorithm is to organize the match-

ing of factorizations by only matching a couple of factorizations of the same

word at a time. For instance, for the equation xyzx = yzxy, the matching

might be done as indicated in the following diagram:

v1 v̄1 v2 v̄2

v3 v̄3
v4

v̄4
v5

v̄5

x y z x = y z x y

.......................................
..........................................

.......................................................................................................................................................................... .................................................................
............................................................................. .......................................................................................................................

.....................................................................................................................................................................................................................................................................
......................

...................
...............
...............
..................... ...............................................................................................................................................................................................

.................
.............
.............
.......................

..........................................................................................................................................................................................................................................................
......................

................
..............
.............
.......................

The variables v0 and v̄0 are used to match the common value of both sides

of the equation. Each box is identified by the position i of its beginning (its

left) together with the new variable vk or v̄k that determines it:

i0 v1 i1 v3 i2 v5 i3 v2

i3 v̄1

i4 v4

i4 v̄3

i5
v̄5 i6 v̄2 i7 v̄4

i0 v0 i4 v̄0

The right of a box is where it ends. A quadruple of the form (i, v, j, v̄) is

called a boundary equation. Each of the pairs (i, v) and (j, v̄) that constitute

it corresponds to a box in the diagram and thus to a pseudoword under the

given solution of the original equation. The two pseudowords thus obtained

define a pseudoidentity which is valid in V.

If we are working with finite words, as in Makanin’s algorithm, when we

use a boundary equation (i, v, j, v̄) to match two segments of a solution, the

words are actually equal and therefore we do not have to worry about car-

rying along the constraint value. For pseudowords and solutions modulo V,

the situation is more complicated: under the solution, the two sides are not

really equal but only equal over V. One might formulate the constraints in

terms of conditions in ΩAV but then what we get are in general only closed

sets, rather than clopen sets, and thus a finiteness condition is lost which

turns out to be essential in our reduction arguments.
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Suppose the constraints are given by values in a finite A-generated semi-

group. Although initially we only have one constraint for each pair of con-

secutive positions, corresponding to the value assigned to a variable under

a solution of the equation modulo V, as we start refining factorizations the

constraint values must be factorized accordingly, and in S the factorization

will not be unique. In other words, the pseudowords coming from the so-

lution of the original equation show that the constraining subsets must be

V-pointlike. This leads to the following special case of κ-reducibility for R

which can be found in [5] in a slightly different form.

Proposition 2. Let ϕ : ΩAS → S be a continuous homomorphism and let

u1, . . . , un ∈ ΩAS be pseudowords such that R |= u1 = · · · = un. Then there

exist w1, . . . , wn ∈ Ωκ
AS such that the following conditions hold:

(1) R |= w1 = · · · = wn;

(2) ϕ(ui) = ϕ(wi) (i = 1, . . . , n);

(3) c(ui) = c(wi) (i = 1, . . . , n);

(4) ~c(ui) = ~c(wi) (i = 1, . . . , n).

Unlike the case of finite words, factorizations of pseudowords may con-

tinue forever. However, due to periodicity phenomena in the constraints,

one may hope to control infinite refinements through the replacement of

segments in the original solution by ω-terms. In Makanin’s algorithm, de-

cidability follows from a very delicate and complicated analysis of how

periodicity phenomena in S allow to compute a bound for the number of

times a refinement needs to be performed. Plandowski [35] describes it as

one of the most complicated termination proofs existing in the literature.

6. General strategy of the proof

The basic reason why appropriate factorizations exist for the pseudovariety

R are the following. We say that a pseudoword is end-marked if it is of the

form wa with R 6|= wa = w, where a is a letter. End-marked pseudowords

enjoy some important properties which we quote from [5], where further

references to related literature may also be found. If ua and vb are end-

marked pseudowords such that uaRvb, then a = b and u = v (R-triviality).

There are no infinite ascending ≤R-chains of end-marked pseudowords over

a finite alphabet (well-foundedness). Suppose that u and v are two prefixes

of the same element of ΩAS. Then one of them is a prefix of the other (un-

ambiguous R-order). This provides another proof of the characterization

of A-pseudowords over R as “reduced A-labeled ordinals” found in [15].
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The positions in the factorizations will thus be determined by certain

ordinals smaller than the ordinal of the given solution. Now, the basic

strategy of the proof should be clear: to use the boundary equations to

reduce the maximum of the positions which appear in boxes or the number

of boxes which end at that maximum. In an ordinal, such a procedure

can only be carried out a finite number of times. The difficulty is that,

unlike what happens for finite words, we may very well have R |= u = v

with u a proper suffix of v, but not a proper prefix, assuming that in all

factorizations that we consider factors stop just short of the last letter of

an end-marked prefix. Yet such cases lead to periodicity phenomena which

we have managed to handle. A boundary equation (i, v, j, v̄) is said to be

elastic if it has the following form:

i v

j v̄

To proceed, we distinguish three cases which require different strategies.

The description of the strategy will be essentially pictorial, which makes it

somewhat imprecise. Also, we will make no further reference to the crucial

detail of how the constraints need to be factorized as the factorizations for

the values of each variable are merged. Full details are provided in [6].

Case A. Suppose that there is a “rightmost” boundary equation

(i, v, j, v̄) which is elastic and such that, under the given solution, not all

letters which occur in the box (i, v) occur in the factor between the posi-

tions i and j. Then one may introduce a new position k which corresponds

to the first letter in the box (i, v) which does not occur in the factor be-

tween the positions i and j and replace the boundary equation (i, v, j, v̄)

by (i, v′, j, v̄′):

i v

j v̄

k
7→

i v′
j v̄′

Case B. Suppose that Case A does not hold and that there is at least

one boundary equation (i, v, j, v̄) whose box (i, v) ends at a maximum po-

sition for all boxes and such that the box (j, v̄) ends earlier. Among all

such boundary equations, we may choose one such that i is minimum and,

by an argument of pushing forward periods in elastic equations which is

sketched in Case C, we may also assume that there are no elastic bound-

ary equations for which one of the boxes includes the position i and ends

at the same position as (i, v). Then we may proceed as in Makanin’s al-

gorithm: let c be the critical boundary defined by c = max{c′, i} where

c′ = max{right(w) : left(w) < i}. We have to transport the constraints of
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the segment (c, right(v)) to the corresponding segment (c◦, right(v̄)), where,

as ordinals, p◦−j = p−i. These segments are then handled by Proposition 2

and can be dropped from the boundary equation (i, v, j, v̄). Additionally,

we transport all boxes (k, w) crossing c to their corresponding segment of

(j, right(v̄)). The diagram of boxes might include those on the left, in which

case we transform it to the one on the right:

k w

i vj v̄ c

r
7→

i v′j v̄′ cc◦

k◦ w r◦ r

Case C. Suppose that all boundary equations which have a box which

ends at the maximum position where boxes end are elastic and that none

of the previous cases hold. Under the given solution, each such boundary

equation (ki, vi, `i, v̄i) (i = 1, . . . ,m) determines a pseudoidentity of the

form uiwi = wi such that R |= uiwi = wi, where, assuming that ki < `i,

ui corresponds to the box which starts at position ki and ends just short of

position `i, while wi corresponds to the box (`i, v̄i). Since Case A does not

hold, we must have c(ui) = c(wi) and so the pseudoidentity uiwi = wi is

equivalent, for R, to wi = uω
i , which forces a periodicity phenomenon. This

periodicity has to be carefully combined with periodicity in the constraints.

The first step consists in synchronizing the periods of the various elastic

boundary equations involved so that a similar situation is produced with all

ki equal. This can be achieved by breaking up the boxes by a process which

we call pushing forward the period and which is depicted in the following

diagram which, for simplicity, considers the case of two boundary equations:

k1 v1

`1 v̄1p

k2 v2

`2 v̄2

7→

`1 v′′1
p v̄′′1

`1 v′′2
q v̄′′2

k1 v′1
`1 v̄′1

k2 v′2
`2 v̄′2

The positions p and q are such that the factors corresponding to the pairs of

boxes (k1, v
′
1), (`1, v̄

′
1) and (k2, v

′
2), (`2, v̄

′
2) determine pseudoidentities which

are valid in R. The boundary equations (k1, v1, `1, v̄1) and (k2, v2, `2, v̄2)

are replaced by new boundary equations (k1, v
′
1, `1, v̄

′
1), (`1, v

′′
1 , p, v̄

′′
1 ),

(k2, v
′
2, `2, v̄

′
2), and (`1, v

′′
2 , q, v̄

′′
2 ).

The same strategy works in general and hence we may assume that all

ki are equal to the same k, which implies that R satisfies all pseudoidentities

of the form uiwi = wi = wj , so that the wi have a value w over R which

is independent of i and R |= w = uω
i for i = 1, . . . ,m. To handle this
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situation, we have the following multi-periodicity result.

Proposition 3. Let u1, . . . , um be pseudowords over A such that R satisfies

uω
1 = · · · = uω

m. Assume that, for all i, the product uiui is reduced. Then,

there exist z ∈ ΩAS, ri ∈ ΩAS1, and integers ki > 0 such that R satisfies

the pseudoidentities ui = zkiri and z = riz, for all i = 1, . . . , n, where all

the products and zz are reduced.

We introduce new boundary equations to capture the refined period z

given by Proposition 3, along with its periods ri (i = 1, 2, . . .):

k

y1 y2

ȳ1 ȳ2

· · ·

`1
ye1

ye1+1

ȳe1
ȳe1+1

· · ·

t1

t̄1

α `2
ye2−1 ye2

ȳe2−1 ȳe2

t2

t̄2

Finally, we indicate how the constraints are used to show that a solution

modulo R in κ-terms must exist if there is some solution modulo R. It is

well known that, for a finite semigroup S, there are integers h and p such

that 1 < h < p and, for all s1, . . . , sp ∈ S, s1 · · · sp = s1 · · · sh(sh+1 · · · sp)
ω.

We drop the boundary elastic equations whose boxes end at the maximum

position where any boxes end and we introduce new boundary equations to

capture the repetition p times of the longest period encountered so far:

k α

z1 z2

z̄1 z̄2

· · ·
zp−2 zp−1

z̄p−2 z̄p−1

The proof of Theorem 1 is achieved by showing that each time we change

our system of boundary equations we obtain a system which still admits a

solution modulo V and, conversely, such that if the new system admits a

solution in κ-terms then so does the old one.

Appendix

As has been pointed out by the anonymous referee, for pseudovarieties

of groups, local extensibility is sufficient but not necessary for weak can-

cellability. Indeed, for a pseudovariety V of groups, the weak cancellation

property may be reformulated as follows. Over V, the non-trivial pseu-

doidentity u1#u2 = v1#v2 is equivalent to one of the form u# = #v for

pseudowords u and v, with the letter # not occurring in them, such that V

does not satisfy both pseudoidentities u = 1 and v = 1. Substituting u for

the letter #, we deduce the pseudoidentity u2 = uv, so that u = v holds
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in V. Hence, the original pseudoidentity u1#u2 = v1#v2 is equivalent to

one of the form u# = #u over V, where # is a letter not occurring in the

non-trivial pseudoword u. This shows that V is not weakly cancellable if

and only if there is a finitely generated free pro-V group with a non-trivial

central element which does not use all free generators. The referee further

asked whether it is sufficient for non-weak cancellability of V for ΩAV to

have a non-trivial center whenever A is a non-empty finite set.

Before giving a negative answer to the preceding question, we proceed

to consider a special kind of pseudovarieties of groups. Say that a group is

centerless if its center is trivial.

Proposition 4. Let V be a pseudovariety which is generated by some fam-

ily C of centerless groups. Then V is weakly cancellable.

Proof. Let u be a non-trivial element of ΩAV which belongs to the closed

subgroup generated by A \ {a} for some a ∈ A. Then there is some group

G in C and some continuous homomorphism ϕ : ΩA\{a}V → G such that

ϕ(u) 6= 1. Since G has trivial center, there is some g ∈ G which does not

commute with ϕ(u). Now, we may extend ϕ to a continuous homomorphism

ψ : ΩAV → G by letting ψ(a) = g and ψ(b) = ϕ(b) for b ∈ A \ {a}. Since

ψ(a) and ψ(u) do not commute, we conclude that u is not central in ΩAV.

Hence the pseudovariety V is weakly cancellable by the referee’s remark.

For an example, let S3 denote the symmetric group on three symbols

and let V(S3) be the pseudovariety it generates. By Proposition 4, V(S3)

is weakly cancellable, while, as any locally finite pseudovariety of groups,

it is not locally extensible. We claim that ΩAV(S3) has a non-trivial center

for every non-empty finite set A, which provides a negative answer to the

question raised by the referee. The claim is proved by recursively exhibiting

central elements.

Lemma 5. Let An = {x1, . . . , xn} and define recursively a sequence un by

taking u1 = x1 and un+1 = (unx
3
n+1un)2. Then un is a non-trivial central

element in the group Gn = ΩAn
V(S3).

Proof. Let w 7→ w denote an arbitrary homomorphism Gn → S3. If we

take x2 = · · · = xn = 1, then un = x4n−1

1 so that un 6= 1 if we choose for

x1 a 3-cycle. Hence un 6= 1.

To prove that un is in the center of Gn, we proceed by induction on n,

the case n = 1 being trivial. Given elements x1, . . . , xn+1 ∈ S3, denote
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by Zk the center of the subgroup Hk generated by x1, . . . , xk. We assume

that, given x1, . . . , xn+1 ∈ S3, un ∈ Zn and we claim that un+1 ∈ Zn+1.

If un commutes with xn+1 then un+1 = (unx
3
n+1un)2 = u4

nx
6
n+1 = u4

n,

which shows that un+1 ∈ Zn+1. Hence, we may assume that xn+1 does not

commute with un, which implies that un does not belong to the subgroup

generated by xn+1 and, by induction hypothesis, that xn+1 /∈ Hn. We

claim that, under these circumstances, un+1 = 1.

Indeed, if un is a 3-cycle, then xn+1 is a 2-cycle and so unx
3
n+1un = xn+1

and un+1 = x2
n+1 = 1. Assume next that un is a 2-cycle. If xn+1 is a 3-

cycle, then un+1 = u4
n = 1. If xn+1 is also a 2-cycle, then unx

3
n+1un is

again a 2-cycle and so un+1 = 1.

The above lemma serves only to handle a very special example. We

do not know how far it can be generalized, that is which non-trivial finite

groups G have the property that the center of ΩAn
V(G) is non-trivial for

every n ≥ 1. But, of course, this is a remotely marginal question for the

theme of this paper.
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13. J. Almeida and P. G. Trotter, Hyperdecidability of pseudovarieties of or-

thogroups, Glasgow Math. J. 43 (2001) 67–83.
14. , The pseudoidentity problem and reducibility for completely regular

semigroups, Bull. Austral. Math. Soc. 63 (2001) 407–433.
15. J. Almeida and P. Weil, Free profinite R-trivial monoids, Int. J. Algebra

Comput. 7 (1997) 625–671.
16. , Profinite categories and semidirect products, J. Pure Appl. Alge-

bra 123 (1998) 1–50.
17. C. J. Ash, Inevitable graphs: a proof of the type II conjecture and some related

decision procedures, Int. J. Algebra Comput. 1 (1991) 127–146.
18. K. Auinger, A new proof of the Rhodes type II conjecture, Int. J. Algebra

Comput. 14 (2004) 551-568.
19. K. Auinger and B. Steinberg, On the extension problem for partial permuta-

tions, Proc. Amer. Math. Soc. 131 (2003) 2693–2703.
20. , The geometry of profinite graphs with applications to free groups

and finite monoids, Trans. Amer. Math. Soc. 356 (2004) 805–851.
21. , A constructive version of the Ribes-Zalesskii product theorem,

Math. Z. 250 (2005) 287-297.
22. , Hall varieties of finite supersolvable groups. To appear in Math.

Ann.
23. J. C. Costa and M. L. Teixeira, Tameness of the pseudovariety LSl, Int. J.

Algebra Comput. 14 (2004) 627–654.
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