PDMA - Academic year 2012/13
 University of Minho and University of Aveiro Topics in Pure Mathematics - Module: Algebra and Geometry

Lie Groups and Lie Algebras
Homework 1

The special unitary group in 3 dimensions $\operatorname{SU}(3)$ has $3^{2}-1=8$ generators, which can be represented by the Gell-Mann matrices $\lambda_{i}, i=1, \ldots, 8$:

$$
\begin{gathered}
\lambda_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \lambda_{2}=\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \lambda_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \lambda_{4}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \\
\lambda_{5}=\left[\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right], \lambda_{6}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \lambda_{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right], \lambda_{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] .
\end{gathered}
$$

These generators obey a Lie algebra with structure constants $f_{i j k}$ (up to a factor $2 i$):

$$
\left[\lambda_{i}, \lambda_{j}\right]_{-}=2 i \sum_{k=1}^{8} f_{i j k} \lambda_{k}
$$

The anticommutator, defined as $\left[\lambda_{i}, \lambda_{j}\right]_{+}:=\lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{i}$, is used to define the coefficients $d_{i j k}$:

$$
\left[\lambda_{i}, \lambda_{j}\right]_{+}=: \frac{4}{3} \delta_{i j} \mathbf{1}+2 \sum_{k=1}^{8} d_{i j k} \lambda_{k}
$$

1 being the 3×3 identity matrix.
$\mathrm{SU}(3)$ has two Casimir operators, which can be defined as

$$
C_{1}:=\frac{1}{4} \sum_{i=1}^{8} \lambda_{i}^{2}, C_{2}:=\frac{1}{8} \sum_{i=1}^{8} \sum_{j=1}^{8} \sum_{k=1}^{8} d_{i j k} \lambda_{i} \lambda_{j} \lambda_{k} .
$$

1. Show that the eight generators λ_{i} are linearly independent and span the space of all hermitean traceless 3×3 matrices.
2. Show that

$$
\operatorname{Tr} \lambda_{i} \lambda_{j}=2 \delta_{i j} .
$$

(Don't forget that $\operatorname{Tr} \mathbf{1}=3$ and $\operatorname{Tr} \lambda_{i}=0$.)
3. Prove that $d_{i j k}=\frac{1}{4} \operatorname{Tr}\left(\left[\lambda_{i}, \lambda_{j}\right]_{+} \lambda_{k}\right)$. Using this relation, show that the coefficients $d_{i j k}$ are totally symmetric.
4. Prove that $f_{i j k}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\lambda_{i}, \lambda_{j}\right]_{-} \lambda_{k}\right)$. Using this relation, show that the structure constants $f_{i j k}$ are totally antisymmetric.
5. Compute the structure constants f_{156}, f_{148} and the coefficients d_{118}, d_{778}, using the given explicit representation of the matrices λ_{i}.
6. Derive the identities

$$
\begin{aligned}
& \sum_{m=1}^{8}\left(f_{p l m} f_{m k q}+f_{k l m} f_{m q p}+f_{p k m} f_{m q l}\right)=0 \\
& \sum_{m=1}^{8}\left(f_{p k m} d_{m l q}+f_{q k m} f_{m l p}+f_{l k m} d_{m p q}\right)=0
\end{aligned}
$$

7. Verify that C_{1}, C_{2} are indeed Casimir operators of $\mathrm{SU}(3)$.
8. Prove the following relations:

$$
\begin{gathered}
C_{1}=-\frac{i}{12} \sum_{i=1}^{8} \sum_{j=1}^{8} \sum_{k=1}^{8} f_{i j k} \lambda_{i} \lambda_{j} \lambda_{k} \\
C_{2}=C_{1}\left(2 C_{1}-\frac{11}{6}\right) .
\end{gathered}
$$

For each answer, you may always use results from the previous questions.

