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Some motivations

Understanding quantum mechanics

Understanding statistical mechanics of quantum systems

Control large quantum systems

. . . as, for example, quantum computers

Cryptography

. . .
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Messages and communication
Information theory is the creation of Claude Shannon1,

whose insights were later made rigorous by Khinchin, McMillan,
Breimann, . . .

It deals with messages and communication.

The two main questions that he addressed and solved are

How much can we compress a message without losing its meaning

and

How much redundancy must we incorporate into a message in order
to reliably transmitting it through a noisy channel?

1C.R. Shannon, A mathematical theory of communication, The Bell System
Technical Journal 27 (1948), 379-423 and 623-656.



Roman inscriptions & graffiti

HELVIVM SABINVM AEDILEM D(IGNVM) R(EI) P(VBLICAE)
V(IRVM) B(ONVM) O(RO) V(OS) F(ACIATIS)

"Please elect Elvio Sabino as a aedile, worthy of the

state, a good one"



Our languages are redundant!

Brasilians say

PORTUGAU

while you say

PRTGL

They also say

OI! TUDO JOIA?

and you say

Q TL?



Messages

According to Wiener, reasonable models of messages/languages are
stochastic processes, families

X1X2X3 . . .

of random variables Xk, parametrized by time k ∈ N, with values in
some finite set/alphabet, as for example

X = {a, b, c, . . . , z}

A realization of the processes is a finite or infinite word

x1x2x3 . . .

in the letters of the alphabet, i.e. with xk ∈ X, as for example

"Ha em Lisboa um pequeno numero de restaurantes ou

casas de pasto ..."



Classical probability

The law of a random variable X with a finite number of values, say

|X| = d

is a probability vector

p = (pa, pb, pc, . . . , pz)

of non-negative numbers
px ≥ 0

with sum
pa + pb + pc + · · ·+ pz = 1

i.e. a point in the unit simplex

∆d−1 ⊂ Rd+



Sources as Bernoulli trials

A very naive model of a source emitting a message is Bernoulli trials:
independent copies of a fixed random variable X.

This means that the probability of observing/producing a finite word of
lenght n is a product

Prob(x1x2 . . . xn) = px1 px2 . . . pxn

Physicists call it a (classical) ensemble

{x , px}

Mathematicians speak of Cartesian products Xn of a finite probability
space

X = (X, p)



Shannon’s uncertainty function

The main character of classical Information Theory is Shannon’s
uncertainty function

H(X) := −
∑
x∈X

px log px

of the source X with values in X and law p.

"You should call it entropy, for two reasons. In

the first place your uncertainty function has been

used in statistical mechanics under that name, so

it already has a name. In the second place, and

more important, no one really knows what entropy

really is, so in a debate you will always have the

advantage."

John von Neumann to Claude Shannon



Unicyclist



Boltzmann’s entropy

According to Boltzmann’s epitaph

S = k logW

the entropy of a macroscopic system is proportional to the logarithm of
the “thermodynamische Wahrscheinlichkeit” W , the number of
microscopic states compatible with the macroscopic state of the system.

The magic, or mistery, is that this formula is not a definition, but an
equality between two apparently different things!

His insight is that the Clausius’ entropy2, the thermodynamical potential
measured according to

∆S =

∫
δQ

T

has actually a statistical/probabilistic interpretation.

2R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der
Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik 125 (1865),
353-400,



Wien 1944 - Duino 1906



(mais barbudos dos anos ’60)



Shannon entropy as uncertainty
The entropy is bounded by

0 ≤ H(X) ≤ log d

It is maximal = log d if all the d letters are equally probable,
and it is minimal = 0 when one of the letters has total probability.

The unit is a bit, a random variable X taking values in {0, 1} with
uniform probability, which has entropy (taking base 2 logarithms)

H(X) = 1

The entropy is subadditive

H(XY ) ≤ H(X) +H(Y )

with equality holding iff X and Y are independent.

This allows to define the entropy rate of a process (Xk) as

H := lim
n→∞

1

n
H(X1X2 . . . Xn)



Microscopic versus macroscopic

If you throw a dice, or measure the squared speed of a few molecules of
gas, you don’t see anything interesting.

Probability show itself as an asymptotic/macroscopic observable.

For example, if you throw a large number, say n ∼ 104, of dices with d
faces, and count the number Nn of times that you obtain one of them,
you see the law of large numbers and the central limit theorem

Nn ' p n±
√
pq
√
n

with p = 1/d and q = 1− p.

Also, if you measure the mean squared speed of something like 1023

molecules of gas, you see the Maxwell-Boltzmann distribution

α e−βv
2



Entropy & typical words
Similarly, entropy is an asymptotic observable which shows itself when
you take a global look at long words.

Typical words are those w ∈ Xn with a number of letters dictated by the
law of large numbers

| lettersx contained in the word w ∈ Xn| ∼ n px

It happens that typical words have roughly all the same probability

Prob (typical word) ∼ pnpaa pnpbb pnpcc · · · pnpzz = 2−nH

and the set of typical words has cardinality

|typical words| ∼ 2nH

Therefore, the set of typical words has almost total probability

Prob (typical words ) ∼ 1



More precisely, with epsilons and deltas

For any δ > 0, one defines the space of δ-typical words

Tnδ ⊂ Xn

as the set of those words x1x2 . . . xn of lenght n having probability

en(H−δ) ≤ |Prob(x1x2 . . . xn)| ≤ en(H+δ)

and prove that for any ε > 0, as small as we want, we can take the
lenght n so large that

Prob (Tnδ ) ≥ 1− ε

and
(1− ε) en(H−δ) ≤ |Tnδ | ≤ en(H+δ)



Entropy & compression rate
If the entropy is maximal, all the

|Xn| = 2n log d

words of lenght n are equally probable, therefore typical.

Otherwise, almost all the probability is concentrated in an exponentially
smaller set of typical words, with cardinality

∼ 2nH

and all those words have roughly the same probability.

We can transmit all of them using words of lenght m in the same
alphabet if

2nH ∼ 2m log d

Therefore, we can achieve a compression rate

R =
m

n
∼ H

log d



Noiseless coding theorem

Noiseless coding theorem. The maximal compression rate of a source
using d letters and having entropy H is the relative entropy

E =
H

log d

Namely, one can achieve any compression rate R < E, and no
compression rate R > E, with almost no loss of information in the
limit where the lenght of the message go to infty.



Asymptotic equipartition property

The core of Shannon’s argument is the existence of typical words.

While it is easy for Bernoulli trials, it is a deep result for other correlated
stochastic processes (Xn), as Markov chains.

Shannon-McMillan-Breiman theorem. Let (Xn) be a stationary
ergodic process with entropy rate H. Then

− 1

n
log p(X1, X2, . . . , Xn)→ H

a.s. and in L1.

Modern proofs use the ergodic theorem and the martingale convergence
theorem.



Mutual information

Subadditivity of the entropy and monotonicity

H(XY ) ≥ H(X)

(which does not hold in the quantum context!)

suggest to define the conditional entropy of Y given X as

H(Y |X) := H(XY )−H(X)

which is ≥ 0.

The mutual information is the symmetric difference

I(X;Y ) := H(X) +H(Y )−H(XY )

= H(Y )−H(Y |X)

which is minimal = 0, when X and Y are independent,
and maximal = H(X) = H(Y ), when X and Y are deterministically
correlated, say Y = f(X).



Noisy channels
message−−−−→ ENCODER

X1X2...Xn−−−−−−−→ CHANNEL
Y1Y2...Yn−−−−−−→ DECODER

mxssage−−−−→

Messages t1t2 . . . tm of lenght m are encoded in sequences of lenght n

x1x2 . . . xn

The channel produces a (possibly) corrupted output, which are other
sequences

y1y2 . . . yn

according to certain conditional probabilities

p(y|x)

The output is finally decoded to produce a received message s1s2 . . . sm,
hopefully not so different from the original message.

The transmission rate is
R =

m

n

(which is clearly R ≤ 1).



Noisy channel coding theorem
Since each of the ∼ 2nH(X) typical X-words may be corrupted in a
number ∼ 2nH(Y |X) of typical Y -words, we may reliably transmit
messages with rate R if

2nH(X) 2nH(Y |X) ≤ 2nH(Y )

i.e. if

2m ∼ 2nR ∼ 2nH(X) ≤ 2nH(Y )

2nH(Y |X)
= 2nI(Y ;X) ≤ 2nC

Noisy channel coding theorem. The maximal transmission rate of a
discrete memoryless noisy channel is the capacity

C := sup
law of X

I(Y ;X)

One can reliably transmit information at any rate R < C,
and cannot reliably transmit information at any rate R > C.



Hidden symmetries of the entropy

The Boltzmann/Shannon function

B(p) :=

d∑
k=1

pk log pk

defined on the unit simplex ∆d−1 := {p :
∑
pk = 1} ⊂ Rd+, has very

poor symmetries, just the symmetric group Sd, permuting the vertices.

However, its Hessian defines the Fischer (Riemannian) metric

n∑
k=1

dp2k
pk

on ∆d−1, which happens to be much more symmetric. Indeed, as
observed by Gromov3, it is a metric with constant sectional curvature !

To unveil this fact, and discover the hidden symmetries of classical
probability, we must change coordinates, “blow up” the simplex, . . .

3M. Gromov, In a Search for a Structure, Part 1: On Entropy (2013).



Blow up
The square map

ρk 7→ pk = ρ2k

sends Sd−1+ → ∆d−1, and the pull-back of the Fisher metric is just 4
times the Euclidean metric of the sphere, since

dpk dpk
pk

= 4 d
√
pk d
√
pk = 4 dρk dρk

We may then add phases, hence consider probability densities

zk = ρke
iϕk

The square map extends naturally to the map

zk 7→ pk = |zk|2

sending Cd → Rd+.

The Euclidian metric on Sd−1+ extends to the Fubini-Study Kahler metric
on the projective Hilbert space Cd/C×.



Quantum world

This complexification led us to the world of Quantum Mechanics 4 5 6.

We have now a Hilbert space

H ≈ Cd

with its linear and Hermitian structures,

and the full unitary group U(n) of its symmetries.

So, how does complex/quantum probability looks like?

4H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig, 1928.
5P.A.M. Dirac, The principles of quantum mechanics, Oxford, 1930.
6J. von Neumann, Mathematishe Grundlagen der Quantenmechanik, Springer,

1932 [Mathematical Foundations of Quantum Mechanics, Princeton, 1955]



Interference

If something can happen in two mutually exclusive ways, with
probabilities p and q, classical probabilities add

p+ q

In the quantum/complex world we introduced phases.

When we add two probability densities like

α =
√
p eiθ and β =

√
q eiφ

and then compute the square modulus of α+ β, we get interference

|α+ β|2 = p+ q + 2
√
pq cos(θ − φ)

For example, this explains interference patterns in the double-slit
experiment.



Quantum probability

Atomic measures (vertices of the unit symplex) extend to rays

C |ψ〉 ⊂ H

that physicists call pure states and, since we want to exploit the linear
structure of the Hilbert space, identify with rank-one projectors

Pψ = |ψ〉 〈ψ|

or with the corresponding quadratic form |ϕ〉 7→ 〈ϕ|Pψ|ϕ〉.

Non-atomic measures extend to convex combinations of pure states

ρ = pψPψ + pϕPϕ + . . .

with pψ + pϕ + · · · = 1, that physicists call mixed states.

Observe that Tr(ρ) = 1, since this is the trace of each Pψ.



States & measures

A state ρ, mixed or pure (for a mathematician, a self-adjoint positive
operator with unit trace), assigns a probability

p = 〈e1|ρ|e1〉+ 〈e2|ρ|e2〉+ . . .

to each subspace E ⊂ H, where e1, e2, . . . is any orthonormal basis of E .

Therefore assigns a (classical) probability vector

E1 ⊕ E2 ⊕ . . . 7→ (p1, p2, . . . )

to each orthogonal direct sum decomposition

H = E1 ⊕ E2 ⊕ . . .

Physicists call them projection valued measures (PVM) or von Neumann
projective measurements.



Superposition principle

According to the superposition principle, if it is possible to prepare a
system in both states |ψ〉 and |φ〉, then it is also possible to prepare the
system in the superposition

α |ψ〉+ β |φ〉 ,

with arbitrary complex coefficients α and β.

Two states are distinguishable if there exists some (possibly ideal)
experience that let us decide whether the system is in one or the other
state. This is codified by the notion of orthogonality.

Thus, states of a quantum system belong to a Hilbert space H, a
complex linear space equipped with an inner product 〈φ|ψ〉.

Actually, states are rays C |ψ〉 in H, since a global factor, or phase if we
consider only unitary states, is not observable

|ψ〉 ∼ eiθ |ψ〉



Qu(antum)bits

The smallest non-trivial quantum system is described by the Hilbert space

H ≈ C2

We may call |0〉 and |1〉 the elements of an orthonormal basis, so that a
generic state is a superposition

|ψ〉 = α |0〉+ β |1〉

with complex coefficients α and β.

These are the units, the building blocks, of quantum computers. As such,
they are called qubits7.

A concrete example is polarization of photons, which may be left or right
polarized, hence may be in one of the orthogonal states

|	〉 or |�〉

7B. Schumacher, Quantum coding, Physical Review A 51 (1995), 2738-2747.



Observables and observations

Observables are self-adjoint linear operators defined on H.

An observable A has a spectral resolution

A =
∑
k

αk |αk〉 〈αk|

with real eigenvalues αk and corresponding unitary eigenstates |αk〉.

Observation of the observable A on the unitary state |ψ〉 =
∑
k ψk |αk〉

will give one (and only one) of the possible values αk’s, with probability

pk = |ψk|2 = | 〈αk|ψ〉 |2 .

The mean value of the observable A in the unitary state |ψ〉 is

〈A〉ψ = 〈ψ|A|ψ〉 =
∑
k

αk |ψk|2 .



Projection valued measurements

Following von Neumann, we may think that a measurement is an
orthogonal direct sum decomposition

H = E1 ⊕ E2 ⊕ · · · ⊕ En

(the proper spaces of an observable).

Equivalently, a family of pairwise orthogonal projections Ek of H onto
the Ek’s, satisfying

∑
k Ek = I.

If a system is in the unitary state |ψ〉, the probability to observe the
outcome associated to the subspace Ek is equal to the squared norm

pk = ‖Ek |ψ〉 ‖2 = 〈ψ|Ek|ψ〉

of its projection.

If such observation occurs, then the state of the system collapses to the
normalized state proportional to Ek |ψ〉.



Randomness & disturbance

Intrinsic randomness of Q.M.: the observed value of an observable is one
of its possible values αk with certain probabilities (which are all we can
compute).

Once the value αk of the observable A is observed, the state of the
system collapses from an initial state |ψ〉 to the eigenvector/state |αk〉
corresponding to the observed value.

The collapse is ascribed to the interaction of the quantum system with a
classical macroscopic device.

Thus, to get information from a quantum system we must disturb it!



Linearity of Q.M. is far from intuitive!

For example, one may ask, following Shrödinger, what is the meaning of
a superposition like

|cat〉 =
1√
2
|dead〉+

1√
2
|alive〉

The mainstream interpretation holds that such a state is indeed possible,
but highly improbable.

The cat interacts continuously with the world around it (other cats, rats,
children, granmothers, . . . ), so she is constantly “measured” by
macroscopic devices, and therefore collapsed in one and only one of the
two states.



Dynamics

Dynamics also is linear.

The time evolution of an isolated quantum systems is given by a group of
unitary operators

Ut = e−itH/~

where H is the Hamiltonian, an observable which plays the role of the
energy, and ~ ' 1.055× 10−34 J·s is the reduced Planck constant.

The state at time t of a system which has been prepared in the state
|ψ(0)〉 at time 0 is therefore

|ψ(t)〉 = e−itH/~ |ψ(0)〉

which is the solution of the Schrödinger equation

i~
d

dt
|ψ〉 = H |ψ〉

with initial condition |ψ(0)〉.



Multiparticle systems & tensor products

A consequence of the superposition principle and the probabilistic
interpretation of the square modulus of the coefficients, is that
multiparticle systems are described by tensor products

HX ⊗HY ⊗ . . .

of the state spaces HX , HY , . . . of their components.
A basis of the tensor product is made o products |xi〉 ⊗ |yj〉 ⊗ . . . of
basis states of each factor, and inner products (of pure tensors) are
products 〈x|x′〉 · 〈y|y′〉 · · ·

The dimension of tensor products grows exponentially with the number
of components. For example, the Hilbert space of a few hundreds qubits
has a dimension

2300 ∼ 1090

which is much larger than the estimated number 1080 of baryons in the
Universe!



Quantum computers

Ideally, a Quantum Computer works with a certain number n of qubits.
It is prepared in some initial/input state

|ψ〉 =

2n−1∑
xn...x2x1=0

ψxn...x2x1
|xn . . . x2x1〉

in the tensor product H⊗n of H ≈ C2, where xk ∈ {0, 1} and

|xn . . . x2x1〉 := |xn〉 ⊗ · · · ⊗ |x2〉 ⊗ |x1〉

The initial state is acted upon by a certain number of gates, which are
unitary operators Uk acting on one, two, or more qubits, producing a
final/output state

|ψf 〉 = . . . Uk . . . U2U1 |ψ〉

We can eventually measure some or all of the qubits, and therefore
collapse the state and get classical information.



We cannot observe states . . .
In classical Information Theory, we get for granted that we may read bits
and get all the information they carry.

Clearly, at least in principle, we may prepare a quantum system in any
quantum state |ψ〉.

(for example letting light passing through a polarized lens)

However, an observer with no a priori knowledge cannot infer the
prepared state |ψ〉 from her measurements!

She may test whether the state is |ϕ〉 or not, the fidelity being

F := | 〈ψ|ϕ〉 |2

Or, given many copies of the unknown state |ψ〉, she may measure its
projections on some orthonormal frame |ϕ1〉 , |ϕ2〉 , . . . , i.e. observe the
probabilities/frequencies

pk = | 〈ψ|ϕk〉 |2



. . . or acquire informations without disturbing!

Suppose we want to distinguish between the two states |ψ〉 and |ϕ〉 of a
system (described by the Hilbert space) H without disturbing the system.

We couple them with some fixed state |0〉 of a second system HR, and
apply a unitary transformation U to the composite system H⊗HR,
sending

|ψ〉 ⊗ |0〉 7→ |ψ〉 ⊗ |a〉 and |ϕ〉 ⊗ |0〉 7→ |ϕ〉 ⊗ |b〉

Unitarity forces
〈ψ|ϕ〉 = 〈ψ|ϕ〉 · 〈a|b〉

If |ψ〉 and |ϕ〉 are not orthogonal, |a〉 and |b〉 represent the same state!

(this may be a resource in quantum cryptography!)



Heisenberg uncertainty principle

If the two observable A and B does not commute, i.e. if

[A,B] := AB −AB 6= 0

then they are not simultaneously diagonalizable.

This is the case of position and momentum operators, defined as

(Qf)(x) := x f(x) (Pf)(x) := −i~∂f
∂x

(x)

which satisfy [P,Q] = i~I.

As discovered by Heisenberg8 this implies a lower bound on the product
of the standard deviations, known as Heisenberg uncertainty principle

∆P ·∆Q ≥ ~/2

8W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik, Zeitschrift für Physik, 43 (1927) 172-198.



Entropic uncertainty principle
Suppose we prepare the system in a state ρ, e.g. a pure state |ψ〉 〈ψ|.

Non-commuting observables A and B define different orthogonal
(eigenspaces) decompositions corresponding to the eigenvectors |αk〉 and
|βk〉, respectively, to which the state ρ associates different probability
vectors p and q, respectively.

Heisenberg uncertainty principle is a consequence of the stronger9 10 11

Entropic uncertainty inequality.

H(p) +H(q) ≥ log(1/c) + S(ρ)

where c = sup | 〈αi|βj〉 |2.

9I.I. Hirschman Jr., A note on entropy, Amer. J. of Math. 79 (1957), 152-156.
10D. Deutsch, Uncertainty in quantum measurement, Phys. Rev. Lett. 50 (1983),

631-633
11H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys.

Rev. Lett. 60. (1988), 1103-1106.



No cloning
Roughly speaking, cloning means producing a state |ψ〉 ⊗ |ψ〉 out of a
state |ψ〉. The reverse operation is called deleting.

In classical computation, we get for granted that we can clone or delete
(but, according to Landauer principle, this costs some entropy/energy!)

There is a conflit between linearity and reversibility of Q.M. and cloning
or deleting, which are non-linear and irreversible operations!

No-cloning theorem. There exists no unitary operator U on H⊗H
s.t.

U(|ψ〉 ⊗ |ϕ〉) = eiα(ψ,ϕ) |ψ〉 ⊗ |ψ〉

for all normalized states |ψ〉 and |ϕ〉 ∈ H and some phases α(ψ,ϕ).

It is clear that if Ut = e−itH is a unitary operator perfoming cloning, the
time reversal U†t = eitH performs deleting, and viceversa. Therefore, the
no-cloning theorem is also a no-deleting theorem.



Cloning conflits with linearity

Suppose we have a linear operator which is able to clone both the states
|ψ〉 and |ϕ〉, i.e. to produce the pure states

|ψ〉 ⊗ |ψ〉 and |ϕ〉 ⊗ |ϕ〉

out of them.

We may apply it to the superposition

α |ψ〉+ β |ϕ〉

Linearity would give the state

α |ψ〉 ⊗ |ψ〉+ β |ϕ〉 ⊗ |ϕ〉 .

This is clearly different from cloning the superposition, i.e. from

(α |ψ〉+ β |ϕ〉)⊗ (α |ψ〉+ β |ϕ〉)



Cloning conflits with unitarity

Suppose we have a unitary operator cloning the two states |ψ〉 and |ϕ〉
(e.g. after coupling/tensoring the two with a fixed state |0〉).

Then the inner product
〈ψ|ϕ〉

should be equal to the inner product between

|ψ〉 ⊗ |ψ〉 and |ϕ〉 ⊗ |ϕ〉

which is
〈ψ|ϕ〉2

But, according to the Cauchy-Schwartz inequality, the identity

〈ψ|ϕ〉 = 〈ψ|ϕ〉2

happens only when the states are equal (since proportional vectors define
the same states) or when the states are orthogonal.



Entanglement

What makes quantum probability so weird12 is the phenomenon called
entanglement (entrelaçamento) by Shrödinger 13.

The archetypal example is the state

|ψ〉 =
1√
2
|0〉 ⊗ |1〉+

1√
2
|1〉 ⊗ |0〉

Observation of one of the particles produces the collapse of the global
wave function, and therefore determines the state of the other particle!

12"If you think you understand quantum mechanics, you don’t understand

quantum mechanics", according to Feynman.
13E. Schrödinger, Discussion of Probability Relations Between Separated Systems,

Proceedings of the Cambridge Philosophical Society 31 (1935), 555-563 and (1936),
446-451.



Non-local correlations
Einstein called it spooky action (aç~ao fantasmagórica) at a distance.

With one of his famous Gedankenexperiment14, he tried to illustrate
non-completeness of (the Copenhagen interpretation of) Q.M.

Two particles in an entangled state, like

|ψ〉 =
1√
2
|0〉 ⊗ |1〉+

1√
2
|1〉 ⊗ |0〉

may be separated by a huge distance, and yet, observation/collapse of
one of the particles determines instantaneously the state of the other!

Nowadays we know, thanks to Bell’s inequalities15, that such non-local
correlations cannot be explained with the existence of (classical) hidden
variables.

And they are observed!

14A. Einstein, N. Rosen and B. Podolsky, Can Quantum-Mechanical Description of
Physical Reality be Considered Complete? Phys. Rev.. 47 (1935), 777-780.

15J. Bell, On the Einstein-Poldolsky-Rosen paradox, Physics 1 (1964), 195-200.



Teleportation

If Maria and João share an entangled state, say an EPR pair

1√
2
|0〉 ⊗ |0〉+

1√
2
|1〉 ⊗ |1〉

(i.e., she owns the first qubit and he owns the second qubit),

Maria may send a (unknown to her!) third quantum state

α |0〉+ β |1〉

in her possess to João, transmitting only 2 bits with a classical channel.

Thus,

1 EPR + 2 bits ≥ 1 qubit



Teleportation protocol
Indeed16, the joint state

(α |0〉+ β |1〉)⊗
(

1√
2
|0〉 ⊗ |0〉+

1√
2
|1〉 ⊗ |1〉

)
is (proportional to) a sum of 4 orthogonal states

(|00〉 ± |11〉)⊗ (α |0〉 ± β |1〉) and (|10〉 ± |01〉)⊗ (β |0〉 ± α |1〉)

With a projective measurement on the first two qubits (which she owns),
Maria may collapse the state into one of the 4 possibilities.

She may communicate, using 2 bits through a classical channel, the
collapsed state, and João may use this information to apply the
appropriate unitary transformation and recostruct the original state

α |0〉+ β |1〉

from his qubit.
16C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters,

Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels, Phys. Rev. Lett. 70 (1993), 1895-1899.



Superdense coding

Conversely, Maria and João may use a shared EPR pair, and 1 qubit to
encode 2 classical bits.

She performs the unitary transformation corresponding to the 2 bits that
she wants to communicate,

and he measures the state of his qubit

Thus,

1 EPR + 1 qubit ≥ 2 bits



Ensembles & density matrices
According to von Neumann, a statistical ensemble/mixed state
of unitary states |ψk〉 (not necessarily orthogonal or even independent)
with (classical) probabilities pk
is conveniently described by a density operator/matrix

ρ =
∑
k

pk |ψk〉 〈ψk|

The mean value of the observable A on the state ρ is

〈A〉 = Tr(ρA)

Abstractly, a density operator is a positive semi-definite self-adjoint
operator with unit trace.

For example, unpolarized light is described by the mixed state

1

2
|	〉 〈	|+ 1

2
|�〉 〈�| ≈ 1

2

(
1 0
0 1

)



Density for entangled states

As observed by Landau, density operators also appear naturally when we
describe a subsystem of an entangled system.

If we have a pure state
|ψ〉 ∈ HX ⊗HR

and an observable A acting on HX , then the mean vaue of the extended
operator A⊗ I on the state |ψ〉 is

〈ψ|A⊗ I|ψ〉 = Tr(ρXA)

if we define the mixed state

ρX := TrR(|ψ〉 〈ψ|)



Purification

Conversely, any mixed state in HX , as

ρX =
∑
x

px |ψx〉 ⊗ 〈ψx|

may be seen as above, as the marginal of a pure state

|ψ〉 =
∑
x

√
px |ψx〉 ⊗ |rx〉

called purification of ρX , in a larger system HX ⊗HR,
where the |rx〉’s form an orthonormal basis of HR.

Indeed,
ρX = TrR (|ψ〉 〈ψ|)

(remember the passage from classical to quantum probability!)



Marginals & POVM
More generally, if we have a (possibly mixed) state

ρXY

in the Hilbert space HX ⊗HY of a composite system,
and observe quantities depending only on the first subsystem HX , we
may just consider the marginal

ρX := TrY (ρXY )

which is a density matrix on HX .

Similarly, a projective measurement

HX ⊗HY = E1 ⊕ E2 ⊕ . . .

as seen from (the system described by the Hilbert space) HX ,
is a positive-operator valued measure (POVM), that is, a family
F = {Fk} of positive-semidefinite self-adjoint operators Fk such that∑

k

Fk = I



von Neumann entropy

Following a gedankenexperiment (computing the work needed to separate
a bipartite gas using semi-permeable walls . . . ), von Neumann showed
that the thermodinamical entropy of an ensemble of quantum states
described by the density matrix ρ must be defined according to

S(ρ) := −Tr(ρ log ρ)

If the pk’s are the (nonnegative) eigenvalues of ρ =
∑
k pk |ψk〉 〈ψk|,

with
∑
k pk = 1, this is simply

S(ρ) = −
∑
k

pk log pk

Thus, the von Neumann entropy of a state ρ is the Shannon entropy of
the spectrum (spectral measure) of ρ.



little Jancsi, “enfant prodige”



von Neumann’s is the physical entropy!

The state ρ which maximizes the entropy S(ρ) once fixed the energy, the
mean value E = Tr(Hρ) of the Hamiltonian, is the Gibbs state

ρ =
1

Z(β)
e−βH

where β = 1/T and the partition function is

Z(β) := Tr(e−βH)

The Gibbs state may be rewritten ρ = e−β(H−F ), where the free energy is

F (β) := −T logZ(β)

Thus
F = E − TS

and therefore it is minimized by the Gibbs state.



Elementary properties of the von Neumann entropy

If H ≈ Cd, the von Neumann entropy is bounded by

0 ≤ S(ρ) ≤ log d

It is minimal = 0 iff ρ is a pure state ρ = |ψ〉 〈ψ|,
and it is maximal = log d when ρ = 1

dI.

It is s unitarily invariant,

S(UρU†) = S(ρ)

It is subadditive
S(ρAB) ≤ S(ρA) + S(ρB)

with equality when ρAB = ρA ⊗ ρB .



Stranger properties of the von Neumann entropy

The von Neumann entropy is not monotone !

All we can say is the triangle inequality 17

|S(ρA)− S(ρB)| ≤ S(ρAB)

For example, the entropy of a (pure) entangled state ρAB is zero, while
the entropy of the marginals ρA = TrB(ρAB) and ρB = TrA(ρAB) are
equal (since, by the Schmidt decomposition, marginals of a pure state
share the same spectrum) and positive.

There follows that conditional entropies may be negative !

And also suggests that entangled states can be used to store information
non-locally !

17H. Araki and E.H. Lieb, Entropy inequalities, Comm. Math. Phys.. 18 (1970),
160-170.



Entropy for EPR pair

For example, we may consider our favourite entangled state, the EPR pair

1√
2
|0〉 ⊗ |1〉+

1√
2
|1〉 ⊗ |0〉

which is described by a density matrix ρAB which is the rank-one
projector onto the pure state, therefore with zero entropy.

The marginals are

ρA = ρB =
1

2

(
1 0
0 1

)
and have entropy

S(ρA) = log 2

corresponding to one classical bit.

In the words of Schrödinger: "the best possible knowledge of a

whole does not necessarily include the best possible

knowledge of all its parts".



Information carried by qubits

If we send one bit, the receiver may observe it.

On the other side, if we send one qubit, say

α |0〉+ β |1〉

the receiver, performing just one measurement, has no direct access to
the coordinates α and β.

How many bis are contained in a qubit ?

More generally, how much classical information can be transmitted
sending quantum states ?



Sending bits using qubits

Maria sends a sequence x1x2 . . . xn drawn from a quantum ensemble
{ρx, px}, with density

ρ =
∑
x∈X

px ρx

João, who knows the sender’s ensemble, performs measures E = {Ey} on
the received quantum states ρx , and get as output a realization
y1y2 . . . yn of a random variable Y = {y, py}. Here

py =
∑
x

px p(y|x)

and
p(y|x) = Tr(ρxEy)



Information gain & accessible information

Before the measurements, João ignorance about the signal is

H(X)

(since he knews the ensemble!).

After the measurements, his ignorance is reduced to

H(X|Y ) = H(XY )−H(Y )

Thus, his information gain is

I(X;Y ) = H(XY )−H(Y )−H(X)

The accessible information is the maximal information gain

Acc(R) := max
E

I(X;Y )

over all possible measurements E .



Holevo bound
If the states ρx’s are mutually orthogonal, they can be distinguished by a
measurement, and therefore we are in a classical situation. The accessible
information is

Acc(R) = S(ρ) = H(X)

However, if the states ρx overlap, the best we can say is

Holevo theorem. The accessible information is bounded above by

Acc(X) ≤ χ(ρ)

where the Holevo information18 is

χ(ρ) := S(ρ)−
∑
x∈X

px S(ρx)

18A.S. Holevo, Bounds for the quantity of information transmitted by a quantum
communication channel, Problems of Information Transmission 9 (1973), 177-183.



Bits contained in qubits

Thus, if we use pairwise orthogonal pure states ρx’s, we may send all the
classical information contained in n bits using n qubits.

On the other side, this is the best we can do, since

χ(ρ) ≤ S(ρ) ≤ log |X|

Therefore,

n qubits ≤ n bits The accessible information contained in n qubits
is not larger than the classical information contained in n bits!



on the proof of Holevo bound

Holevo bound depends on a nontrivial fact, strong subadditivity 19

S(ρABC) + S(ρC) ≤ S(ρAC) + S(ρBC)

which is equivalent to both

S(ρA|ρBC) ≤ S(ρA|ρB)

and
I(ρA; ρBC) ≥ I(ρA; ρB)

both obvious in the classical case, where conditional entropies are all
non-negative!

19E.H. Lieb, M.B. Ruskai, Proof of the Strong Subadditivity of Quantum
Mechanical Entropy, J. Math. Phys.. 14 (1973), 1938-1941.



Quantum sources

A source {x, px} sends her messages using as letter quantum states |x〉,
with x ∈ X, in some state space H ≈ Cd.

Thus, she sends the messages x1x2 . . . xn as quantum states

|x1〉 ⊗ |x2〉 ⊗ . . . |xn〉

chosen according to the mixed state ρ⊗n where

ρ =
∑
x∈X

px |x〉 〈x|

is the mixed state describing the quantum ensenble {px, |x〉}:



Compression rate

To save space or computational resources, we want to encode or store
the messages using a minimal number of qubits, allowing, if necessary,
block-coding.

Clearly, if the |x〉’s are pairwise orthogonal, we can distinguish them with
a projective measurement, and we are in a classical situation treated by
Shannon noiseless coding theorem.

Otherwise, we want to compress the message using, possibly, less, say

nR qubits

(the natural unit), hence coding messages in a Hilbert space

H ≈ C2nR

The compression rate is R, the number of qubits per letter.



von Neumann entropy & typical subspaces

The density matrix ρ has a spectral resolution

ρ =

d∑
y=1

qy |y〉 〈y|

where q = (q1, q2, . . . , qd) is the law of a random variable Y having
Shannon entropy

S(ρ) = H(q)

which is clearly smaller that H(p).

Quantum states
|y1〉 ⊗ |y2〉 ⊗ · · · ⊗ |yn〉

corresponding to typical n-sequences y1y2 . . . yn of the r.v. Y span a
typical subspace T n ⊂ H⊗n of dimension

dim(T n) ∼ 2nS(ρ)

in general much smaller than dim(H⊗n) = 2n log d.



Schumacher compression
Schumacher’s20 21 idea consists in encoding only the messages which
project onto T n, thus using ∼ nR qubits.

If Tn denotes the orthogonal projection onto the typical subspace T n, it
follows from classical theory that this happens with almost total
probability, i.e.

Tr
(
Tn ρ⊗n

)
' 1

We then decode the message and get some (in general mixed) state
σx ∈ H⊗n in the original state space.

There follows from Shannon noiseless coding theorem that the average
fidelity

F =
∑
x∈Xn

px 〈x|σx|x〉

can be made arbitrarily near to one for sufficiently large n.

20B. Schumacher, Quantum coding, Phys. Rev. A 51 (1995), 2738-2747.
21R. Jozsa and B. Schumacher, A new proof of the quantum noiseless coding

theorem, J. Modern Optics. 41 (1994), 2343-2349.



Noiseless coding theorem

Thus, the von Neumann entropy also measures the minimal number of
qubits per letter necessary to reliably encode a message made of
quantum states.

Schumacher compression theorem. The maximal compression rate of
a source sending states |x〉 with probabilities px is the von Neumann
entropy

S(ρ)

of the mixed state ρ =
∑
px |x〉 〈x|.



Quantum noisy channels

Here is where things become interesting,



What is “quantum capacity”?

and hard.



Thanks

Obrigado!


