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Motivation

» Computers are physical machines
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Motivation

» Computers are physical machines

» But Computer Science tends to ignore this . ..
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Indeed, therein lies its great strength!

AN %64 PROCESSOR 1S SCREAMING ALONG AT BILUONSOF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFIED
ABSTRACTION To (REATE THE DRRUIN SYSTEM UNDERIXING
05 X, WHICH INTURN |S STRAINING ITSELF To RUN FIREFD®
AND IT5 GECKD RENDERER, WHICH CREATES A RLASH OBTECT
WHICH RENDERS DDZENS OF VIDE(D FRAMES EVERY SELOND

BECAUSE I WANTED TO SEE A GHT
JUMP INTD A BDX AND FALL OVER.

O I A A GOD.
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Motivation

> use quantum resources for information-processing tasks

» delineate the scope of quantum advantage
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Motivation

> use quantum resources for information-processing tasks

» delineate the scope of quantum advantage

» What non-classical features of quantum mechanics are responsible for
quantum advantage?
> identify the essential structure
> theory-independent
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Einstein—Podolsky—Rosen

» ‘Spooky’ action at a distance.
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Einstein—Podolsky—Rosen

> ‘Spooky’ action at a distance.

» But is this so spooky?
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Einstein—Podolsky—Rosen

> ‘Spooky’ action at a distance.

» But is this so spooky?

» EPR conclusion: QM is incomplete

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Empirical data

opq € {0,1} og € {0,1}
measurement measurement
device device
mp € {a1, a2} mp € {b1, by}

preparation

I

uantum vs classic: locality, contextuality, and informatic advantage



Empirical data

B1(0,0) (0,1) (1,0) (1)
Ll 2 0 0 1
by | 3 1/g 1/8 3/8
by | 3 1/g 1/8 3/8
by | Vs 3/8 3/8 1/g

op € {0,1} og € {0,1}
measurement measurement
device device
mp € {a1,a2} mg € {by, by}

preparation

I
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A simple observation
(Abramsky—Hardy)

» Propositional formulae ¢, ..., ¢y
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A simple observation
(Abramsky—Hardy)

» Propositional formulae ¢, ..., ¢y

> p; := Prob(¢;)
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A simple observation
(Abramsky—Hardy)

» Propositional formulae ¢, ..., ¢y
> p; := Prob(¢;)

» Not simultaneously satisfiable, hence

Prob(/\ ¢;) =0
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A simple observation
(Abramsky—Hardy)

» Propositional formulae ¢, ..., ¢y
> p; := Prob(¢;)

» Not simultaneously satisfiable, hence

Prob(/\ ¢;) =0

» Using elementary logic and probability:

1 = Prob(— /\ ¢;) = Prob(\/ —¢/)
N N

N
<Y Prob(—¢i) =Y (1-p)=N-> pi

i=1 i=1 i=1
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A simple observation
(Abramsky—Hardy)

» Propositional formulae ¢, ..., ¢y
> p; := Prob(¢;)
» Not simultaneously satisfiable, hence

Prob(/\ ¢;) =0

v

Using elementary logic and probability:

1 = Prob(— /\ ¢;) = Prob(\/ —¢/)
N N

N
<Y Prob(—¢i) =Y (1-p)=N-> pi

i=1 i=1 i=1

v

Hence, Ef\’:l pi <N —1.
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Analysis of the Bell table

B1(0,0) (0.1) (1,0o) (11)
b 2 0 VR
by | 3/s 1/g 1/g 3/8
by | 3/s 1/g 1/g 3/8
by | 1Y 3/8 3/8 1/g
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Analysis of the Bell table

B1(0,0) (0.1) (1,0o) (11)
b 2 0 VR
by | 3/s 1/g 1/g 3/8
by | 3/s 1/g 1/g 3/8
by | 1Y 3/8 3/8 1/g

¢p1=a1 < b
o =a; <+ by
3 =ax < by

$s=ar P by

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Analysis of the Bell table

B1(0,0) (0,1) (1,0) (1,1)
by | 12 0 0 1/2
b2 3’/8 1/8 1/8 3/8
by | 3/s 1/g 1/g 3/8
by | 1Y 3/8 3/8 1/g

¢p1=a1 < b
o =a; <+ by
3 =ax < by

$s=ar P by

These formulae are contradictory.
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Analysis of the Bell table

B1(0,0) (0,1) (1,0) (1,1)
b1 1 /2 0 0 1/2
by | 3/s 1/g 1/g 3/g
by | 3/s 1/g 1/g 3/8
by | 1Y 3/8 3/8 1/g

¢p1=a1 < b
o =a; <+ by
3 =ax < by

$s=ar P by

These formulae are contradictory.
But
p1+ p2+ p3+ ps = 3.25
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Analysis of the Bell table

B1(0,0) (0.1) (1,0o) (11)

b1 1 /2 0 0 1 /2
by | 3/8 /g /8 3/8
by | 3/s 1/g 1/g 3/8
by | 1Y 3/8 3/8 1/g

¢p1=a1 < b
¢2=31<—>b2
¢3 = ax > by

Ps = ar @ by

These formulae are contradictory.
But
p1+ p2+ p3+ ps = 3.25

The inequality is violated by /4.
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Contextuality

» But the Bell table can be realised in the real world.
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Contextuality

» But the Bell table can be realised in the real world.

» What was our unwarranted assumption?
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Contextuality

» But the Bell table can be realised in the real world.
» What was our unwarranted assumption?

» That all variables could in principle be observed simultaneously.
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Snapshots

» Not all properties of a quantum system may be observed at once.

» Jointly measurable observables provide partial, classical snapshots.
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Snapshots

» Not all properties of a quantum system may be observed at once.
» Jointly measurable observables provide partial, classical snapshots.

M. C. Escher, Ascending and Descending
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Snapshots

» Not all properties of a quantum system may be observed at once.

» Jointly measurable observables provide partial, classical snapshots.

Local consistency
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Snapshots

» Not all properties of a quantum system may be observed at once.

» Jointly measurable observables provide partial, classical snapshots.

Local consistency vs Global inconsistency
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Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O is a finite set of outcomes or values

» M is a cover of X, indicating joint measurability (contexts)
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Abramsky—Brandenburger framework

Measurement scenario (X, M, O):
» X is a finite set of measurements or variables
» O is a finite set of outcomes or values

» M is a cover of X, indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
» The set of variables is X = {ay1, a2, by, b2}
» The outcomes are O = {0,1}.

» The measurement contexts are:

{ {al7b1}” {alva}’ {32’[31}’ {327b2} }
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Measurement scenarios

by

by
Examples: Bell-type scenarios, KS configurations, and more.
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Another example: 18-vector Kochen—Specker

> A set of 18 variables, X = {A,..., 0}
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Another example: 18-vector Kochen—Specker

> A set of 18 variables, X = {A,..., 0}

> A set of outcomes O = {0, 1}

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Another example: 18-vector Kochen—Specker

> A set of 18 variables, X = {A,..., 0}
» A set of outcomes O = {0,1}

» A measurement cover M = {(,..., Gy}, whose contexts C;
correspond to the columns in the following table:

(Ui U [ Us [Us [ Us | Us | Ur | Us | U |
A|A|H|H|B|I|P|P|Q
B|E|] |K|E|K|Q|R|R
CIF|C|[G|[M|N|D|F M
D[ G| J|L|N|[O|[J|L|O

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Empirical Models

Joint outcome or event in a context C is s € O, e.g.

s:[al»—>0,b1»—>1].
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Empirical Models

Joint outcome or event in a context C is s € O, e.g.

s:[al»—>0,b1»—>1].

Empirical model: family {ec}cerq where ec € Prob(O€) for C € M.

It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.
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Empirical Models

Joint outcome or event in a context C is s € O, e.g.
s:[al'—>0,b1»—>1] .

Empirical model: family {ec}cerq where ec € Prob(O€) for C € M.

It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.

Compatibility condition: the distributions “agree on overlaps”

/
VC,CeM. ec|cr~.c/ = eC/|CmC’-
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Empirical Models
Joint outcome or event in a context C is s € OF, e.g.
s:[al'—>0,b1»—>1] .
Empirical model: family {ec}cerq where ec € Prob(O€) for C € M.

It specifies a probability distribution over the events in each context.
Each distribution is a row of the probability table.

Compatibility condition: the distributions “agree on overlaps”

/
VC,CeM. ec|cr~.c/ = eC/|CmC’-

In multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a global
distribution d € Prob(O%) on the joint assignments of outcomes to all
measurements that marginalises to all the ec:

3d € Prob(0X).VCe M. d|c = ec.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a global
distribution d € Prob(O%) on the joint assignments of outcomes to all
measurements that marginalises to all the ec:

3d € Prob(0X).VCe M. d|c = ec.

i.e. all the local information can be glued into a consistent global description.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a global
distribution d € Prob(O%) on the joint assignments of outcomes to all
measurements that marginalises to all the ec:

3d € Prob(0X).VCe M. d|c = ec.
i.e. all the local information can be glued into a consistent global description.

Contextuality:
family of data which is locally consistent but globally inconsistent.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a global
distribution d € Prob(O%) on the joint assignments of outcomes to all
measurements that marginalises to all the ec:

3d € Prob(0X).VCe M. d|c = ec.
i.e. all the local information can be glued into a consistent global description.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell-Kochen—Specker's theorems is that
there are contextual empirical models arising from quantum mechanics.
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Possibilistic collapse

» Given an empirical model e, define possibilistic model poss(e) by
taking the support of each distributions.

» Contains the possibilistic, or logical, information of that model.
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Possibilistic collapse

» Given an empirical model e, define possibilistic model poss(e) by
taking the support of each distributions.

» Contains the possibilistic, or logical, information of that model.

00 01 10 11 00 01 10 11
aby |12 0 0 12 @b |1 0 0 1
a1 b, 3/8 1/8 1/8 3/8 — a1 by 1 1 1 1
axb; | 3/s /s /s 3/s ab |1 1 1 1
aby | /s 3/8 3/ 1/s aby|1 1 1 1
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Possibilistic collapse

» Given an empirical model e, define possibilistic model poss(e) by
taking the support of each distributions.

» Contains the possibilistic, or logical, information of that model.

00 01 10 11 |00 01 10 11
ai by 0 O abh|1 0 0 1
a1 b, 1/8 1/8 — a1 by 1 1 1 1
an bl 1/8 1/8 an b1 1 1 1 1
axby | s 1/8 ab|1 1 1 1

In some instances, this is enough to witness contextuality!

R S Barbosa
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Contextuality (topo)logically

Hardy model
B 1(0,0) (0,1) (1,0) (1,1)
by 1 1 1 1
b> 0 1 1 1
by 0 1 1 1
bo 1 1 1 0
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Contextuality (topo)logically

Hardy model

B 1(0,0) (0,1) (1,0) (1,1)
b1 1 1
b> 0 1
b1 0 1
bo 1 1

e
(o I T e

by
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Contextuality (topo)logically

0
L4
Hardy model °0

0e H
B ‘ ( 70) ( ) 1) ( 70) ( ) 1) ° 1
bi| 1 1 1 1 : : * :

le : :
by 0 1 1 1 : :
bi| 0 1 1 1 : °
b |1 1 10 1
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Contextuality (topo)logically

Hardy model

B (0,0 (01 (1,o) (1,1)

b 1 1
b> 0 1
b1 0 1
bo 1 1

o e
O R R >

R S Barbosa
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Contextuality (topo)logically

Hardy model

B (0.0 (01 (1,o) (1,1)

by 1 1 1 1

b> 0 1 1 1

by 0 1 1 1

by 1 1 1 0
V by
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Contextuality (topo)logically

Hardy model

B (0.0 (01 (1,o) (1,1)

b
b 1 1 1 1
by 0 1 1 1
b1 0 1 1 1
by 1 1 1 0
V by V b
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Contextuality (topo)logically

Hardy model

B 1(0,0) (0,1) (L,0) (
b 1 1
b> 0 1
b1 0 1
b 1 1

)

e e )
O o=

V by V b —\( A bg)
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Contextuality (topo)logically

Hardy model

B 1(0,0) (0,1) (1,0) (1,1)
by 1 1
b> 0 1
b1 0 1
by 1 1

e
(o I T e

V by V b —\( A bg)
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Contextuality (topo)logically

Hardy model

B1(0,0) (0.1 (1,0) (

)

b
by
by
b

V by

1 1

0 1
0 1
1 1

V bo

1
1
1
1

O =

There are some global sections,

Classical assignment: [a; > 1. a, > 1, by v 1, by v 1]

R S Barbosa
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Contextuality (topo)logically

Hardy model
B (0,0 (0,1) (1,0) (1,1)
b1 1 1 1 1
b> 0 1 1 1
by 0 1 1 1
b> 1 1 1 0
V by V b —\( A bg)
[21 — 0, b1 — 0]

There are some global sections, but. .. by
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Contextuality (topo)logically

Hardy model
B (0,0 (0,1) (1,0) (1,1)
by 1 1 1 1
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bo 1 1 1 0
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Contextuality (topo)logically

Hardy model
B (0,0 (0,1) (1,0) (1,1)
b1 1 1 1 1
b> 0 1 1 1
by 0 1 1 1
b> 1 1 1 0
V by V b —\( A bg)
[21 — 0, b1 — 0]

There are some global sections, but. .. by

Logical contextuality: Not all sections extend to global ones.

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Contextuality (topo)logically

Popescu—Rohrlich box

B(0,0) (0,1) (1,0) (1,1)
b | 1 0 0 1
by | 1 0 0 1
bi| 1 0 0 1
b | 0 1 1 0

Strong contextuality:
no event can be extended to a global assignment.

(—)bl <—>b2 <—)b1 @bz
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What does this have to do with
quantum advantage?



IT'SNOT A

BUG

IT'S A
FEATURE
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information,

Alice Bob
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information,

Alice o 1 Bob
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

Alice Bob
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

Alice

Verifier

R S Barbosa
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

Alice

Verifier

R S Barbosa
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

°A °B
Alice Bob
ia B
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

Verifier

°A °B
Alice Bob
ia B
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

°A °B
Alice Bob
ia B
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

oa o
Alice Bob
ia B

A strategy is described by the probabilities P( 04, 05 | ia, ig ).
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Non-local games

Alice and Bob cooperate in solving a task set by Verifier

May share prior information, but cannot communicate once game starts

oa o
Alice Bob
ia B

A strategy is described by the probabilities P( 04, 05 | ia, ig ).

A perfect strategy is one that wins with probability 1.
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The AND game

v

Verifier sends a bit to each of Alice and Bob, i4 and ig.

v

Each returns an output bit, o4 and og.

v

Their outputs are combined by verifier: 04 & op.

v

They win if they implement the AND function:
oaPDog =o04ANo0p
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The AND game

v

Verifier sends a bit to each of Alice and Bob, i4 and ig.

v

Each returns an output bit, o4 and og.

v

Their outputs are combined by verifier: 04 & op.

v

They win if they implement the AND function:
oaPDog =o04ANo0p

Classically, they can win with probablity at most 3/4

Quantumly, the Bell table allows for a higher probability.
In fact, one can reach (2 ++/2)/4 ~ 0.85
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Binary constraint systems games

Magic square:
» Fill with Os and 1s

> rows and first two columns: even parity

> last column: odd parity
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Binary constraint systems games

Magic square:

A C

» Fill with Os and 1s
DlE|F > rows and first two columns: even parity
G| H| I > last column: odd parity

System of linear equations over Z,:

AdB®C=0 A®D®G=0
DOE®F=0 B®E®H=0
GeHo I =0 CeFal =1

R S Barbosa Quantum vs classical: non-locality, contextuality, and informatic advantage



Binary constraint systems games

Magic square:

A C

» Fill with Os and 1s
DlE|F > rows and first two columns: even parity
G| H| I > last column: odd parity

System of linear equations over Z,:

AdB®C=0 A®D®G=0
DOE®F=0 B®E®H=0
GeHo I =0 CeFal =1

Clearly, this is not satisfiable in Z,.
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E.g.: Binary contraint satisfaction game

» Verifier sends an equation to Alice
» and a variable to Bob
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E.g.: Binary contraint satisfaction game

v

Verifier sends an equation to Alice

v

and a variable to Bob

v

Alice returns an assignment for the variables in her equation

v

Bob returns a value for his variable
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E.g.: Binary contraint satisfaction game

v

Verifier sends an equation to Alice

v

and a variable to Bob

v

Alice returns an assignment for the variables in her equation

v

Bob returns a value for his variable

» They win the play if:
> Alice's assignment satisfies the equation
> Bob's value is consistent with Alice's assigment
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E.g.: Binary contraint satisfaction game

» Verifier sends an equation to Alice
» and a variable to Bob

v

Alice returns an assignment for the variables in her equation
Bob returns a value for his variable

v

» They win the play if:
> Alice's assignment satisfies the equation
> Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an
assignment to all variables satisfying the system of equations.
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E.g.: Binary contraint satisfaction game

» Verifier sends an equation to Alice
» and a variable to Bob

v

Alice returns an assignment for the variables in her equation
Bob returns a value for his variable

v

» They win the play if:
> Alice's assignment satisfies the equation
> Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an
assignment to all variables satisfying the system of equations.

But using quantum resources, they can win the Magic Square game with
probability 1, using Mermin’s construction.
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E.g.: Binary contraint satisfaction game

» Verifier sends an equation to Alice
» and a variable to Bob

v

Alice returns an assignment for the variables in her equation
Bob returns a value for his variable

v

» They win the play if:
> Alice's assignment satisfies the equation
> Bob's value is consistent with Alice's assigment

Classically, Alice and Bob have a perfect strategy if and only if there is an
assignment to all variables satisfying the system of equations.

But using quantum resources, they can win the Magic Square game with
probability 1, using Mermin’s construction.

The system has a quantum solution but no classical solution!
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Contextual fraction and quantum advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.
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Contextual fraction and quantum advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.
> Non-local games
XOR games (CHSH; Cleve—Hgyer—Toner—Watrous)
quantum graph homomorphisms (Man&inska—Roberson)
constraint satisfaction (Cleve-Mittal)
etc. (Abramsky—B—de Silva—Zapata)
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Contextual fraction and quantum advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.

> Non-local games
XOR games (CHSH; Cleve—Hgyer—Toner—Watrous)
quantum graph homomorphisms (Man&inska—Roberson)
constraint satisfaction (Cleve-Mittal)
etc. (Abramsky—B—de Silva—Zapata)

» MBQC
Raussendorf (2013)
“Contextuality in measurement-based quantum computation”
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Contextual fraction and quantum advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.
> Non-local games
XOR games (CHSH; Cleve—Hgyer—Toner—Watrous)
quantum graph homomorphisms (Man&inska—Roberson)
constraint satisfaction (Cleve-Mittal)
etc. (Abramsky—B—de Silva—Zapata)
» MBQC
Raussendorf (2013)
“Contextuality in measurement-based quantum computation”
» MSD
Howard—Wallman—Veith—Emerson (2014)
“Contextuality supplies the ‘magic’ for quantum computation”
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Contextual fraction and quantum advantages

» Contextuality has been associated with quantum advantage in
information-processing and computational tasks.
> Non-local games
XOR games (CHSH; Cleve—Hgyer—Toner—Watrous)
quantum graph homomorphisms (Man&inska—Roberson)
constraint satisfaction (Cleve-Mittal)
etc. (Abramsky—B—de Silva—Zapata)
» MBQC
Raussendorf (2013)
“Contextuality in measurement-based quantum computation”
» MSD
Howard—Wallman—Veith—Emerson (2014)
“Contextuality supplies the ‘magic’ for quantum computation”

» Measure of contextuality ~~ quantify such advantages.
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

» Normalised, allowing comparison across scenarios
0 for non-contextuality .. .1 for strong contextuality

R S Barbosa

Quantum vs classical: non-locality, contextuality, and informatic advantage



Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

» Normalised, allowing comparison across scenarios
0 for non-contextuality .. .1 for strong contextuality

» Computable using linear programming
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

v

Normalised, allowing comparison across scenarios
0 for non-contextuality .. .1 for strong contextuality

v

Computable using linear programming

v

Precise relationship to violations of Bell inequalities (Dual LP)
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

v

Normalised, allowing comparison across scenarios
0 for non-contextuality .. .1 for strong contextuality

v

Computable using linear programming

v

Precise relationship to violations of Bell inequalities (Dual LP)

v

Monotone wrt operations that don't introduce contextuality
~> resource theory
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Measuring contextuality

We introduce the contextual fraction
(generalising the notion of non-local fraction)

It satisfies a number of desirable properties:

» General, i.e. applicable to any measurement scenario

v

Normalised, allowing comparison across scenarios
0 for non-contextuality .. .1 for strong contextuality

v

Computable using linear programming

v

Precise relationship to violations of Bell inequalities (Dual LP)

» Monotone wrt operations that don't introduce contextuality
~> resource theory

v

Relates to quantifiable advantages in QC and QIP tasks
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

VCGM' d‘c = €c .
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec .

Which fraction of a model admits a non-contextual explanation?
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:

Veem-dlc = ec .

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions ¢ € SubProb(O%) such that:

Veem- clc < ec .

Non-contextual fraction: maximum weight of such a subdistribution.
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:
Vceem- dlc = ec.

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions ¢ € SubProb(O%) such that:

Veem- clc < ec .

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight A over all convex decompositions

e=XeNC 4 (1-N)e

NC

where e is a non-contextual model.
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:
Vceem- dlc = ec.

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions ¢ € SubProb(O%) such that:

Veem- clc < ec .

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight A over all convex decompositions

e=XeNC 4 (1-N)e

NC

where e is a non-contextual model.
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The contextual fraction
Non-contextuality: global distribution d € Prob(OX) such that:
Vceem- dlc = ec.

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions ¢ € SubProb(O%) such that:

Veem- clc < ec .

Non-contextual fraction: maximum weight of such a subdistribution.
Equivalently, maximum weight A over all convex decompositions
e=XeNC 4+ (1 - N)e*€

NC

where eV is a non-contextual model. e°C is strongly contextuall

NCF(e) = A CF(e)=1- A
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Contextuality and MBQC

E.g. Raussendorf (2013) ¢2-MBQC
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Contextuality and MBQC

E.g. Raussendorf (2013) ¢2-MBQC

» measurement-based quantum computing scheme
(m input bits, / output bits, n parties)
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Contextuality and MBQC

E.g. Raussendorf (2013) ¢2-MBQC

» measurement-based quantum computing scheme
(m input bits, / output bits, n parties)

» classical control:

> pre-processes input
> determines the flow of measurements
» post-processes to produce the output

only Zy-linear computations.

classical input quantum operations

/a\\_/@

classical output measurement values
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Contextuality and MBQC
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Contextuality and MBQC

» Additional power to compute non-linear functions resides in using
resources displaying contextual correlations.

oL — P
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Contextuality and MBQC

» Additional power to compute non-linear functions resides in using
resources displaying contextual correlations.

oL — P

» Raussendorf (2013): If an £2-MBQC deterministically computes a
non-linear Boolean function f : 2™ — 2/ then the resource must be
strongly contextual.
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Contextuality and MBQC

» Additional power to compute non-linear functions resides in using
resources displaying contextual correlations.

oL — P

» Raussendorf (2013): If an £2-MBQC deterministically computes a
non-linear Boolean function f : 2™ — 2/ then the resource must be
strongly contextual.

» Probabilistic version: non-linear function computed with sufficently
large probability of success implies contextuality.
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Contextual fraction and MBQC

» Goal: Compute Boolean function f : 2™ — 2! using £2-MBQC
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Contextual fraction and MBQC

» Goal: Compute Boolean function f : 2™ — 2/ using £2-MBQC
» Hardness of the problem
v(f) :==min{d(f,g) | g is Zp-linear}
(average distance between f and closest Z,-linear function)

where for Boolean functions f and g, d(f,g) :=2""|{i € 2™ | f(i) # g(i)}.
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Contextual fraction and MBQC

» Goal: Compute Boolean function f : 2™ — 2/ using £2-MBQC
» Hardness of the problem
v(f) :==min{d(f,g) | g is Zp-linear}
(average distance between f and closest Z,-linear function)

where for Boolean functions f and g, d(f,g) :=2""|{i € 2™ | f(i) # g(i)}.

» Average probability of success computing f (over all 2™ possible
inputs): ps.
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Contextual fraction and MBQC

» Goal: Compute Boolean function f : 2™ — 2/ using £2-MBQC
» Hardness of the problem
v(f) :==min{d(f,g) | g is Zp-linear}
(average distance between f and closest Z,-linear function)

where for Boolean functions f and g, d(f,g) :=2""|{i € 2™ | f(i) # g(i)}.

» Average probability of success computing f (over all 2™ possible
inputs): ps.

» Then,

1—ps > NCF(e) v(f) \
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Contextuality as a resource: Algebra of empirical models

» Think of empirical models as black boxes
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Contextuality as a resource: Algebra of empirical models

» Think of empirical models as black boxes

» What operations can we perform (non-contextually) on them?
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Contextuality as a resource: Algebra of empirical models

» Think of empirical models as black boxes

» What operations can we perform (non-contextually) on them?

» We write type statements
e: (X, M,0)

to mean that e is a (compatible) emprical model on (X, M, O).
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Contextuality as a resource: Algebra of empirical models

» Think of empirical models as black boxes

v

What operations can we perform (non-contextually) on them?

» We write type statements
e: (X, M,0)

to mean that e is a (compatible) emprical model on (X, M, O).

» The operations remind one of process algebras.
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Operations and the contextual fraction
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Operations and the contextual fraction

Relabelling e[a]
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Operations and the contextual fraction

Relabelling e[a]

Restriction el M
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Operations and the contextual fraction

Relabelling e[a]
Restriction el M

Coarse-graining e/f
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Operations and the contextual fraction

Relabelling e[a]
Restriction el M
Coarse-graining e/f

Mixing Ae+ (1 —N)e
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Operations and the contextual fraction

Relabelling e[a]
Restriction el M
Coarse-graining e/f

Mixing Ae+ (1 —N)e

Choice e& e
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Operations and the contextual fraction

Relabelling e[a]
Restriction el M

Coarse-graining e/f

Mixing Ae+ (1 —N)e
Choice e& e
Tensor €1 e
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Operations and the contextual fraction

Relabelling e[a]
Restriction el M

Coarse-graining e/f

Mixing Ae+ (1 —N)e
Choice e& e
Tensor €1 e

Sequencing e e
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction el M

Coarse-graining e/f

Mixing Ae+ (1 —N)e
Choice e& e
Tensor €1 e

Sequencing e e
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining e/f

Mixing Ae+ (1 —N)e
Choice e& e
Tensor €1 e

Sequencing e e
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing Ae+ (1 —N)e
Choice e& e
Tensor €1 e

Sequencing e e
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing CF(Ae+ (1 —)N)€e') < ACF(e) + (1 — N)CF(¢')
Choice e& e
Tensor €1 e

Sequencing e e
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing CF(Ae+ (1 —)N)€e') < ACF(e) + (1 — N)CF(¢')
Choice CF(e & €’') = max{CF(e), CF(¢')}
Tensor e ® e

NCF(e; ® &) = NCF(e;) NCF(ey)

Sequencing €1; &
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing CF(he+ (1 —X)e') < ACF(e) + (1 — X)CF(€')
Choice CF(e & €’') = max{CF(e), CF(¢')}
Tensor CF(e; ® &) = CF(e1) + CF(e2) — CF(e1)CF(e2)

NCF(e; ® e;) = NCF(e;) NCF(ey)

Sequencing €1; &
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Operations and the contextual fraction

Relabelling CF(e[a]) = CF(e)
Restriction CF(e | M") < CF(e)

Coarse-graining CF(e/f) < CF(e)

Mixing CF(he+ (1 —X)e') < ACF(e) + (1 — X)CF(€')
Choice CF(e & €’') = max{CF(e), CF(¢')}
Tensor CF(e1 ® e2) = CF(e1) + CF(ep) — CF(e1)CF(e2)

NCF(e; ® e;) = NCF(e;) NCF(ey)

Sequencing CF(e; ® &2) < CF(e1) + CF(e2) — CF(e1)CF(e2)
NCF(er; &2) > NCF(e1) NCF(ep)
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Resource theory of contextuality

(some work in progress)
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
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Resource theory of contextuality

(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
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Resource theory of contextuality

(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes
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Resource theory of contextuality

(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
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Resource theory of contextuality

(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
> so far, it hides middle steps
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Resource theory of contextuality

(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
> so far, it hides middle steps
> not doing so leads to notion of causal empirical models.
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
> so far, it hides middle steps
> not doing so leads to notion of causal empirical models.

> Allow natural expression of measurement-based computation with
feed-forward, in a device-independent form:
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
> so far, it hides middle steps
> not doing so leads to notion of causal empirical models.

> Allow natural expression of measurement-based computation with
feed-forward, in a device-independent form:
> One can measure a non-maximal context (face o of complex)
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Resource theory of contextuality
(some work in progress)

» Resource theory a la Coecke—Fritz—Spekkens.
(resource theory of combinable processes)

» Device-independent processes
» Operations remind one of process algebra
> Process calculus:
operational semantics by (probabilistic) transitions
> bissimulation, metric / approximation
> (modal) logic for device-independent processes

» Sequencing:
> so far, it hides middle steps
> not doing so leads to notion of causal empirical models.

> Allow natural expression of measurement-based computation with
feed-forward, in a device-independent form:
> One can measure a non-maximal context (face o of complex)
> leaving a model on scenario |k, M
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Questions...

uantum vs classic: locality, contextuality, and informatic advantage



