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Introduction

Quantum logic was created by Birkhoff and von Neumann in the thirties as a
extrapolation from the algebraic structure of the set of closed subspaces of a
Hilbert space.

Q Days Quantum Logic April 11, 2019



Introduction Semantics Calculus Implication Problem

Intuitive overview

Classical particle mechanics

Let σ be a classical physical system (let’s say one classical particle).

One can associate to σ, as a mathematical representation, a phase-space P.

P is the set of all 6−tuples (x1 . . . x6) of real numbers:

x1, x2, x3 representing three position coordinates;

x4, x5, x6 representing three momentum coordinates.

Any p ∈ P represents a pure state.
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Intuitive overview

Classical particle mechanics

In this framework, it’s natural to assume that the power-set P(P) of P
represents all of the possible properties of the pure states.

For instance, the property “no momentum” is simply the set

{(x1, x2, x3, 0, 0, 0) : x1, x2, x3 ∈ R}
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Intuitive overview

Classical particle mechanics

Using terminology from logic we may say that any property X ∈ P(P)
represents a proposition which may be true or false for any given pure state p:

X is true if p ∈ X ;

X is false if p ∈ P \ X .

For instance, the property “no momentum”

{(x1, x2, x3, 0, 0, 0) : x1, x2, x3 ∈ R}

seen as a proposition is

true for the pure state (2, 3, 6, 0, 0, 0);

false for the pure state (2, 3, 6, 0, 0, 1).
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Intuitive overview

Classical particle mechanics

Since P(P) has a Boolean structure, it’s governed by classical logic, with the
set-theoretical operations seen as logical connectives:

complement

intersection

union

∼

∧

∨
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Intuitive overview

Quantum theory

In the standard formalism of quantum theory:

the role of the phase-space P is played by a Hilbert space H;

the pure states of a system are the unit vectors in H;

We are only interested in properties that can in principle be tested by a
measurement. These are called testable properties. In our Hilbert space H,
the set of testable properties is the set C(H) of closed linear subspaces of H.

However, unlike P(P), C(H) is not closed under the set-theoretical operations.

Consequently we cannot define a Boolean structure on C(H), using the
set-theoretical operations.
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Intuitive overview

Quantum theory

Nevertheless, we will see that C(H) can be extended, in a natural way, to a
certain “quasi-Boolean” algebraic structure.

These structures are called ortholattices.
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Ortholattices

Ortholattices

Definition (Ortholattice)

An ortholattice is a structure O = (O,≤,u,t,¬,⊥,>), where

(O,≤,u,t,⊥,>) is lattice with maximum (>) and minimum (⊥);

¬ is a 1−ary operation, called orthocomplement, satisfying:
¬¬A = A,

A ≤ B ⇒ ¬B ≤ ¬A,

A u ¬A = 0,

A t ¬A = 1,

for all A,B ∈ O.

The usual De Morgan’s laws are valid:

¬⊥ = >
¬> = ⊥

¬(A t B) = ¬B u ¬A
¬(A u B) = ¬B t ¬A
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Ortholattices

Ortholattice of closed linear subspaces

It’s easy to check that (C(H),⊆,∩,+,¬, 0,H) is a ortholattice, where:

A ∩ B is the set theoretical intersection;

A + B := 〈A ∪ B〉, the linear subspace generated by the set-theoretical
union A ∪ B;

¬A is the subspace orthogonal to A, ¬A = {y ∈ H | ∀x ∈ A 〈x , y〉 = 0}.
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Ortholattices

Example

Example

Consider the ortholattice (C(R2),⊆,∩,+,¬, 0,R2).

In this case C(R2) is simply the set containing all the straight lines through the
origin, the whole plane (R2) and the origin (0):

R2

r s t . . . ¬s¬r ¬t

0

where r , s, t are straight lines through the origin.
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Ortholattices

Violation of meta-tertium non datur

Remember that each A ∈ C(H) represents a proposition which is, for a given
pure state p,

true if p ∈ A;

false if p ∈ ¬A.
It’s perfectly possible that a proposition is neither true nor false.

In other words, we have a violation of the meta-theoretical tertium non datur.

At the same time A + ¬A is true for any pure state p and any proposition A.

Which means that the theoretical tertium non datur holds!
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Ortholattices

Violation of meta-tertium non datur

This can be explained by the fact that, the truth of a disjunction does not
imply the truth of at least one member.

While this result is counter-intuitive it mirrors some “logical anomalies” of
quantum mechanics.

Consider the famous “two-slit experiment”. In this physical experiment we
have a certain particle p and we know that:

“p has gone trough slit A” or “p has gone trough slit B”

Yet, we can neither maintain that it is true that,

“p has gone trough slit A”

nor that it is true that

“p has gone trough slit B”
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Ortholattices

Orthomodularity

While we don’t generally have distributivity in ortholattices we do have a weak
form of modularity for the class of ortholattices corresponding to C(H).

Recall that a lattice is modular if the following identity holds

A ≤ B ⇒ (A ∨ C) ∧ B ≤ A ∨ (C ∧ B)

Orthomodularity only requires this identity for the special case C = ¬A:

Definition (Orthomodularity)

An ortholattice O is orthomodular if

A ≤ B ⇒ B ≤ (A t (¬A u B))

holds for any A,B ∈ O.
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Ortholattices

Quantum Logic

There are two variants of quantum logic:

Orthomodular quantum logic (OQL)

It’s associated to the class of orthomodular ortholattices.
It’s a more faithful representation of the formalism of quantum theory.

Minimal quantum logic (MQL)
It’s associated to the class of ortholattices.
Has much better logical proprieties than orthomodular quantum logic.
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Algebraic Semantics

Algebraic Semantics

There are well-known algebraic semantics for classic, intuitionistic, and many
other logics.

For instance, classic logic and intuitionistic logic can be interpreted with
boolean lattices and Heyting lattices, respectively.

We can, analogously, interpret OQL and MQL with orthomodular lattices.

In sum:

Logic

Classic Logic
Intuitionistic Logic
Quantum Logic

Algebra

Boolean lattices
Heyting lattices
Orthomodular lattices
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Algebraic Semantics

Syntax

The formulas for OQL and MQL are built using only two connectives:

A ::= x | A u A | ¬A,

where x ranges over elements of a given countable set X of variables.

We now use u and ¬ to define the following:

A t B := ¬(¬A u ¬B)

⊥ := ¬x u x

> := ¬⊥
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Algebraic Semantics

Algebraic realization

Definition (Algebraic realization)

An algebraic realization for MQL (resp. OQL) is a pair R = (O, v) where

O is an ortholattice (resp. orthomodular ortholattice);

v is a valuation-function which associates with any formula A an
element of O and satisfies the following conditions:

v(¬A) = ¬v(A),

v(A u B) = v(A) u v(B).
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Algebraic Semantics

Logical Truth

Definition (Logical Truth)

Let A be a formula.

A is true in a algebraic realization R = (O, v) if v(A) = >. In that case we

write R A.

A is a logical truth of MQL (resp. OQL) if A is true for any algebraic

realization. In that case we write
MQL

A
(

resp.
OQL

A
)

.
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Algebraic Semantics

Logical Consequence

Definition (Logical Consequence)

Let Γ be a set of formulas.

A is a logical consequence of Γ if, for any algebraic realization R = (O, v),
any o ∈ O

any B ∈ Γ, o ≤ v(B)⇒ o ≤ v(A).

In that case we write Γ
MQL

A
(

resp. Γ
OQL

A
)

.

We will write B
–QL

A instead of {B}
–QL

A.

It’s easy to check that B
–QL

A⇔ v(B) ≤ v(A) for any algebraic realization.
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Axiomatization of Minimal Quantum Logic

We will now axiomatize the consequence relation of minimal quantum logic.

Naturally, we want

A B to be derivable if and only if A
MQL

B.

Equivalently, we want

A B to be derivable if and only if v(A) ≤ v(B),

for any algebraic realization.
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Axiomatization of Quantum Logic

Goldblatt’s axiomatization [1974]

ax
A A

A B B C
cut

A C

u1L
A u B A

u2L
A u B B

C A C B
uR

C A u B
>R

C >

t1R
A A t B

t2R
B A t B

A C B C
tL

A t B C
⊥L

⊥ C

A B
¬

¬B ¬A
¬¬R

A ¬¬A
¬¬L

¬¬A A
tnd

> A t ¬A
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Axiomatization of Quantum Logic

Goldblatt’s axiomatization [1974]

To obtain a calculus for OQL we simply have to add another rule:

om
A u (¬A t (A u B)) B
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Axiomatization of Quantum Logic

A problem of Goldblatt’s axiomatization

It’s not possible to eliminate the cut rule:

A B B C
cut

A C

This makes studying the derivability of A C very complicated, since we may
need to invent some B seemingly unrelated to A and C .

On the other hand, cut-free systems usually satisfy the sub-formula property:

every formula appearing in a derivation of A C is a sub-formula of A or C .

Q Days Quantum Logic April 11, 2019



Introduction Semantics Calculus Implication Problem

Axiomatization of Quantum Logic

Oliver Laurent’s axiomatization [2017]

ax
¬A,A

>
>,C

A
w

A,B

A,C
t1

A t B,C

B,C
t2

A t B,C

A,C B,C
u

A u B,C

For this calculus we have that

¬A,B is derivable if and only if v(A) ≤ v(B),

for any algebraic realization.
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Implication in Classic Logic

In classical logic we can define an implication connective using the classic
negation ∼ and classic disjunction ∨:

A→ B := ∼ A ∨ B

This implication is generally called material implication.
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Implication in Classic Logic

In the classical calculus:

modus ponens holds:
A ∧ (A→ B) ` B

deduction theorem is provable:

Γ,A ` B ⇒ Γ ` A→ B

The deduction theorem together with modus ponens can be stated simply as
the following implicative rule:

A ∧ B ` C ⇔ B ` A→ C
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The Problem

It is known that any logic with a binary connective satisfying the implicative
rule is distributive.

Hence it comes as no surprise that the implicative rule cannot be encountered
in quantum logic because of the failure of distributivity.

This is the so called implication problem.

At the end of the seminal paper “The Logic of Quantum Mechanics”:

“Our conclusion agrees perhaps more with those critiques of logic, which find
most objectionable the assumption that a′ ∪ b = > implies a ⊂ b.”

G. Birkhoff and J. von Neumann
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Implication in Quantum Logic

It is natural to wonder if possible to define some other kind of implication in
quantum logic.

Let us first assume that any implication operation should satisfy the law of
entailment:

A ` B ⇔ ` A→ B

Under this assumption, there are exactly five possible definitions for a binary
implication (in terms of ¬ and u):

A→1 B := (¬A u B) t (¬A u ¬B) t (A u (¬A t B))

A→2 B := (¬A u B) t (A u B) t ((¬A t B) u ¬B)

A→3 B := ¬A t (A u B)

A→4 B := B t (¬A u ¬B)

A→5 B := (¬A u B) t (A u B) t (¬A u ¬B)
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Implication in Quantum Logic

Note that the classical material implication is not one these five implication
operations as it violates the law of entailment.

Consider the following orthomodular lattice:

>

A ¬A B ¬B

⊥

It’s clear that we have ¬A t B but not A B.
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Sasaki Hook

One of these five implications operations is particularly interesting:

A→3 B := ¬A t (A u B),

the so called Sasaki hook.

This implication is “better” than the other candidates because it perfectly
matches classical implication if the elements are compatible:

A→3 B = ¬A t B if A = (A u B) t (A u ¬B)
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Sasaki Hook

In the case of OQL, the Sasaki Hook also satisfies modus ponens:

A u (A→3 B) B

which is exactly the orthomodular rule:

om
A u (¬A t (A u B)) B
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Sasaki Hook - Non-properties

It’s worth stressing that the Sasaki hook lacks many properties typically
associated with implication operations:

transitivity

A→3 B u B →3 C A→3 C

weakening

A→3 C (A u B)→3 C

contraposition

A→3 B ¬B →3 ¬A
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