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1. Quantum simulation does not scale effectively on NISQCs

2. Adiabatic evolution is universal method to find ground state of many-body 
systems but requires high-depth quantum circuits

3. Implementation of adiabatic evolution requires more efficient exploration of 
Hilbert space, which can be accomplished via tensor networks



www.inl.int
Bruno Murta, Theory of Quantum Nanostructures

0. Quantum simulation is best option to tackle 
    quantum many-body problems

0A. Solving the quantum many-body problem via classical hardware is 
       unfeasible due to the exponential wall problem

0B. Exact methods and approximations only succeed at solving
       low-dimensional and weak interactions problems

0C. Gate-based quantum computers are natural candidates to
       simulate quantum phenomena

A. Aspuru-Guzik et al., Science 309, 1704 (2005)
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1A. Phase estimation with ground state ansatz was first attempt
      to find electronic structure, but only for small molecules

• Aspuru-Guzik et al. (2005) measured the 
ground state energy of H

2
O and LiH

• Method initialized input register in 
Hartree-Fock ground state and 
carried out phase estimation algorithm

• Success of procedure depends on overlap 
between ansatz and exact ground state

• For large systems, as size of Hilbert space 
increases, this overlap becomes very small

• This algorithm also requires implementing 
propagator and high-depth circuits

A. Aspuru-Guzik et al., Science 309, 1704 (2005)
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     (a) Computed H
2
 energy curve and errors                                      (b) Architecture of the quantum-variational eigensolver

Peruzzo et al., Nature Communications 5, 4213 (2014)
O'Malley et al., Phys. Rev. X 6, 031007 (2016)

1B. VQE improves overlap between trial state and exact ground
      state, but not enough to address large systems (e.g. in 2D)
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1C. Orthogonality catastrophe suggests variational methods 
      are doomed to fail to simulate large enough systems

P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967)

• Orthogonality catastrophe: the overlap between two nearby ground states of 
fermionic systems tends to zero in the thermodynamic limit:

• Let |0) be the ground state of a fermionic Hamiltonian H. Let us add a small perturbation V, yielding the 
Hamiltonian H' = H + V. Let |0') be the ground state of H'

• The overlap (0'|0) is vanishingly small in the limit of large number of particles N

• It is therefore likely that, for a large enough system, the ansatz is orthogonal to the 
exact ground state, in which case the variational procedure will never lead to the 
ground state energy

• In the limit of large number of particles, even a good guess of the ground state may be 
orthogonal to it (i.e. the overlap is so small that it is negligible)  
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2A. Adiabatic theorem states that a gapped system remains an
      instantaneous eigenstate if the perturbation is small

M. Born and V. Fock, Zeitschrift für Physik 51, 165-180 (1928)
B. Murta and J. Fernández-Rossier, In preparation

• Let us consider an unpolarized light beam going 
through a sequence of polarizers:

• For two orthogonal polarizers no light passes through

• Adding a polarizer at 45° increases transmissivity to 0.25

• In general, for a sequence of N polarizers, equally spaced 
from 0° to 90° the transmissivity is given by [cos2(π/2N)]2N, 
which tends to 1 as N tends to ∞

• Similarly, when a quantum system is evolved 
adiabatically starting from an eigenstate, it 
follows the instantaneous eigenstate at every 
step due to an interference phenomenon Simulation of Sequence of Polarizers
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     (a) Mapping from Hamiltonian whose exact ground state is             (b) Overlap between HF ground state ansatz and exact ground state
           known, H

0
, to H

I
, whose ground state is to be found                          of H

2
 molecule for different separation distances between atoms 

                                                                                                                                 as a function of time of adiabatic evolution
E. Farhi et al., Science 292, 5516 (2001) 
A. Aspuru-Guzik et al., Science 309, 1704 (2005)

2B. Implementation of adiabatic evolution in quantum computers
      is conceptually straightforward and universal

(a) (b)
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     (a) Computed H
2
 energy curve and errors                                            (b) Overlap between HF ground state ansatz and exact ground state

                                                                                                                                 of H
2
 molecule for different separation distances between atoms 

                                                                                                                                 as a function of time of adiabatic evolution 
A. Aspuru-Guzik et al., Science 309, 1704 (2005)
O'Malley et al., Phys. Rev. X 6, 031007 (2016)

2B. Implementation of adiabatic evolution in quantum computers
      is conceptually straightforward and universal

(b)

9



www.inl.int
Bruno Murta, Theory of Quantum Nanostructures

                    Quantum state tomography of the digital evolution into a GHZ state. A 4-qubit is adiabatically evolved from an initial 
                    Hamiltonian in which all spins are aligned to an Ising Hamiltonian with equal ferromagnetic couplings

Barends et al., Nature 534, 222-226 (2016)                            

2C. Slow evolution requirement imposed by adiabatic condition
      makes quantum circuits too deep for current NISQCs
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3A. Overwhelming majority of Hilbert space can only be reached
      after exponentially long time, thus being unphysical

• The property that characterizes the quantum 
behaviour of a many-body system is entanglement:

• It is because fermions are entangled in the ground state that 
they can have nontrivial correlations even at zero temperature

• The entanglement entropy for low-energy states of local 
Hamiltonians typically scales as the area of the considered 
region instead of the volume

• The manifold of all quantum many-body states that 
can be generated by arbitrary time-dependent local 
Hamiltonians in a time that scales polynomially with 
system size also follows an area law, occupying an 
exponentially small volume of the Hilbert space

J. Eisert et al., Rev. Mod. Phys. 82, 277-306 (2010)
D. Poulin et al., Phys. Rev. Lett. 106, 170501 (2011)

Hilbert space of many-body system
Subspace of physical states
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3B. Tensor networks are efficient representation of many-body
      states (particularly ground states) that satisfies area law 

L. Vanderstraeten, Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems, Springer (2017) 
R. Orús, arXiv preprint, 1812.04011 (2018) [invited contribution to Nature Reviews Physics] 

• A tensor network comprises different tensors 
connected via the contraction of indices

• Tensors are the bricks building up the quantum state 
and entanglement plays the role of the glue amongst 
the different pieces

• Tensor networks capture the specific 
entanglement structure of low-energy states:

• Tensor networks provide an accurate and efficient 
parametrization of low-temperature ground states of 
quantum many-body systems

• Tensor network states can be thought to parametrize 
tiny subspace where the relevant physics takes place
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3C. Tensor networks can be simulated with exponentially
      fewer resources with quantum computers 

• Tensor network methods require contracting large tensors efficiently

• A classical computer requires memory and computation time that 
scales exponentially with Dd, where D is the number of parameters 
and d is the number of spatial dimensions 

• A quantum computer, on the other hand, can perform such 
operations in O(D log N) time using O(Dd) qubits, where N is the 
system size

I. H. Kim and B. Swingle, arXiv preprint, 1711.07500 (2017) 
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Conclusions

Quantum simulation via adiabatic evolution starting from tensor 
network ansatz state is a promising method to solve the quantum 
many-body problem for strong interactions in 2D and 3D:

• Numerical methods in classical hardware, exact methods and 
approximations can only tackle low-dimensional and/or weak 
interactions models

• Hybrid variational methods succeed at finding electronic structure 
of simple molecules but are doomed to fail to solve large systems 
due to the orthogonality catastrophe

• Adiabatic evolution requires high-depth circuits, so an efficient 
representation of the ground states of low-temperature 
Hamiltonians must be adopted, notably tensor networks
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0A. Solving the quantum many-body problem via classical 
      hardware is unfeasible due to the exponential wall problem

• Exponential wall problem: the number of computational resources needed to solve the 
Schrödinger equation of system with N degrees of freedom scales exponentially with N

• A quantum state describing N spin-½ particles requires storing 2N complex numbers:

• N ∼ 50 reaches memory capacity of state-of-the-art supercomputers

• N ∼ 270 exceeds the number of atoms in the Universe...

• Numerical simulations in classical hardware can thus only address small systems
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0B. Exact methods and approximations only succeed at solving
      low-dimensional and weak interactions problems

• Exact analytical solutions of quantum many-body models are mainly restricted to 1D

• Perturbation theory is limited to uninteresting non-perturbative phenomena

• Quantum Monte Carlo methods faces the sign problem for fermionic systems

• Density Functional Theory (DFT) makes use of approximations (e.g. LDA) to find the 
density functional, which break down for strong interactions

• DMRG and tensor network methods (e.g. MPSs, PEPSs, MERA) are very successful for 
1D systems but not for 2D and 3D systems
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0C. Gate-based quantum computers are natural candidates to
      simulate quantum phenomena

• Quantum computers are exponentially more efficient than classical computers at 
storing the state of quantum systems thanks to superposition and exploring quantum 
phenomena that are not accessible to classical methods thanks to entanglement

• Analog quantum simulators (e.g. ultracold atoms, quantum annealers) are constrained 
in terms of the interaction mechanisms that can be implemented; gate-based quantum 
computers, on the other hand, are universal

• Progress in quantum hardware (number of qubits, coherence times, gate errors) has 
been fast over the past years
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