A survey of Focal Decomposition

The concept of focal decomposition was introduced in [1] in the context of the 2point boundary value problem

$$
\begin{equation*}
\bar{x}=f(t, x, \dot{x}), \quad x\left(t_{1}\right)=x_{1}, \quad x\left(t_{2}\right)=x_{2}, \tag{1}
\end{equation*}
$$

the simplest and oldest of all boundary value problems.
Consider now the space $\boldsymbol{R}^{4}\left(\boldsymbol{t}_{1}, \quad x_{1} ; \boldsymbol{t}_{2}, \quad x_{2}\right)$ of all pair of points in \boldsymbol{R}^{2}. If i is the number of solutions of the problem (1), a non negative integer or ∞, we say that i is the index of the point $\left(\boldsymbol{t}_{1}, x_{1}, \boldsymbol{t}_{\mathbf{2}}, x_{2}\right)$. Call $\boldsymbol{\Sigma}_{i}$ the totality of points of \boldsymbol{R}^{4} $\left(t_{1}, x_{1} ; t_{2}, x_{2}\right)$ with index i. These sets then determine a partition

$$
\boldsymbol{R}^{4}=\Sigma_{1} \cup \Sigma_{2} \cup \ldots \cup \Sigma_{\infty},
$$

the focal decomposition associated to the 2-point boundary value problem (1).
This focal decomposition is then the object of study.
From the work of Peixoto and Thom [2] the possibility of a general, analytic theory became clear. We have then an existence theorem which says that under a certain properness condition expressed in terms of the solutions of (1), the sets Σ_{i} are the unions of strata of an analytical Whitney stratification of ($\boldsymbol{t}_{1}, \quad x_{1} ; t_{2}, x_{2}$) - space \boldsymbol{R}^{4} minus the diagonal $t_{1}=t_{\mathbf{2}}$. See [3].

Afterwards Kupka and Peixoto [4] extended the concept of focal decomposition in the context of an analytical Riemannian manifold.

In this context natural relationships of focal decompositions with such objects as Brillouin zones, semi-classical quantization and Diophantine equations were discovered.

References

[1] M. M. Peixoto, On Endpoint Boundary Value Problems, J. Diff. Equ. 44 (1982), 273280.
[2] M. M. Peixoto and R. Thom, Le point de vue énumeratif dans les problems aux limites pour les équations différentielles ordinaires I, II, C.R. Acad. Sci. 303 (1986), 629632, 693-698 ; Erratum 307 (1988), 197-198.
[3] M. M. Peixoto and A. R. da Silva, Focal decomposition and some results of S. Bernstein on the 2-point boundary value problem, J. London Math. Soc. (2) 60 (1999), 517-547.
[4] I. Kupka and M. M. Peixoto, On the Enumerative Geometry of Geodesics, From Topology to Computation, Proceedings of the Smalefest, Springer-Verlag (1993), 243-253.

