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Diffusion in GR

The Interior The exterior Self-Similar

Diffusion in General Relativity

Kinetic theory based on a Fokker-Planck equation for the particle density in the

phase-space:
S. Calogero, JCAP 11/2011, 016 (2011)

Fluid theory which is the formal macroscopic limit of the kinetic theory: S.
Calogero J. Geom. Phys. 62, 2208-2213 (2012)

The energy-momentum tensor and energy current for a perfect fluid
TH = putu” + p(gh"” + u*u")
JH = nut

For a perfect-fluid undergoing velocity diffusion

VuTH =oJ”

VuJt =0
o is the diffusion constant and measures the average energy transferred per unit
time from the background substance to a fluid particle.
Projecting parallel and orthogonal to u*
Vu(put) + pVyut = on,
(o + P)urVpu” + u’utVyup +V¥p =0,
Vu(nut) = 0.



Diffusion in GR

First-law of thermodynamics:
o
ubV,s = g

In presence of diffusion T, is not divergence-free. Incompatibility with the twice
contracted Bianchi identities V,, G*¥ = 0.

Add a matter field which interacts with the fluid particles restoring the local
conservation of energy

The new matter field plays the role of a background medium in which particles
undergo diffusion

The simplest model for this medium is a vaccum-energy described by a
cosmological scalar field (varying A)

G,UV + ¢guu = T,ut/

The diffusion equation is
Vup=o0dy

When o = 0 the model reduces to the Einstein-Euler system with cosmological
constant A.

A. Alho, S. Caloger, M. P. Ramos and A. J. Soares: Dynamics of
Robertson-Walker spacetimes with diffusion, Annals of Physics 204 (2015)

Stellar models in Spherical Symmetry



The Interior

The Interior

e Comoving system of coordinates:

g = —e2®(tR) g2 4 2V(R) g2 | 2(t, R) d22,
u= —ef¢(t"R)8t,

where dQ2 = d6? + sin® 0dvy? is the standard metric on S2.

o Fix ®(t, Rp) =0, so that t is the proper time of observers at rest with respect to
the boundary of the star

e Fix r(0, R) = R, so that the comoving radius R coincides initially, i.e., at time
t = 0, with the radius function of the group orbits.

Theorem

Let p =0 and let (g, p, n, u, $) be a spherically symmetric solution. Then p, n, ¢ are
functions of t € [0, T) only and there exist a positive function a : [0, T) — (0, c0) and
a constant k € R such that

= —dt® + a(t)?
g +at)({ g

+ R2dQ?),
u= —8t.

e Robertson-Walker geometry! By rescaling the radial coordinate we may assume
that k € {—1,0,1}, R < Rp, where R, < 1 for k = 1.



The Interior

e From now on we consider a pressureless fluid (dust).

a(0)*n(0)

T, while

e The conservation of the particle number density gives n(t) =
a(), p(t), 6(2) satisfy
a\2 k 1 a 1 1
- - == b - =—=p+= k)
(a) T3l =Tl
. B . a .
¢:_3_37 ) P:—3P——¢,
a a
where 8 = on(0)a(0)3/3.

e Two classes of solutions: “Expanding” and “Collapsing”

Collapsing (dust) solutions behave like the Friedmann-Lemaitre diffusion-free
solution in the limit toward the singularity.

This implies that the spacelike singularity at t = ts is a curvature singularity,

e The spacetime is inextendible beyond the spacelike hypersurface t = ts and no
outgoing light ray can emanate from the singularity.

Corollary

There exist no naked singularities in the spherical collapse of dust clouds undergoing
diffusion in a cosmological scalar field.



The Interior

Let x = g?2(9ar)(Opr), a= 0, 1:

x(t, R) =1 — kR? — 5(t)2R? = (v/1 — kR? + a(t)R)(V/1 — kR? — 3(t)R).

Trapped region: x < 0,
Regular region: x > 0.
Apparent horizon: x =0

Introduce local mass function

m(t,R) = %r%, r(t,R) = a(t)R

In terms of m and ¢

2
x=1- am_ %SrQ, r(t,R) = a(t)R.
r

The mass function obeys
R3
Oem = 76 > 0.

As the mass of the interior is not conserved, the exterior of the star cannot be
static.



The exterior

The Exterior

Bondi coordinates:

Gext = —A(w, r)B(w, r)dw? + 2¢A(w, r)dwdr + r?dQ?,
where e = £1.
e =1, w is the ingoing (advanced) null coordinate.
e = —1 ,w is the outgoing (retarded) null coordinate.
Boundary of the star X
Yir=rs(w),
so that r > rg(w).

Y is assumed to be timelike:

di
Aw, r(w))(B(w, r(w)) = 2e7x(w)) >0, 7 =%,
w
i.e., the first fundamental form of X has the signature (—, +,+).

Time orientation of spacetime does not change across the boundary
dt/dw >0

The two metrics gint and gext may be matched on X if and only if they satisfy
the junction conditions that they induce the same first and second fundamental
form on X,
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The Interior The exterior

Theorem
The metrics satisfy the junction conditions if and only if

(a) The transformation of variable t = t(w) satisfies

i(w) = [AGw,re(0)) (Bw, () — 267(w)) |

(b) There holds

Cal

rs(w) = a(t(w))Rp, Fs(w) =a(t(w))Rp(4/1— kRg —ea(t(w))Rp);

(c) There holds

B(w, re(w)) = A(w, rs (w))(1 — kR — a(t(w))* Rp);
(d) There holds Q(w) = 0, where

Q(w) =|(B — 2eiz(w))((B — eix(w))0r A + 0w A)

— A(2rg(w) + (B — 3eiz(w))0rB — €0 B)

r=ry(w)

Similar



The exterior
e Assuming A(w, r) = 1:

Corollary

The exterior metric can be chosen to be the Vaidya type metric with variable
cosmological constant given by

2M A
goxt = —(1— 2M(w) _ %rz)dw2 + 2edwdr + r?dQ?,
r

where M(w), A(w) are given by

M(w) = m(t(w), Ry) and A(w) = ¢(t(w)).

e The generalized Vaidya metric solves the Einstein equation with cosmological
scalar field ¢ = A(w) and energy-momentum tensor

T = pdw?,
where
e (dM 3 dA epdL
f=—(o0—— 4 )= _""dw_ 7,3 — A, >
p r2< dw + 3 dw> r2a(t(w))3 [w) =l r=r(w)
Proposition

p(w, re(w)) = 0. Moreover the weak energy condition p(w,r) > 0, for all r > ry(w),
holds only for the outgoing Vaidya metric .—_1.
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Self-Similar solution

e explicit solution:
38 38 .-
a(t) = 6kt ’ (b(t) - 73(1{') 2 ’ p(t) = aa(t) 27
where § is the real solution of the polynomial equation
3
&% + kb — g T—o.

Note that 6, > 0, for all k = 0,+1.

Towards the past: curvature singularity

Toward the future: the solution is forever expanding (& > 0) without acceleration
(a=0).

e Apparent horizon:
1
Rag = 27
\/ O +k
e The local mass of the interior is
m(t,R) = §R3t,

hence m(t, R) — +o0 as t — +o0.



Self-Similar solution

Diffusion in GR The Interior The

i i
(b) Bounded conformal
diagram k = 0 and k =
—1. The dotted lines are
curves of constant R and
the dashed line is the ap-
parent horizon R = Ry .
The thick solid line cor-
responds to a Big-Bang
type (null) singularity.

(a) Conformal diagram and bounded conformal dia-
gram for k = 1. The solid lines correspond to the
boundary R = 0 and the dashdotted line to the equa-
tor R = 1. The remaining dotted lines are curves
of constant R, for 0 < R < 1, while the dashed
lines represent the apparent horizon at R = Ray. In
this case a suitable matching surface is given by the
curve R =R, < 1.

Figure: Penrose diagrams for the expanding (at constant rate) interior solution. Each point

represents a 2-sphere of radius r = a(t)R. As usual, i~ and i" represent past and future timelike

infinity respectively, and i® corresponds to spacelike infinity. Also, 37, J* denote past and future
null infinity respectively.



Self-Similar solution

Let R = Rp, the boundary of the star. We distinguish three cases:

(i) Rpb > Ram; the interior has an apparent horizon in this case.
(if) Rp = Rawm; the boundary of the star coincides with the apparent horizon.
(iii) Rp < Ram; the interior has no apparent horizon.

The matching conditions give

_ Rpdx 1

u=Ckt, re(u) =xsu, xyz= , = ———ru——
1/1—kR§+5ka

>0,
Cx

the exterior metric becomes

u r’ 2 2 502
gexcz—(l—)qf—)\g—2>du — 2dudr + r°dQ°, r > xzu,
r u
where 5 )
R C
AL = &, A = S
Ck 263

Curvature singularity at u = 0, for its Kretschmann scalar K = Riem? is given by

2.2 2
_ 12X 24N

K
r u*

The apparent horizons: hypersurfaces where B(u, r) =0,

Bu,)=h(1), hx)=1-"1

r
u



Self-Similar solution

e Proposition
The following holds:
(1) In case (i) there is no apparent horizon in the exterior region and B(u,r) < 0 for all
r>rs(u),u>0.
(2) In case (ii) the apparent horizon in the exterior coincides with the apparent horizon of
the interior, as well as with the matching surface:

ran(u) = rs(u) = Ran = Rs.

Moreover B(u, r) < 0 for all r > rs(u).

(3) In case (iii) there exists xau > xs such that the metric in the exterior has an apparent
horizon at r = xanu. Moreover B(u, r) > 0 for ry(u) < r < xauu and B(u,r) <0
for r > xamu.

Proof.
For the proof it suffices to notice that the function h(x) attains its maximum at
x =xs and h(xs) =1 — (Rp/Ran)?. O

e The model under discussion is self-similar, with the lines r = xu, x > xy, on the
(t, r)-plane being tangent to the homothetic vector field in the exterior. We call
such curves homothetic curves.

Theorem

There exists x« > xy such that the homothetic curve r = xu is spacelike for x > X,
null for x = x« and timelike for xy < x < x«. In case (iii) there holds x, > xaH.
Moreover the homothetic curve r = x«u is the first ingoing radial null geodesics that
escapes to null-infinity.
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u=0,r>0

i

Figure: Penrose diagram for the self-similar stellar solution with diffusion in case (iii) showing the
(homothetic) apparent horizon xap in the exterior region (dashed timelike curve). The null
homothetic (cosmological) horizon x, is denoted by a solid line, while the other timelike and
spacelike homothetic curves are denoted by dotted lines. The remaining solid lines are constant r
curves which are spacelike, becoming null at the apparent horizon, and are timelike afterwards.
The thick solid line corresponds to the singularity. As usual, i~ and it represent past and future
timelike infinity respectively, and 37, J* denote past and future null infinity respectively.
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