New conserved currents for vacuum space-times in dimension four with a Killing vector

Alfonso García-Parrado Gómez-Lobo*

*Dep. Física Teórica, Universidad del País Vasco, Bilbao (Spain)

Guimarães, 19th December 2016.

Bibliography:

A. García-Parrado, New conserved currents for vacuum space-times in dimension four with a Killing vector,

Gen. Rel. Grav. 48 126 (2016).

http://dx.doi.org/10.1007/s10714-016-2124-4

Outline

- The role of conserved currents
- 2 The Mars-Simon tensor
- 3 A new family of vacuum conserved currents based on the superenergy of the Mars-Simon tensor
- 4 A conserved charge characterising the Kerr solution
- Open issues

The role of conserved currents

- The energy-momentum conservation principle can be mathematically expressed by means of a conserved current and its conserved charge.
- A conserved current is a vector field \vec{Z} such that $\nabla_{\mu}Z^{\mu}=0$. Use Gauß Theorem to construct conserved charges.

$$0 = \int_{\Omega} \nabla_{\mu} Z^{\mu} \boldsymbol{\eta} = \int_{\mathcal{H}} (n_{\mu} Z^{\mu}) d\mathcal{H} , \quad \mathcal{H} \equiv \partial \Omega , \quad d\mathcal{H} \equiv i_{\vec{n}} \boldsymbol{\eta}$$

If $\mathcal{H}=\mathcal{H}_1\cup\mathcal{H}_2$ then the conserved charges $\mathcal{Q}(\mathcal{H}_1)$, $\mathcal{Q}(\mathcal{H}_2)$ can be defined by

$$\begin{split} \mathcal{Q}(\mathcal{H}_1) &\equiv \int_{\mathcal{H}_1} (n_\mu Z^\mu) d\mathcal{H}_1 \;, \quad \mathcal{Q}(\mathcal{H}_2) \equiv \int_{\mathcal{H}_2} (n_\mu Z^\mu) d\mathcal{H}_2, \\ \mathcal{Q}(\mathcal{H}_1) &= \mathcal{Q}(\mathcal{H}_2). \end{split}$$

• Many times one looks for non-negative (resp. non-positive) conserved charges. This requires finding a conserved current Z^{μ} and \mathcal{H}_1 , \mathcal{H}_2 with special properties.

The role of conserved currents

Standard examples of conserved currents with non-negative conserved charges:

• Symmetric tensor $T_{\mu\nu}$ fulfilling the dominant energy condition and a causal Killing vector ξ^{μ} . If $\nabla_{\mu}T^{\mu}{}_{\nu}=0$ and \mathcal{H}_{1} or \mathcal{H}_{2} are space-like then

 $Z^{\mu} \equiv T^{\mu}{}_{\nu}\xi^{\nu}$ is a conserved current with a non-negative conserved charge.

ullet Bel-Robinson tensor $B_{\mu
ulpha
ho}$ and ξ^μ causal Killing vector field. The vector field

$$Z^{\mu} \equiv B^{\mu}{}_{\nu\alpha\rho} \xi^{\nu} \xi^{\alpha} \xi^{\rho} \; , \label{eq:Zmu}$$

is a conserved current in vacuum (use the property $\nabla_{\mu}B^{\mu}_{\nu\alpha\rho}=0$) with a non-negative conserved charge if \mathcal{H}_1 or \mathcal{H}_2 are space-like.

The role of conserved currents

Positivity properties of $T_{\mu\nu}$ and $B_{\mu\nu\alpha\rho}$:

ullet for any u^μ , $v^
u$, w^lpha , $z^
ho$ causal and future directed one has

$$T_{\mu\nu}u^{\mu}v^{\nu} \ge 0$$
, $B_{\mu\nu\alpha\rho}u^{\mu}v^{\nu}w^{\alpha}z^{\rho} \ge 0$.

• u^{μ} , v^{ν} , w^{α} , z^{ρ} time-like and future-directed

$$T_{\mu\nu}u^{\mu}v^{\nu} = 0$$
, $B_{\mu\nu\alpha\rho}u^{\mu}v^{\nu}w^{\alpha}z^{\rho} = 0 \Longleftrightarrow T_{\mu\nu} = 0$, $B_{\mu\nu\alpha\rho} = 0$.

Due to the charge conservation and the positivity properties, the vanishing of the conserved charges in a spacelike hypersurface Σ entails the vanishing of $T_{\mu\nu}$ or $B_{\mu\nu\alpha\rho}$ in a neighbourhood of Σ \Rightarrow the fields defining these tensors also vanish.

Vacuum spacetimes with a Killing vector

Assume that a vacuum space-time $(\mathcal{M},g_{\mu\nu})$ admits a Killing vector ξ^{μ} .

Killing condition: $\nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu} = 0$, Killing 2-form: $F_{\mu\nu} \equiv \nabla_{[\mu}\xi_{\nu]} = \nabla_{\mu}\xi_{\nu}$.

Self-dual Killing form: $\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} + iF_{\mu\nu}^*$, $\mathcal{F}^2 \equiv \mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}$.

Ernst 1-form: $\sigma_{\nu} \equiv 2\xi^{\mu}\mathcal{F}_{\mu\nu}$.

Self-dual Weyl tensor: $W_{\mu\nu\lambda\rho} \equiv W_{\mu\nu\lambda\rho} + i W_{\mu\nu\lambda\rho}^*$.

 σ_{μ} closed \Rightarrow \exists a local potential σ (Ernst potential) such that $\sigma_{\mu} = \nabla_{\mu} \sigma$.

 $\sigma = k + \lambda + 2 i \omega$, $k \in \mathbb{C}$, $\lambda \equiv \xi_{\mu} \xi^{\mu}$, $\omega \equiv$ twist potential.

The Mars-Simon tensors

Let $\mathcal{I}_{\mu\nu\lambda\rho}\equiv \frac{1}{4}\left(g_{\mu\lambda}g_{\nu\rho}-g_{\mu\rho}g_{\nu\lambda}+\mathrm{i}\eta_{\mu\nu\lambda\rho}\right)$. For any vacuum space-time admitting a Killing vector we define the family of Mars-Simon tensors

$$S_{\mu\nu\lambda\rho} \equiv W_{\mu\nu\lambda\rho} + \frac{6}{\sigma} \left(\mathcal{F}_{\mu\nu} \mathcal{F}_{\lambda\rho} - \frac{\mathcal{F}^2}{3} \mathcal{I}_{\mu\nu\lambda\rho} \right) , \quad \sigma \neq 0.$$

The Mars-Simon tensors are Weyl candidates:

$$\mathcal{S}_{[\mu\nu]\alpha\beta} = \mathcal{S}_{\mu\nu\alpha\beta} \;, \quad \mathcal{S}_{\mu\nu\alpha\beta} = \mathcal{S}_{\alpha\beta\mu\nu} \;, \quad \mathcal{S}_{[\mu\nu\alpha]\beta} = 0 \;, \quad \mathcal{S}^{\mu}_{\;\;\mu\alpha\beta} = 0 \;,$$

and they are self-dual:

$$i \mathcal{S}^*_{\mu\nu\alpha\beta} = \mathcal{S}_{\mu\nu\alpha\beta}.$$

For any point we can choose the Ernst potential in such a way that $\sigma \neq 0$. Therefore the Mars-Simon tensors can be defined (at least locally) for any vacuum space-time.

A local invariant characterisation of the Kerr solution

The Mars-Simon tensor is used in the following important result.

Theorem (Marc Mars (2000))

Let $(\mathcal{M},g_{\mu\nu})$ be a smooth non-trivial vacuum solution having a Killing vector $\vec{\xi}$ and assume that it fulfills the following conditions

- $(\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}) \neq 0$.
- ullet There is a choice of the Ernst potential σ for which

$$\mathcal{S}_{\mu\nu\rho\lambda} = 0 \;, \quad \mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu} + rac{\sigma^4}{4M^2} = 0 \;, \quad M \in \mathbb{R} \setminus \{0\} \;, \quad \textit{Re}(\sigma) - \lambda > 0 \;,$$

• There is at least a point q such that the Killing vector $\xi|_q$ does not lie in the 2-plane orthogonal to the 2-plane spanned by the two independent null eigenvectors of $\mathcal{F}_{\mu\nu}|_q$.

Under the previous assumptions the space-time is locally isometric to the Kerr solution.

Our result

Introduce the super-energy tensor of a Mars-Simon tensor:

$$T_{\alpha\beta\gamma\delta} \equiv \mathcal{S}_{\alpha\ \beta}^{\ \mu\nu} \bar{\mathcal{S}}_{\gamma\mu\nu\delta}.$$

 $T_{\alpha\beta\gamma\delta}$ has the same positivity and algebraic properties as the Bel-Robinson tensor.

Theorem

For any vacuum solution of the Einstein's field equations $(\mathcal{M}, g_{\mu\nu})$ admitting a Killing vector field, consider an open subset $\mathcal{U} \subset \mathcal{M}$ and a choice of the Ernst potential which is differentiable and non-vanishing. Define the tensor $T_{\alpha\beta\gamma\delta}$ as explained above. Then the current

$$P^{\alpha} \equiv \frac{1}{|\sigma|^6} T^{\alpha}{}_{\beta\gamma\delta} \xi^{\beta} \xi^{\gamma} \xi^{\delta} ,$$

is conserved in U

$$\nabla_{\alpha}P^{\alpha}=0.$$

Remarks

 Use the freedom we have to define the Ernst potential to make a choice which does not vanish at a given point

$$\sigma \to \sigma + k$$
, $k \in \mathbb{C}$.

Therefore the current \vec{P} can be define at least locally for any vacuum space-time.

• The current \vec{P} is in fact a family which depends on a complex constant k. For example for the Schwarzschild space-time and using Schwarzschild coordinates:

$$\vec{\xi} = \frac{\partial}{\partial t} \Rightarrow \vec{P} = \frac{6M^2|k|^2r(r-2M)}{|kr-2M|^8} \frac{\partial}{\partial t}, \quad k \in \mathbb{C}.$$

• If the Killing vector $\vec{\xi}$ is causal then the generalised dominant energy property of $T_{\mu\nu\alpha\rho}$ implies that the conserved current \vec{P} is causal too. Moreover under this assumption

$$\vec{P} = 0 \Longleftrightarrow T_{\mu\nu\alpha\rho} = 0 \Longleftrightarrow S_{\mu\nu\alpha\rho} = 0.$$

A conserved charge characterising the Kerr solution

Theorem (Kerr conserved charge)

Let $(\mathcal{M},g_{\mu\nu})$ be a vacuum stationary solution of the Einstein's field equations and assume further that for a given embedded space-like hypersurface $\Sigma\subset\mathcal{M}$, $(\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu})|_{\Sigma}\neq 0$ and the Ernst potential is chosen in such a way that it fulfills

$$\left. \left(\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \frac{\sigma^4}{4M^2} \right) \right|_{\Sigma} = 0 \;, \quad M \in \mathbb{R} \setminus \{0\} \;, \quad \left(\textit{Re}(\sigma) - \lambda \right) |_{\Sigma} > 0.$$

Use the stationary Killing vector and the Ernst potential to define the conserved current \vec{P} . Then the scalar $\mathcal{Q}(\Sigma)$ defined by

$$\mathcal{Q}(\Sigma) \equiv \int_{\Sigma} P^{\mu} n_{\mu} d\Sigma \; ,$$

is non-negative, it vanishes if and only if Σ can be isometrically embedded within an open subset of the Kerr solution and it is a conserved charge.

Open issues

 Attempt to construct similar conserved currents for vacuum with non-vanishing cosmological constant. Use a suitable generalisation of the Mars-Simon tensor family (Mars & Senovilla 2015)

$$S_{\mu\nu\lambda\rho} \equiv W_{\mu\nu\lambda\rho} + Q\left(\mathcal{F}_{\mu\nu}\mathcal{F}_{\lambda\rho} - \frac{\mathcal{F}^2}{3}\mathcal{I}_{\mu\nu\lambda\rho}\right) , \quad Q \in C^{\infty}(\mathcal{M}, \mathbb{C}).$$

- One of the hypotheses of our theorem about the Kerr conserved charge, is that the hypersurface is spacelike. One could attempt to generalise it for hypersurfaces with a mixed causal character (spacelike-null).
- Render the Kerr conserved charge in terms of initial data for the vacuum Einstein equations or quantities intrinsic to the hypersurface Σ . Use the notion of Killing initial data.