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The role of conserved currents

The energy-momentum conservation principle can be mathematically
expressed by means of a conserved current and its conserved charge.
A conserved current is a vector field Z⃗ such that ∇µZ

µ = 0. Use Gauß
Theorem to construct conserved charges.

0 =

∫
Ω

∇µZ
µη =

∫
H
(nµZ

µ)dH , H ≡ ∂Ω , dH ≡ in⃗η

If H = H1 ∪H2 then the conserved charges Q(H1), Q(H2) can be defined
by

Q(H1) ≡
∫
H1

(nµZ
µ)dH1 , Q(H2) ≡

∫
H2

(nµZ
µ)dH2,

Q(H1) = Q(H2).

Many times one looks for non-negative (resp. non-positive) conserved
charges. This requires finding a conserved current Zµ and H1, H2 with
special properties.



The role of conserved currents

Standard examples of conserved currents with non-negative conserved charges:
Symmetric tensor Tµν fulfilling the dominant energy condition and a causal
Killing vector ξµ. If ∇µT

µ
ν = 0 and H1 or H2 are space-like then

Zµ ≡ Tµ
νξ

ν is a conserved current with a non-negative conserved charge.

Bel-Robinson tensor Bµναρ and ξµ causal Killing vector field. The vector field

Zµ ≡ Bµ
ναρξ

νξαξρ ,

is a conserved current in vacuum (use the property ∇µB
µ
ναρ = 0) with a

non-negative conserved charge if H1 or H2 are space-like.



The role of conserved currents

Positivity properties of Tµν and Bµναρ:
for any uµ, vν , wα, zρ causal and future directed one has

Tµνu
µvν ≥ 0 , Bµναρu

µvνwαzρ ≥ 0.

uµ, vν , wα, zρ time-like and future-directed

Tµνu
µvν = 0 , Bµναρu

µvνwαzρ = 0 ⇐⇒ Tµν = 0 , Bµναρ = 0.

Due to the charge conservation and the positivity properties, the vanishing of the
conserved charges in a spacelike hypersurface Σ entails the vanishing of Tµν or
Bµναρ in a neighbourhood of Σ ⇒ the fields defining these tensors also vanish.



Vacuum spacetimes with a Killing vector

Assume that a vacuum space-time (M, gµν) admits a Killing vector ξµ.

Killing condition: ∇µξν +∇νξµ = 0, Killing 2-form: Fµν ≡ ∇[µξν] = ∇µξν .

Self-dual Killing form: Fµν ≡ Fµν + iF ∗
µν , F2 ≡ FµνFµν .

Ernst 1-form: σν ≡ 2ξµFµν .

Self-dual Weyl tensor: Wµνλρ ≡ Wµνλρ + i W ∗
µνλρ.

σµ closed ⇒ ∃ a local potential σ (Ernst potential) such that σµ = ∇µσ.

σ = k + λ+ 2 i ω , k ∈ C , λ ≡ ξµξ
µ , ω ≡ twist potential.



The Mars-Simon tensors

Let Iµνλρ ≡ 1
4 (gµλgνρ − gµρgνλ + iηµνλρ) . For any vacuum space-time admitting

a Killing vector we define the family of Mars-Simon tensors

Sµνλρ ≡ Wµνλρ +
6

σ

(
FµνFλρ −

F2

3
Iµνλρ

)
, σ ̸= 0.

The Mars-Simon tensors are Weyl candidates:

S[µν]αβ = Sµναβ , Sµναβ = Sαβµν , S[µνα]β = 0 , Sµ
µαβ = 0 ,

and they are self-dual:
i S∗

µναβ = Sµναβ .

For any point we can choose the Ernst potential in such a way that σ ̸= 0.
Therefore the Mars-Simon tensors can be defined (at least locally) for any vacuum
space-time.



A local invariant characterisation of the Kerr solution

The Mars-Simon tensor is used in the following important result.
.
Theorem (Marc Mars (2000))
..

......

Let (M, gµν) be a smooth non-trivial vacuum solution having a Killing vector ξ⃗
and assume that it fulfills the following conditions

(FµνFµν) ̸= 0.
There is a choice of the Ernst potential σ for which

Sµνρλ = 0 , FµνFµν +
σ4

4M2
= 0 , M ∈ R \ {0} , Re(σ)− λ > 0 ,

There is at least a point q such that the Killing vector ξ⃗|q does not lie in the
2-plane orthogonal to the 2-plane spanned by the two independent null
eigenvectors of Fµν |q.

Under the previous assumptions the space-time is locally isometric to the Kerr
solution.



Our result

Introduce the super-energy tensor of a Mars-Simon tensor:

Tαβγδ ≡ S µν
α βS̄γµνδ.

Tαβγδ has the same positivity and algebraic properties as the Bel-Robinson tensor.
.
Theorem
..

......

For any vacuum solution of the Einstein’s field equations (M, gµν) admitting a
Killing vector field, consider an open subset U ⊂ M and a choice of the Ernst
potential which is differentiable and non-vanishing. Define the tensor Tαβγδ as
explained above. Then the current

Pα ≡ 1

|σ|6
Tα

βγδξ
βξγξδ ,

is conserved in U
∇αP

α = 0.



Remarks

Use the freedom we have to define the Ernst potential to make a choice
which does not vanish at a given point

σ → σ + k , k ∈ C.

Therefore the current P⃗ can be define at least locally for any vacuum
space-time.
The current P⃗ is in fact a family which depends on a complex constant k.
For example for the Schwarzschild space-time and using Schwarzschild
coordinates:

ξ⃗ =
∂

∂t
⇒ P⃗ =

6M2|k|2r(r − 2M)

|kr − 2M |8
∂

∂t
, k ∈ C.

If the Killing vector ξ⃗ is causal then the generalised dominant energy property
of Tµναρ implies that the conserved current P⃗ is causal too. Moreover under
this assumption

P⃗ = 0 ⇐⇒ Tµναρ = 0 ⇐⇒ Sµναρ = 0.



A conserved charge characterising the Kerr solution

.
Theorem (Kerr conserved charge)
..

......

Let (M, gµν) be a vacuum stationary solution of the Einstein’s field equations and
assume further that for a given embedded space-like hypersurface Σ ⊂ M,
(FµνFµν)|Σ ̸= 0 and the Ernst potential is chosen in such a way that it fulfills(

FµνFµν +
σ4

4M2

)∣∣∣∣
Σ

= 0 , M ∈ R \ {0} , (Re(σ)− λ) |Σ > 0.

Use the stationary Killing vector and the Ernst potential to define the conserved
current P⃗ . Then the scalar Q(Σ) defined by

Q(Σ) ≡
∫
Σ

PµnµdΣ ,

is non-negative, it vanishes if and only if Σ can be isometrically embedded within
an open subset of the Kerr solution and it is a conserved charge.



Open issues

Attempt to construct similar conserved currents for vacuum with
non-vanishing cosmological constant. Use a suitable generalisation of the
Mars-Simon tensor family (Mars & Senovilla 2015)

Sµνλρ ≡ Wµνλρ +Q

(
FµνFλρ −

F2

3
Iµνλρ

)
, Q ∈ C∞(M,C).

One of the hypotheses of our theorem about the Kerr conserved charge, is
that the hypersurface is spacelike. One could attempt to generalise it for
hypersurfaces with a mixed causal character (spacelike-null).
Render the Kerr conserved charge in terms of initial data for the vacuum
Einstein equations or quantities intrinsic to the hypersurface Σ. Use the
notion of Killing initial data.
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