
Three Lectures on Hybrid Logic
Patrick Blackburn

Section of Philosophy and Science Studies, Roskilde University, Denmark

Days in Logic 2018
25-27 January, Universidade de Aveiro, Aveiro, Portugal

What we did yesterday...

• We explored the consequences of hybridisation for modal deduction. In
particular, we learned that the basic hybrid apparatus gives us precisely
what we need to extract information fromunder the scope of diamonds.
The key idea is the inferential move from @i3φ to @i3j and @jφ.

• We emphasized the initmate connection (via the Standard Translation) of
this idea with the classical rule of Existential Instantion. We showed in
some detail how the idea worked in the setting of tableaux systems, and
briefly discussed natural deduction.

• We also leaned that pure axioms always yield complete logics. In fact, we
remarked that it might better to express this as pure axioms always yield
complete theories, to emphasize the essentially first-order character of
this result.

• We might say: hybridisation gives us the possibility of utilizing essentially
classical modes of reasoning within the confines of a very weak
(PSPACE) modal system. Today’s theme is how straightforwardly this
system “lifts” to stronger hybrid languages...

What we did yesterday...

• We explored the consequences of hybridisation for modal deduction. In
particular, we learned that the basic hybrid apparatus gives us precisely
what we need to extract information fromunder the scope of diamonds.
The key idea is the inferential move from @i3φ to @i3j and @jφ.

• We emphasized the initmate connection (via the Standard Translation) of
this idea with the classical rule of Existential Instantion. We showed in
some detail how the idea worked in the setting of tableaux systems, and
briefly discussed natural deduction.

• We also leaned that pure axioms always yield complete logics. In fact, we
remarked that it might better to express this as pure axioms always yield
complete theories, to emphasize the essentially first-order character of
this result.

• We might say: hybridisation gives us the possibility of utilizing essentially
classical modes of reasoning within the confines of a very weak
(PSPACE) modal system. Today’s theme is how straightforwardly this
system “lifts” to stronger hybrid languages...

What we did yesterday...

• We explored the consequences of hybridisation for modal deduction. In
particular, we learned that the basic hybrid apparatus gives us precisely
what we need to extract information fromunder the scope of diamonds.
The key idea is the inferential move from @i3φ to @i3j and @jφ.

• We emphasized the initmate connection (via the Standard Translation) of
this idea with the classical rule of Existential Instantion. We showed in
some detail how the idea worked in the setting of tableaux systems, and
briefly discussed natural deduction.

• We also leaned that pure axioms always yield complete logics. In fact, we
remarked that it might better to express this as pure axioms always yield
complete theories, to emphasize the essentially first-order character of
this result.

• We might say: hybridisation gives us the possibility of utilizing essentially
classical modes of reasoning within the confines of a very weak
(PSPACE) modal system. Today’s theme is how straightforwardly this
system “lifts” to stronger hybrid languages...

What we did yesterday...

• We explored the consequences of hybridisation for modal deduction. In
particular, we learned that the basic hybrid apparatus gives us precisely
what we need to extract information fromunder the scope of diamonds.
The key idea is the inferential move from @i3φ to @i3j and @jφ.

• We emphasized the initmate connection (via the Standard Translation) of
this idea with the classical rule of Existential Instantion. We showed in
some detail how the idea worked in the setting of tableaux systems, and
briefly discussed natural deduction.

• We also leaned that pure axioms always yield complete logics. In fact, we
remarked that it might better to express this as pure axioms always yield
complete theories, to emphasize the essentially first-order character of
this result.

• We might say: hybridisation gives us the possibility of utilizing essentially
classical modes of reasoning within the confines of a very weak
(PSPACE) modal system. Today’s theme is how straightforwardly this
system “lifts” to stronger hybrid languages...

What we did yesterday...

• We explored the consequences of hybridisation for modal deduction. In
particular, we learned that the basic hybrid apparatus gives us precisely
what we need to extract information fromunder the scope of diamonds.
The key idea is the inferential move from @i3φ to @i3j and @jφ.

• We emphasized the initmate connection (via the Standard Translation) of
this idea with the classical rule of Existential Instantion. We showed in
some detail how the idea worked in the setting of tableaux systems, and
briefly discussed natural deduction.

• We also leaned that pure axioms always yield complete logics. In fact, we
remarked that it might better to express this as pure axioms always yield
complete theories, to emphasize the essentially first-order character of
this result.

• We might say: hybridisation gives us the possibility of utilizing essentially
classical modes of reasoning within the confines of a very weak
(PSPACE) modal system. Today’s theme is how straightforwardly this
system “lifts” to stronger hybrid languages...

Today: X marks the spot, or
Living Locally with Downarrow

Claim: if you’re doing traditional modal logic, you’re working in
the space carved out by hybrid logic with downarrow.

• We identify “locality” with “invariance under generated
submodels” or “the bits of the models you can reach using
diamonds”

• All traditional modal logics enjoy this property (though some
newcomers, such as the global modality and the difference
operator, explore what happens when you break with locality).

• Hybrid logic with downarrow provides a comfortable home on
the range for traditional logics, performing such useful services
as interpolation repair.

But we are getting way ahead of ourselves—let’s first sit back and
learn what downarrow actually does. . .

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Example 1: Losers

In our first example, we’ll think of the states of our models as
people (so we’re in a description logic style setting).

Suppose we define a loser to be someone who does not respect
himself/herself Can we define this concept in the basic hybrid
language?

Well, we can get part of the way, for we can say things like:

@i¬〈respect〉 i (i does not respect himself/herself)

@j¬〈respect〉 j (j does not respect himself/herself)

@k¬〈respect〉 k (k does not respect himself/herself)

But none of these formulas pins down the concept of self-respect
— only the concepts of self-respect for i , for j , for k , and so on.
We need to abstract away from the effects of particular nominals
(constants).

Losers via downarrow

With the aid of the downarrow operator, we can do precisely this:

↓x .¬〈respect〉 x

This says: Let x be a temporary name for the point in the model
at which the formula is being evaluated. Then x is not related to x
by the respect relation.

To put it another way, it says: this person x (whoever that is) does
not respect himself/herself. In a sense, its what linguists call a
deictic definition.

The formula is true of precisely those states of our models (people)
who do not respect themselves, so we have defined the required
concept.

Example 2: Locally reflected epistemic states

In our second example, we’ll think of the states of our models as
epistemic states, and the relation between states as meaning is an
epistemic alternative to (so we’re in a traditional agent-based
setting).

Let’s say that an epistemic state s is locally reflected if all
epistemic alternatives t to s have s as an epistemic alternative.

More precisely, s is locally reflected iff ∀t(sRt → tRs). That is, s is
a locally reflected state if it is symmetrically linked to other points
in the model.

Is there a basic hybrid formula that (in any model) distinguishes
locally reflected from non-locally reflected states?

Well, we can try, but. . .

In particular, note that the formula @i23i does not do what we
want.

• In any particular model it merely asserts that the particular
state named i is locally reflected (“symmetrically linked”).
But that’s not what we want.

• On the other hand, if we insist that @i23i is to be taken as a
validity (that is, as an axiom) then we distinguish symmetric
models from all other models. But that’s not what we want
either.

• We want a formula that classifies the states of a model into
locally reflected and non-locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i23i does not do what we
want.

• In any particular model it merely asserts that the particular
state named i is locally reflected (“symmetrically linked”).
But that’s not what we want.

• On the other hand, if we insist that @i23i is to be taken as a
validity (that is, as an axiom) then we distinguish symmetric
models from all other models. But that’s not what we want
either.

• We want a formula that classifies the states of a model into
locally reflected and non-locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i23i does not do what we
want.

• In any particular model it merely asserts that the particular
state named i is locally reflected (“symmetrically linked”).
But that’s not what we want.

• On the other hand, if we insist that @i23i is to be taken as a
validity (that is, as an axiom) then we distinguish symmetric
models from all other models. But that’s not what we want
either.

• We want a formula that classifies the states of a model into
locally reflected and non-locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i23i does not do what we
want.

• In any particular model it merely asserts that the particular
state named i is locally reflected (“symmetrically linked”).
But that’s not what we want.

• On the other hand, if we insist that @i23i is to be taken as a
validity (that is, as an axiom) then we distinguish symmetric
models from all other models. But that’s not what we want
either.

• We want a formula that classifies the states of a model into
locally reflected and non-locally reflected states.

Well, we can try, but. . .

In particular, note that the formula @i23i does not do what we
want.

• In any particular model it merely asserts that the particular
state named i is locally reflected (“symmetrically linked”).
But that’s not what we want.

• On the other hand, if we insist that @i23i is to be taken as a
validity (that is, as an axiom) then we distinguish symmetric
models from all other models. But that’s not what we want
either.

• We want a formula that classifies the states of a model into
locally reflected and non-locally reflected states.

Locally reflected states via downarrow

We can do this with downarrow. Instead of @i23i we use:

↓x .23x

Paraphrase this as follows: “this epistemic state x (whichever it
might be) is such that all it’s epistemic alternatives have x as an
epistemic alternative.”

Again, we’re defining the required concept by some kind of deixis
(this time, deictic reference to epistemic states, not people).

Technically, we bind a state variable x to the current state. (A
state variable is just like a nominal, except that it can be bound,
whereas ordinary nominals can’t.)

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of time

(so we’re in a temporal logic setting). The example is adapted from

“Temporal Logic with Forgettable Past”, Laroussinie, Markey, and

Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS 2002),

Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm may
go off (once) sometime in the future. We want to specify the
following property: Before the alarm goes off, there was a
problem. Can we do this?

• Easy: [f] (alarm→ 〈p〉 problem) specifies this. We don’t
even need hybrid logic.

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of time

(so we’re in a temporal logic setting). The example is adapted from

“Temporal Logic with Forgettable Past”, Laroussinie, Markey, and

Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS 2002),

Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm may
go off (once) sometime in the future. We want to specify the
following property: Before the alarm goes off, there was a
problem. Can we do this?

• Easy: [f] (alarm→ 〈p〉 problem) specifies this. We don’t
even need hybrid logic.

Example 3: Problems and alarms

In this example we’ll think of the states of our models as points of time

(so we’re in a temporal logic setting). The example is adapted from

“Temporal Logic with Forgettable Past”, Laroussinie, Markey, and

Schnoebelen, 17th IEEE Symp. Logic in Computer Science (LICS 2002),

Copenhagen, Denmark, July 2002.

• Suppose we are working with a system in which an alarm may
go off (once) sometime in the future. We want to specify the
following property: Before the alarm goes off, there was a
problem. Can we do this?

• Easy: [f] (alarm→ 〈p〉 problem) specifies this. We don’t
even need hybrid logic.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can we
say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉problem))

• But this is probably not what we want — a problem that
occurred before the reset may account for the alarm going off.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can we
say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉problem))

• But this is probably not what we want — a problem that
occurred before the reset may account for the alarm going off.

Resetting the alarm

Now suppose that the alarm has a reset button, and we want to
state that the previous specification holds after any reset. Can we
say this?

• Here’s an attempt: [f] (reset→ [f] (alarm→ 〈p〉problem))

• But this is probably not what we want — a problem that
occurred before the reset may account for the alarm going off.

Resetting the alarm with downarrow

But with the aid of ↓ we can specify what we want. We
dynamically name the spot where the reset occurred by binding the
state variable x to it, and then demand that the problem occurred
later than this:

[f] (reset→ ↓x .[f] (alarm→ 〈p〉 (problem ∧ 〈p〉 x)))

Example 4: The Until operator

In this example we’ll continue to think of the states of our models
as points of time (so we’re still doing temporal logic).

Hans Kamp’s celebrated Until operator is a binary modality with
the following satisfaction definition:

M,w Until(ϕ,ψ) iff ∃v(w < v & M, v ϕ &
∀u(w < u < v ⇒M, u ψ))

This operator (and some of its variants) has proved extremely
useful as a specification tool. Can we define it in basic hybrid logic?

Defining Until with downarrow

No, we can’t. But we can with the help of downarrow:

Until(ϕ,ψ) := ↓x .3↓y .(ϕ ∧ @x2(3y → ψ)).

This says: name the present state x . Then, by looking forward we
can see a state (which we label y) such that ϕ is true at y , and
every state between x and y verifies ψ.

Note the use of @x to jump back to x , the starting point. This is
the first glimpse of a theme that echos through today’s lecture: ↓
and @ work well together. We can use ↓ to ‘store’ some state of
interest, and @ to ‘retrieve’ it when needed.

Syntax

• Here are the required syntactic changes. Choose a denumerably
infinite set SVAR = {x , y , z}, the set of state variables, disjoint
from PROP, NOM and MOD.

• Like nominals, state variables are atomic formulas which name
states, but unlike nominals they can be bound.

• The hybrid language with downarrow (over PROP, NOM, MOD and
SVAR) is defined as follows:

WFF := x | i | p | ¬ϕ | > | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ
〈m〉ϕ | [m]ϕ | @iϕ | @xϕ | ↓x .ϕ

• Free and bound occurrences of state variables are defined in the
expected way, with ↓ as the only binder. A sentence is a formula
containing no free state variables.

Semantics

• Models M for hybrid languages with downarrow are just the
hybrid models we are used to (as usual, nominals are assigned
singletons).

• Given a model M = (W ,R,V), an assignment on M is a
function g : SVAR −→W . (Thus an assignment makes a
state variable true at precisely one state.)

• Assignments will be used to interpret free state variables
Tarski-style. We merely relativise the clauses of the
satisfaction definition for the basic hybrid language to
assignments, and add the three new clauses we require. Here’s
how . . .

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR
M, g ,w @xϕ iff M, g , g(x) ϕ
M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ
M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR

M, g ,w @xϕ iff M, g , g(x) ϕ
M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ
M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR
M, g ,w @xϕ iff M, g , g(x) ϕ

M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ
M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR
M, g ,w @xϕ iff M, g , g(x) ϕ
M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ

M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR
M, g ,w @xϕ iff M, g , g(x) ϕ
M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ
M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Satisfaction Definition

M, g ,w x iff w = g(x) where x ∈ SVAR
M, g ,w @xϕ iff M, g , g(x) ϕ
M, g ,w ϕ ∧ ψ iff M, g ,w ϕ and M, g ,w ψ
M, g ,w 3ϕ iff ∃w ′(wRw ′ & M, g ,w ′ ϕ)

M, g ,w ↓x .ϕ iff M, g ′,w ϕ, where g ′
x∼ g and g ′(x) = w

The fifth clause defines ↓ to be an operator that binds variables to the
state w at which evaluation is being performed. The notation g ′

x∼ g
means that g ′ is the assignment that differs from g , if at all, only in what
it assigns to x . By stipulating that g ′(x) is to be w , we bind a label to
the here-and-now.

For sentences ϕ, we can simply write M,w ↓x .ϕ — why is this?

Standard Translation

Assume we’re using the same symbols for both state variables and
first-order variables. Let s be a metavariable over state variables
and nominals.

stx(y) = (y = x)

stx(@sϕ) = sts(ϕ)

stx(↓y .ϕ) = ∃y(x = y ∧ stx(ϕ))

This translation is satisfaction preserving, so hybrid logic with
downarrow is a fragment of the correspondence language (with
constants and equalities). We’ll see later which fragment it
corresponds to.

Tableau rules

We only need to make two changes. First, we need to let our
previous tableau rules apply when the subscript on @ is a state
variable rather than a nominal.

Second, we add the following two rules to cope with ↓. In the
following rule, s is used as a metavariable over nominals and state
variables:

@s↓x .ϕ
@sϕ[x ← s]

¬@s↓x .ϕ
¬@sϕ[x ← s]

If s is a variable, before substituting we rename bound occurrences
of s in ϕ to prevent accidental capture.

Example: ↓x .x

1 ¬@i↓x .x
2 ¬@i i ¬ ↓ rule on 1
3 @i i Ref
⊥2,3

Example: ↓x .x

1 ¬@i↓x .x

2 ¬@i i ¬ ↓ rule on 1
3 @i i Ref
⊥2,3

Example: ↓x .x

1 ¬@i↓x .x
2 ¬@i i ¬ ↓ rule on 1

3 @i i Ref
⊥2,3

Example: ↓x .x

1 ¬@i↓x .x
2 ¬@i i ¬ ↓ rule on 1
3 @i i Ref

⊥2,3

Example: ↓x .x

1 ¬@i↓x .x
2 ¬@i i ¬ ↓ rule on 1
3 @i i Ref
⊥2,3

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)

2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1

3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3

5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4

6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2

⊥5,6

Example: ↓x .ϕ↔ ¬↓x .¬ϕ

That is, like @, the downarrow binder is self dual. Let’s prove the
left-to right direction of this equivalence:

1 ¬@i (↓x .ϕ→ ¬↓x .¬ϕ)
2 @i↓x .ϕ
2′ ¬@i¬↓x .¬ϕ Propositional rule on 1
3 @i↓x .¬ϕ Propositional rule on 2′

4 @i¬ϕ[x ← i] ↓ rule on 3
5 ¬@iϕ[x ← i] Propositional rule on 4
6 @iϕ[x ← i] ↓ rule on 2
⊥5,6

Completeness

This tableau system is (sound and) complete with respect to the
class of all models.

Nonetheless, as was explained in yesterday’s lecture, we are often
interested in deduction over other classes of models. Can the
tableau system be extended to deal with reasoning over other
classes of models?

Yes, it can — and once again it’s pure formulas that make things
easy.

Pure formulas

• As before, a pure formula is simply a formula not containing
any propositional symbols.

• But this means that pure formulas may contain state variables
and ↓, not just nominals, ⊥ and >, so we can define a lot
more frame classes than before.

• Nonetheless, completeness is still automatic. Recall that if
@iϕ be a pure formula, whose nominals (if any) are
i , i1, . . . , in, then we can turn it into the following tableau rule:

(j , j1, . . . , jn on branch)

@iϕ[i ← j , i1 ← j1, . . . , in ← jn]

And there are interesting new axioms

For example, we cannot express the Church-Rosser property using
a pure formula of a hybrid language with one diamond.

You can express it if you have 〈f〉 and 〈p〉:

〈f〉i ∧ 〈f〉j → 〈f〉(i ∧ 〈f〉〈p〉j).

With downarrow, this works:

3i ∧3j → 33 ↓x(@i3x ∧ @j3x)

And there are interesting new axioms

For example, we cannot express the Church-Rosser property using
a pure formula of a hybrid language with one diamond.

You can express it if you have 〈f〉 and 〈p〉:

〈f〉i ∧ 〈f〉j → 〈f〉(i ∧ 〈f〉〈p〉j).

With downarrow, this works:

3i ∧3j → 33 ↓x(@i3x ∧ @j3x)

And there are interesting new axioms

For example, we cannot express the Church-Rosser property using
a pure formula of a hybrid language with one diamond.

You can express it if you have 〈f〉 and 〈p〉:

〈f〉i ∧ 〈f〉j → 〈f〉(i ∧ 〈f〉〈p〉j).

With downarrow, this works:

3i ∧3j → 33 ↓x(@i3x ∧ @j3x)

Frame definability and deduction match for pure formulas

Completeness Theorem Suppose you extend the basic tableau
system with the tableau rules for the pure formulas @jϕ, . . . , @kψ
(that is, the rules of the form just described). Then the resulting
system is (sound and) complete with respect to the class of frames
defined by these formulas.

That is, the frame-defining and deductive powers of pure formulas
match perfectly — even when ↓ has been added to the language.

Towards the logic of locality

• But now for the fundamental question: what exactly is hybrid
logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of first-order
logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is hybrid
logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of first-order
logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is hybrid
logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of first-order
logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is hybrid
logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of first-order
logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Towards the logic of locality

• But now for the fundamental question: what exactly is hybrid
logic with downarrow?

• We know what basic modal logic is: it’s the bisimulation
invariant fragment of first-order logic.

• We know what basic hybrid logic is: it’s the
bisimulation-with-constants invariant fragment of first-order
logic.

• As we shall learn, hybrid logic with downarrow also
corresponds to a neat fragment of first-order logic: it’s the
first-order logic of locality.

To understand what this means we’re going to need to learn
something about submodels and generated submodels. . .

Submodels
Suppose M is a model based on this frame (the integers in their usual

order):'
&

$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the

positive numbers, and restricting the original valuation (whatever it was)

to the remaining numbers:'
&

$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between the
two model?

Yes! M, 0 3> , but M−, 0 6 3>

Submodels
Suppose M is a model based on this frame (the integers in their usual

order):'
&

$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the

positive numbers, and restricting the original valuation (whatever it was)

to the remaining numbers:'
&

$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between the
two model?

Yes! M, 0 3> , but M−, 0 6 3>

Submodels
Suppose M is a model based on this frame (the integers in their usual

order):'
&

$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the

positive numbers, and restricting the original valuation (whatever it was)

to the remaining numbers:'
&

$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between the
two model?

Yes! M, 0 3> , but M−, 0 6 3>

Submodels
Suppose M is a model based on this frame (the integers in their usual

order):'
&

$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

Suppose we form a submodel M− of M by throwing away all the

positive numbers, and restricting the original valuation (whatever it was)

to the remaining numbers:'
&

$
%

. . . t−3 t−2 t−1 t0- - - -

Can an orthodox modal language detect the difference between the
two model?

Yes! M, 0 3> , but M−, 0 6 3>

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained by
throwing away the negative numbers, and restricting the original
valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between the
two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained by
throwing away the negative numbers, and restricting the original
valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between the
two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained by
throwing away the negative numbers, and restricting the original
valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between the
two model?

No! The two models make the exactly the same formulas true.

Another submodel
Again M is a model based on the integers in their usual order:'

&
$
%

. . . t−3 t−2 t−1 t0 t1 t2 t3 . . .- - - - - - - -

This time, suppose we form a submodel of M+ of M obtained by
throwing away the negative numbers, and restricting the original
valuation to what remains:'

&

$

%
t0 t1 t2 t3 . . .- - - -

Can an orthodox modal language detect the difference between the
two model?

No! The two models make the exactly the same formulas true.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s the
submodel generated by the point 0).

• To put it another way, point generation selects all the points
that are reachable from the evaluation state by chaining
through the relation(s). It selects precisely the points needed
to satisfy a formula at some particular location, and ignores
the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s the
submodel generated by the point 0).

• To put it another way, point generation selects all the points
that are reachable from the evaluation state by chaining
through the relation(s). It selects precisely the points needed
to satisfy a formula at some particular location, and ignores
the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s the
submodel generated by the point 0).

• To put it another way, point generation selects all the points
that are reachable from the evaluation state by chaining
through the relation(s). It selects precisely the points needed
to satisfy a formula at some particular location, and ignores
the rest.

Why the difference?

• Well, in the second example the two models were bisimilar,
and in the first example they weren’t.

• But there’s a more direct intuition: the second model
consisted of the point 0 and all it’s successors (that is, it’s the
submodel generated by the point 0).

• To put it another way, point generation selects all the points
that are reachable from the evaluation state by chaining
through the relation(s). It selects precisely the points needed
to satisfy a formula at some particular location, and ignores
the rest.

Point generated submodels

Point generated submodels Let M = (W ,R,V) be a model,
and w ∈W . Let Ww = {w ′ ∈W | wR∗w ′}, where R∗ is the
reflexive transitive closure of R. Then Mw , the submodel of M
generated by w is the model (Ww ,Rw ,Vw) where Rw and Vw are
the restrictions of R and V , respectively, to Ww .

Proposition: Let M be a model and Mw any of its point
generated submodels. Then for any orthodox modal formula ϕ,
and any point u in Mw we have

M, u ϕ iff Mw , u ϕ

In words: model satisfaction is invariant for point generated
submodels.

Proof: By direct induction on the structure of ϕ, or by observing
that point generation always results in bisimilar models.

Point generated submodels

Point generated submodels Let M = (W ,R,V) be a model,
and w ∈W . Let Ww = {w ′ ∈W | wR∗w ′}, where R∗ is the
reflexive transitive closure of R. Then Mw , the submodel of M
generated by w is the model (Ww ,Rw ,Vw) where Rw and Vw are
the restrictions of R and V , respectively, to Ww .

Proposition: Let M be a model and Mw any of its point
generated submodels. Then for any orthodox modal formula ϕ,
and any point u in Mw we have

M, u ϕ iff Mw , u ϕ

In words: model satisfaction is invariant for point generated
submodels.

Proof: By direct induction on the structure of ϕ, or by observing
that point generation always results in bisimilar models.

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Does this invariance hold for all hybrid formulas?

No!

Why not?

Because nominals and free variables may denote non-local points
— that is, points that do not belong to the generated submodel.
And then we can jump non-locally using @.

Let’s restrict our attention to nominal-free sentences. All
occurrences of @ in such formulas are bound by ↓ — surely this
can only lead to “local jumping”?

This idea is correct. How do we prove it?

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to points
in Mw . Then for any nominal-free formula ϕ (in the hybrid language
with ↓) and any point u in Mw

M, u, g ϕ iff Mw , u, g ϕ

Proof: By induction on the structure of ϕ. In the step for subformulas of
the form ↓y .ψ observe that y is assigned a value in Mw , hence the
variant assignment g ′ satisfies the inductive hypothesis.

Corollary: The truth of pure nominal free sentences is invariant under
generated submodels.

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to points
in Mw . Then for any nominal-free formula ϕ (in the hybrid language
with ↓) and any point u in Mw

M, u, g ϕ iff Mw , u, g ϕ

Proof: By induction on the structure of ϕ. In the step for subformulas of
the form ↓y .ψ observe that y is assigned a value in Mw , hence the
variant assignment g ′ satisfies the inductive hypothesis.

Corollary: The truth of pure nominal free sentences is invariant under
generated submodels.

Nominal-free sentences are invariant under generated
submodels

Lemma: M be a model, let Mw be any of its point generated
submodels, and g be an assignment sending all state variables to points
in Mw . Then for any nominal-free formula ϕ (in the hybrid language
with ↓) and any point u in Mw

M, u, g ϕ iff Mw , u, g ϕ

Proof: By induction on the structure of ϕ. In the step for subformulas of
the form ↓y .ψ observe that y is assigned a value in Mw , hence the
variant assignment g ′ satisfies the inductive hypothesis.

Corollary: The truth of pure nominal free sentences is invariant under
generated submodels.

What about first-order formulas?

• A first-order formula in one free variable ϕ(x) is invariant
under point generated submodels if for any model M, any of
its point generated submodels Mw , and any point u in Mw ,
M |= ϕ[u] iff M′ |= ϕ[u].

• Obviously not all first-order formulas are invariant under
generated submodels — first-order logic is clearly non-local!

• But some are. Which ones? That is, what is the first-order
logic of locality?

The logic of locality

Theorem: A first-order formula in one free variable is invariant for
generated submodels iff it is equivalent to the standard translation
of a nominal-free sentence (of the hybrid language with
downarrow).

That is, hybrid logic with downarrow is precisely the first-order
logic of locality.

For the original proof see “Hybrid Logics: Characterization,
Interpolation and Complexity”, Areces, Blackburn and Marx,
Journal of Symbolic Logic, 66:977-1009, 2001.

For an even better proof see Balder ten Cate’s 2004 Amsterdam
PhD thesis, Model Theory for Extended Modal Languages.

Interpolation

A logic has the interpolation property if whenever

|= ϕ→ ψ

then there is some formula θ containing only non-logical symbols
common to ϕ and ψ such that:

|= ϕ→ θ and |= θ → ψ.

Roughly speaking, if a logic enjoys interpolation, then validity can
always be ‘filtered through’ the common information bearing
elements of the language.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure with
↓. And in fact, ↓ can repair systematically repair interpolation
failures.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure with
↓. And in fact, ↓ can repair systematically repair interpolation
failures.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure with
↓. And in fact, ↓ can repair systematically repair interpolation
failures.

Interpolation in modal logic

• Orthodox propositional modal logic is not particularly well
behaved with respect to interpolation.

• And neither is basic hybrid logic: we’ll now see that
interpolation fails in the basic hybrid language.

• However we’ll immediately be able to ‘repair’ this failure with
↓. And in fact, ↓ can repair systematically repair interpolation
failures.

Interpolation failure in basic hybrid logic

In Lecture 1 we gave a tableau proof of

(3p ∧3¬p)→ (2(q→ i)→ 3¬q).

Hence this formula is valid. So if the basic hybrid language enjoys
interpolation then there should exist an interpolating θ such that

|= (3p ∧3¬p)→ θ and θ → (2(q→ i)→ 3¬q).

Note that θ must be in the empty language (that is, it must be
built up solely from > and ⊥) as {p} ∩ {i , q} = ∅.

Interpolation failure in basic hybrid logic

In Lecture 1 we gave a tableau proof of

(3p ∧3¬p)→ (2(q→ i)→ 3¬q).

Hence this formula is valid. So if the basic hybrid language enjoys
interpolation then there should exist an interpolating θ such that

|= (3p ∧3¬p)→ θ and θ → (2(q→ i)→ 3¬q).

Note that θ must be in the empty language (that is, it must be
built up solely from > and ⊥) as {p} ∩ {i , q} = ∅.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

|= (3p ∧3¬p)→ θ and |= θ → (2(q→ i)→ 3¬q)

• What would an interpolant look like? Well, a θ saying “I have
at least two successors” (in the empty language) would do.

• Now, 2⊥ says “I have zero successors” (in the empty
language).

• And 3> says “I have at least one successor” (in the empty
language).

• But it seems impossible to express “I have at least two
successors” (in the empty language). And there doesn’t seem
to be any other candidate.

• And a simple bisimulation argument shows that no interpolant
exists.

But what if we also had ↓ at our disposal?

• The pure, nominal-free, sentence ↓x .3↓y .@x3¬y says that
there are at least two distinct accessible states.

• Intuitively, because ↓ binds variables, we can say a lot (even in
the empty language).

• This suggests that although interpolation fails for the basic
hybrid language, it might holds for the richer language
containing ↓. And in fact this is just the way things work
out. . .

But what if we also had ↓ at our disposal?

• The pure, nominal-free, sentence ↓x .3↓y .@x3¬y says that
there are at least two distinct accessible states.

• Intuitively, because ↓ binds variables, we can say a lot (even in
the empty language).

• This suggests that although interpolation fails for the basic
hybrid language, it might holds for the richer language
containing ↓. And in fact this is just the way things work
out. . .

Hybrid logic with ↓ has interpolation

Theorem: Suppose we are working with the hybrid language with
↓. Then the logic of any class of frames definable by a pure,
nominal-free, sentence of this language enjoys interpolation.

Proof:
For a model-theoretic proof (using a Chang and Keisler style
construction) see “Hybrid Logics: Characterization, Interpolation
and Complexity”, Areces, Blackburn and Marx, Journal of
Symbolic Logic, 66:977-1009, 2001.

For a constructive proof (using tableau) see “Constructive
interpolants for every bounded fragment definable hybrid logic”,
Blackburn and Marx, Journal of Symbolic Logic, 68(2), 463-480,
2003.

The finite model property

• A language has the finite model property if any satisfiable
formula in the language can be satisfied on a finite model.

• The orthodox propositional modal language has the finite
model property, and so does the basic hybrid language.

• Viewed negatively, this means that these languages are too
weak to define infinite structures.

• Viewed positively, it means that we never need to bother
about with infinite structures when working with these
languages.

First-order logic lacks the finite model property

Consider the following first-order formulas:

• ∀x¬R(x , x) (Irreflexivity)

• ∀x∃yR(x , y) (Unboundedness)

• ∀x∀y(R(x , y) ∧ R(y , z)→ R(x , z)) (Transitivity)

Any model for these formulas (for example, the natural numbers
under their usual ordering) is called a unbounded strict total order.
It is not hard to see that any unbounded strict total order is
infinite. So first-order logic lack the finite model property.

Hybrid logic with ↓ also lacks the finite model property

• More difficult to prove, for we lack the globality of first-order
logic.

• However we can show this using a spypoint argument.

• We shall define a certain sentence and show that all models
satisfying it contain a point s (the spypoint) that can see
strict unbounded total order (see “Hybrid Languages”
Blackburn and Seligman, Journal of Logic, Language and
Information 4, 251-272, 1995).

A spypoint argument

Consider what any model of the following formula must contain:

@s22 ↓x .@s3x

∧ @s3¬s

∧ @s23>

∧ @s2 ↓x .¬3x

∧ @s2 ↓x .22 ↓y .@x3y

This formula has some obvious models.

Moreover, any model for this formula must contain a point s such
that the set of points B that s is related to is an unbounded strict
total order — and hence infinite.

Hybrid logic with ↓ is undecidable

• We have stepped over an important boundary: adding ↓ has
cost us decidability.

• In fact, even the fragment consisting of pure, nominal-free,
@-free sentences is undecidable.

• This can also be proved using a spypoint argument. Basic
technique is to use the spypoint as a vantage point surveying
a coding of an undecidable problem. (See “Hybrid
Languages” Blackburn and Seligman, Journal of Logic,
Language and Information 4, 251-272, 1995 for the original
proof and “Hybrid Logics: Characterization, Interpolation and
Complexity”, Areces, Blackburn and Marx, Journal of
Symbolic Logic, 66:977-1009, 2001 for a slightly stronger
result.)

Two comments on undecidability

• One interesting decidable fragment is known. Maarten Marx
has shown that the fragment in which 2 never occurs under
the scope of ↓ is decidable (and in fact EXPTIME-complete).
This fragment can handle some useful description logic
definitions.

• Because downarrow binding is local, we always know which
substitutions we have to perform. There is no need for Skolem
functions or unification. It may be that theorem provers will
perform well on “typical” formulas. The HyLoRes prover
handles downarrow, and it is hoped to optimize it’s
performance for this binder.

Summing up . . .

• We motivated the idea of binding variables to states locally,
and introduced ↓ which lets us dynamically name the
here-and-now.

• By doing this we have captured precisely the first-order logic
of locality. Completeness and interpolation results hold for all
local logics. Although local, the existence of infinite models
can be forced, and the system is undecidable.

