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Plan of the Talks

• First Lecture
1 From Hilbert to Gentzen.
2 Gentzen’s Hauptsatz and applications
3 The general form of ordinal analysis

• Second Lecture:
1 Proof theory of (sub)systems of second order

arithmetic.
2 Applications of Ordinal Analysis

• Third Lecture: Proof theory of systems of set theory.
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The Origins of Proof Theory (Beweistheorie)

• Hilbert’s second problem (1900): Consistency of Analysis

• Hilbert’s Programme (1922,1925)
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Paradoxes

• First paradox of set theory discovered by Cantor in 1895;
communicated to Hilbert in 1896.

• Rediscovered by Burali-Forti in 1897.

• Zermelo (in Göttingen) discovered a paradox in set theory
in 1900.

• Rediscovered by Russell in 1901.
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Proof theory?

• Dedekind 1888, 1890. Canonical requirement for a
structural definition: Prove the existence of a system of
things falling under the notion to ensure it does not contain
internal contradictions.

• Hilbert 1904 (Heidelberg talk): Syntactic consistency proof
for a weak system of arithmetic.

• Hilbert 1917 (Axiomatisches Denken): we must turn the
concept of a specifically mathematical proof itself into
an object of investigation.

• In 1917/18 Hilbert flirted again with logicism. Presented
analysis in ramified type theory with the axiom of
reducibility.

• Hilbert’s finitist consistency program only emerged in the
winter term 1921/22.
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Hilbert’s Programme (1922,1925)

• I. Codify the whole of mathematical reasoning in a
formal theory T.

• II. Prove the consistency of T by finitistic means.

• To carry out this task, Hilbert inaugurated a new
mathematical discipline: Beweistheorie ( Proof Theory).

• In Hilbert’s Proof Theory, proofs become mathematical
objects sui generis.
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Ackermann’s Dissertation 1925

Consistency proof for a second-order version of Primitive
Recursive Arithmetic.

Uses a finitistic version of transfinite induction up to the
ordinal ωω

ω
.
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Gentzen’s Result

• Gerhard Gentzen showed that transfinite induction up to
the ordinal

ε0 = sup{ω, ωω, ωωω , . . .} = least α. ωα = α

suffices to prove the consistency of Peano Arithmetic,
PA.

• Gentzen’s applied transfinite induction up to ε0 solely to
primitive recursive predicates and besides that his proof
used only finitistically justified means.
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Gentzen’s Result in Detail

•

F + PR-TI(ε0) ` Con(PA),

where F signifies a theory that is acceptable in finitism
(e.g. F = PRA = Primitive Recursive Arithmetic) and
PR-TI(ε0) stands for transfinite induction up to ε0 for
primitive recursive predicates.

• Gentzen also showed that his result is best possible: PA
proves transfinite induction up to α for arithmetic
predicates for any α < ε0.
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The Compelling Picture

The non-finitist part of PA is encapsulated in PR-TI(ε0) and
therefore “measured” by ε0, thereby tempting one to adopt the
following definition of proof-theoretic ordinal of a theory T :

|T |Con = least α. PRA + PR-TI(α) ` Con(T ).
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The supremum of the provable ordinals

• 〈A,≺〉 is said to be provably wellordered in T if

T ` WO(A,≺).

• α is provably computable in T if there is a computable
well–ordering 〈A,≺〉 with order–type α such that

T ` WO(A,≺)

with A and ≺ being provably computable in T.
• The supremum of the provable well-orderings of T:

|T|sup := sup
{
α : α provably computable in T

}
.
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Ordinal Structures

We are interested in representing specific ordinals α as
relations on N.

Natural ordinal representation systems are frequently derived
from structures of the form

A = 〈α, f1, . . . , fn, <α〉

where α is an ordinal, <α is the ordering of ordinals restricted
to elements of α and the fi are functions

fi : α× · · · × α︸ ︷︷ ︸
ki times

−→ α

for some natural number ki .
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Ordinal Representation Systems

A = 〈A,g1, . . . ,gn,≺〉

is a computable (or recursive) representation of
A = 〈α, f1, . . . , fn, <α〉 if the following conditions hold:

1 A ⊆ N and A is a computable set.

2 ≺ is a computable total ordering on A and the functions gi
are computable.

3 A ∼= A, i.e. the two structures are isomorphic.
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Cantor’s Representation of Ordinals

Theorem (Cantor, 1897) For every ordinal β > 0 there exist
unique ordinals β0 ≥ β1 ≥ · · · ≥ βn such that

β = ωβ0 + . . .+ ωβn . (1)

The representation of β in (1) is called the Cantor normal
form.

We shall write β =CNF ω
β1 + · · ·ωβn to convey that

β0 ≥ β1 ≥ · · · ≥ βk .
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A Representation for ε0

• ε0 denotes the least ordinal α > 0 such that

β < α ⇒ ωβ < α.

• ε0 is the least ordinal α such that ωα = α.

• β < ε0 has a Cantor normal form with exponents βi < β
and these exponents have Cantor normal forms with yet
again smaller exponents. As this process must terminate,
ordinals < ε0 can be coded by natural numbers.
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Coding ε0 in N
Define a function

d . e : ε0 −→ N

by

dδe =

{
0 if δ = 0
〈dδ1e, . . . , dδne〉 if δ =CNF ω

δ1 + · · ·ωδn

where 〈k1, · · · , kn〉 := 2k1+1 · . . . · pkn+1
n with pi being the i th

prime number (or any other coding of tuples). Further define

A0 := ran(d . e)
dδe ≺ dβe :⇔ δ < β

dδe +̂ dβe := dδ + βe
dδe ·̂ dβe := dδ · βe

ω̂dδe := dωδe.
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Coding ε0 in N

Then

〈ε0,+, ·, δ 7→ ωδ, <〉 ∼= 〈A0, +̂, ·̂, x 7→ ω̂x ,≺〉.

A0, +̂, ·̂, x 7→ ω̂x ,≺ are recursive, in point of fact, they are all
elementary recursive.

FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



Transfinite Induction

• TI(A,≺) is the schema

∀n ∈ A [∀k ≺ n P(k) → P(n)] → ∀n ∈ A P(n)

with P arithmetical.

• For α ∈ A let ≺α be ≺ restricted to Aα := {β ∈ A | β ≺ α}.
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The general form of ordinal analysis

• T framework for formalizing a certain part of mathematics.
T should be a true theory which contains a modicum of
arithmetic.

• Every ordinal analysis of a classical or intuitionistic theory
T that has ever appeared in the literature provides an
EORS 〈A,�, . . .〉 such that T is finitistically reducible to

PA +
⋃
α∈A

TI(Aα,�α).

• T and HA +
⋃
α∈A TI(Aα,�α) prove the same Π0

2
sentences.

• |T|sup = |�|.
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Ordinally Informative Proof Theory

The two main strands of research are:

• Cut Elimination (and Proof Collapsing Techniques)

• Development of ever stronger Ordinal Representation
Systems
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The Sequent Calculus
SEQUENTS

• A sequent is an expression Γ ⇒ ∆ where Γ and ∆ are
finite sequences of formulae A1, . . . ,An and B1, . . . ,Bm,
respectively.

• Γ ⇒ ∆ is read, informally, as Γ yields ∆ or, rather, the
conjunction of the Ai yields the disjunction of the Bj .
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The Sequent Calculus
LOGICAL INFERENCES I

Negation

Γ ⇒ ∆,A
¬L¬A, Γ ⇒ ∆

B, Γ ⇒ ∆
¬R

Γ ⇒ ∆,¬B

Implication

Γ ⇒ ∆,A B,Λ ⇒ Θ
→ LA→ B, Γ,Λ ⇒ ∆,Θ

A, Γ ⇒ ∆,B
→ R

Γ ⇒ ∆,A→ B
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Conjunction

A, Γ ⇒ ∆
∧L1A ∧ B, Γ ⇒ ∆

B, Γ ⇒ ∆
∧L2A ∧ B, Γ ⇒ ∆

Γ ⇒ ∆,A Γ ⇒ ∆,B
∧R

Γ ⇒ ∆,A ∧ B

Disjunction

A, Γ ⇒ ∆ B, Γ ⇒ ∆
∨LA ∨ B, Γ ⇒ ∆

Γ ⇒ ∆,A
∨R1

Γ ⇒ ∆,A ∨ B
Γ ⇒ ∆,B

∨R2
Γ ⇒ ∆,A ∨ B
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The Sequent Calculus
LOGICAL INFERENCES II

Quantifiers

F (t), Γ ⇒ ∆
∀L∀x F (x), Γ ⇒ ∆

Γ ⇒ ∆,F (a)
∀R

Γ ⇒ ∆,∀x F (x)

F (a), Γ ⇒ ∆
∃L∃x F (x), Γ ⇒ ∆

Γ ⇒ ∆,F (t)
∃R

Γ ⇒ ∆, ∃x F (x)

In ∀L and ∃R, t is an arbitrary term. The variable a in ∀R and ∃L
is an eigenvariable of the respective inference, i.e. a is not to
occur in the lower sequent.
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The Sequent Calculus
AXIOMS

Identity Axiom
A ⇒ A

where A is any formula.

One could limit this axiom to the case of atomic formulae A
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The Sequent Calculus
CUTS

CUT
Γ ⇒ ∆,A A,Λ ⇒ Θ

Cut
Γ,Λ ⇒ ∆,Θ

A is called the cut formula of the inference.

Example
B ⇒ A A ⇒ C

CutB ⇒ C
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The Sequent Calculus
STRUCTURAL RULES

Structural Rules Exchange, Weakening, Contraction

Γ,A,B,Λ ⇒ ∆ Xl
Γ,B,A,Λ ⇒ ∆

Γ ⇒ ∆,A,B,Λ Xr
Γ ⇒ ∆,B,A,Λ

Γ ⇒ ∆ Wl
Γ,A ⇒ ∆

Γ ⇒ ∆ Wr
Γ ⇒ ∆,A

Γ,A,A ⇒ ∆ Cl
Γ,A ⇒ ∆

Γ ⇒ ∆,A,A Cr
Γ ⇒ ∆,A
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The INTUITIONISTIC case

The intuitionistic sequent calculus is obtained by requiring
that all sequents be intuitionistic.

A sequent Γ ⇒ ∆ is said to be intuitionistic if ∆ consists
of at most one formula.

Specifically, in the intuitionistic sequent calculus there are
no inferences corresponding to contraction right or
exchange right.
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Classical Example

Our first example is a deduction of the law of excluded
middle.

A ⇒ A ¬R⇒ A,¬A
∨R⇒ A, A ∨ ¬A Xr⇒ A ∨ ¬A, A
∨R⇒ A ∨ ¬A, A ∨ ¬A Cr⇒ A ∨ ¬A

Notice that the above proof is not intuitionistic since it
involves sequents that are not intuitionistic.
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Intuitionistic Example

The second example is an intuitionistic deduction.

F (a) ⇒ F (a)
∃RF (a) ⇒ ∃x F (x)
¬L¬∃x F (x),F (a) ⇒
Xl

F (a), ¬∃x F (x) ⇒
¬L¬∃xF (x) ⇒ ¬F (a)
∀R¬∃x F (x) ⇒ ∀x ¬F (x)
→R⇒ ¬∃x F (x)→ ∀x ¬F (x)
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Gentzen’s Hauptsatz (1934)

Cut Elimination

If a sequent
Γ ⇒ ∆

is provable, then it is provable without cuts.
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Cut Elimination
EXAMPLE

Here is an example of how to eliminate cuts of a special form:

A, Γ ⇒ ∆,B
→R

Γ ⇒ ∆,A→ B
Λ ⇒ Θ,A B,Ξ ⇒ Φ

→LA→ B,Λ,Ξ ⇒ Θ,Φ
Cut

Γ,Λ,Ξ ⇒ ∆,Θ,Φ

is replaced by

Λ ⇒ Θ,A A, Γ ⇒ ∆,B
Cut

Λ, Γ ⇒ Θ,∆,B B,Ξ ⇒ Φ
Cut

Γ,Λ,Ξ ⇒ ∆,Θ,Φ
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The Subformula Property

The Hauptsatz has an important corollary:

The Subformula Property

If a sequent Γ ⇒ ∆ is provable, then it has a
deduction all of whose formulae are subformulae
of the formulae in Γ and ∆.

Corollary A contradiction, i.e. the empty sequent, is not
deducible.
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Applications of the Haupsatz

• Herbrand’s Theorem in LK (classical):

` ∃xR(x) implies ` R(t1) ∨ . . . ∨ R(tn)

some ti (R quantifier-free).
• Extended Herbrand’s Theorem in LK :

` Γ ⇒ ∃xR(x) implies ` Γ ⇒ R(t1) ∨ . . . ∨ R(tn)

some ti (R quantifier-free, Γ purely universal).
• In LJ (intuitionistic predicate logic):

` Γ ⇒ ∃xR(x) implies ` R(t)

for some term t where Γ is ∨ and ∃ free.
• Hilbert-Ackermann Consistency
• If T is a geometric theory and T classically proves a

geometric implication A then T intuitionistically proves A.
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Theories and Cut Elimination

• What happens when we try to apply the procedure of cut
elimination to theories?

• Axioms are detrimental to this procedure. It breaks down
because the symmetry of the sequent calculus is lost. In
general, we cannot remove cuts from deductions in a
theory T when the cut formula is an axiom of T .

• However, sometimes the axioms of a theory are of
bounded syntactic complexity. Then the procedure applies
partially in that one can remove all cuts that exceed the
complexity of the axioms of T .
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Partial Cut Elimination

• Gives rise to
partial cut elimination.

• This is a very important tool in proof theory. For example, it
works very well if the axioms of a theory can be presented
as atomic intuitionistic sequents (also called Horn
clauses), yielding the completeness of Robinsons
resolution method.
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Partial cut elimination also pays off in the case of fragments of
PA and set theory with restricted induction schemes, be it
induction on natural numbers or sets. This method can be used
to extract bounds from proofs of Π0

2 statements in such
fragments.
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Gentzen’s way out

• Gentzen defined an assignment ord of ordinals to
derivations of PA such for every derivation D of PA in his
sequent calculus,

ord(D) < ε0.

• He then defined a reduction procedure R such that
whenever D is a derivation of the empty sequent in PA
then R(D) is another derivation of the empty sequent in PA
but with a smaller ordinal assigned to it, i.e.,

ord(R(D)) < ord(D). (2)

• Moreover, both ord and R are primitive recursive functions
and only finitist means are used in showing (2).
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Gentzen’s way out cont’ed

• If PRWO(ε0) is the statement that there are no infinitely
descending primitive recursive sequences of ordinals
below ε0, then the following are immediate consequences
of Gentzen’s work.

Theorem: (Gentzen 1936, 1938)

(i) The theory of primitive recursive arithmetic, PRA, proves that
PRWO(ε0) implies the 1-consistency of PA.

(ii) Assuming that PA is consistent, PA does not prove PRWO(ε0).

Theorem: (Goodstein 1944, almost)

Termination of primitive recursive Goodstein sequences is not
provable in PA.
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Birth of Second Order Proof Theory by The Fundamental
Conjecture on GLC

The Fundamental Conjecture FC for GLC asserts that the
Hauptsatz holds for GLC.

Formulated by Gaisi Takeuti in the late 1940’s.

Having proposed the fundamental conjecture, I
concentrated on its proof and spent several years
in an anguished struggle trying to resolve the
problem day and night.
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The Finite Order Sequent Calculus, GLC

Quantifiers

F ({v | A(v)}), Γ ⇒ ∆
∀2 L

∀X F (X ), Γ ⇒ ∆

Γ ⇒ ∆,F (U)
∀2 R

Γ ⇒ ∆,∀X F (X )

F (U), Γ ⇒ ∆
∃2 L

∃X F (X ), Γ ⇒ ∆

Γ ⇒ ∆,F ({v | A(v)})
∃2 R

Γ ⇒ ∆, ∃X F (X )

In ∀2L and ∃2R, A(a) is an arbitrary formula. The variable U in
∀2R and ∃2L is an eigenvariable of the respective inference, i.e.
U is not to occur in the lower sequent.
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Non-constructive proofs of FC

1 K. Schütte: Syntactical and semantical properties of simple
type theory. Journal of Symbolic Logic 25 (1960) 305-326.

2 W. Tait: A non constructive proof of Gentzen’s Hauptsatz
for second order predicate logic. Bulletin of the American
Mathematical Society 72 (1966) 980–983.

3 M. Takahashi: A proof of cut-elimination in simple type
theory. Journal of the Mathematical Society of Japan, 19
(1967) 399–410.

4 D. Prawitz: Hauptsatz for higher order logic. Journal of
Symbolic Logic 33 (1968) 452–457.
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Takeuti’s reaction

• However, their proofs rely on set theory, and so it cannot
be regarded as an execution of of Hilbert’s program.

• With all that, the subsystems for which I have been able to
prove the fundamental conjecture are the system with Π1

1
comprehension axiom and a slightly stronger system,[...]
Mariko Yasugi and I tried to resolve the fundamental
conjecture for the system with the ∆1

2 comprehension
axiom within our extended version of the finite standpoint.
Ultimately, our success was limited to the system with
provably ∆1

2 comprehension axiom. This was my last
successful result in this area.

• G. Takeuti: Consistency proofs of subsystems of classical
analysis, Ann. Math. 86 (1967) 299–348.

G. Takeuti, M. Yasugi: The ordinals of the systems of
second order arithmetic with the provably
∆1

2–comprehension and the ∆1
2–comprehension axiom

respectively, Japan J. Math. 41 (1973) 1–67.
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A brief history of ordinal representation systems
1904-1950

Hardy (1904) wanted to “construct” a subset of R of size
ℵ1.

Hardy gives explicit representations for all ordinals < ω2.
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O. Veblen, 1908

Veblen extended the initial segment of the countable for which
fundamental sequences can be given effectively.

• He applied two new operations to continuous increasing
functions on ordinals:

• Derivation
• Transfinite Iteration

• Let ON be the class of ordinals. A (class) function
f : ON→ ON is said to be increasing if α < β implies
f (α) < f (β) and continuous (in the order topology on ON)
if

f ( lim
ξ<λ

αξ) = lim
ξ<λ

f (αξ)

holds for every limit ordinal λ and increasing sequence
(αξ)ξ<λ.
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• Transfinite Iteration

• Let ON be the class of ordinals. A (class) function
f : ON→ ON is said to be increasing if α < β implies
f (α) < f (β) and continuous (in the order topology on ON)
if

f ( lim
ξ<λ

αξ) = lim
ξ<λ

f (αξ)

holds for every limit ordinal λ and increasing sequence
(αξ)ξ<λ.
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Derivations

• f is called normal if it is increasing and continuous.

• The function β 7→ ω + β is normal while β 7→ β + ω is not
continuous at ω since limξ<ω(ξ + ω) = ω but
(limξ<ω ξ) + ω = ω + ω.

• The derivative f ′ of a function f : ON→ ON is the function
which enumerates in increasing order the solutions of the
equation

f (α) = α,

also called the fixed points of f .
• If f is a normal function,

{α : f (α) = α}

is a proper class and f ′ will be a normal function, too.
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A Hierarchy of Ordinal Functions

• Given a normal function f : ON→ ON, define a hierarchy
of normal functions as follows:

• f0 = f
• fα+1 = fα′

•

fλ(ξ) = ξth element of
⋂
α<λ

{Fixed points of fα} for λ limit.
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The Feferman-Schütte Ordinal Γ0

• From the normal function f we get a two-place function,

ϕf (α, β) := fα(β).

Veblen then discusses the hierarchy when

f = `, `(α) = ωα.

• The least ordinal γ > 0 closed under ϕ`, i.e. the least
ordinal > 0 satisfying

(∀α, β < γ) ϕ`(α, β) < γ

is the famous ordinal Γ0 which Feferman and Schütte
determined to be the least ordinal ‘unreachable’ by
predicative means.
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The Big Veblen Number

• Veblen extended this idea first to arbitrary finite numbers
of arguments, but then also to transfinite numbers of
arguments, with the proviso that in, for example

Φf (α0, α1, . . . , αη),

only a finite number of the arguments

αν

may be non-zero.

• Veblen singled out the ordinal E(0), where E(0) is the least
ordinal δ > 0 which cannot be named in terms of functions

Φ`(α0, α1, . . . , αη)

with η < δ, and each αγ < δ.
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The Big Leap: H. Bachmann 1950

• Bachmann’s novel idea: Use uncountable ordinals to
keep track of the functions defined by diagonalization.

• Define a set of ordinals B closed under successor such
that with each limit λ ∈ B is associated an increasing
sequence 〈λ[ξ] : ξ < τλ〉 of ordinals λ[ξ] ∈ B of length
τλ ≤ B and limξ<τλ λ[ξ] = λ.

• Let Ω be the first uncountable ordinal. A hierarchy of
functions (ϕ

B

α)α∈B is then obtained as follows:

ϕ
B

0 (β) = 1 + β ϕ
B

α+1 =
(
ϕ
B

α

)′
ϕ
B

λ enumerates
⋂
ξ<τλ

(Range of ϕ
B

λ[ξ]) λ limit, τλ < Ω

ϕ
B

λ enumerates {β < Ω : ϕ
B

λ[β](0) = β} λ limit, τλ = Ω.
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1960-1974

After Bachmann, the story of ordinal representation systems
becomes very complicated.
• Isles, Bridge, Gerber, Pfeiffer, Schütte extended

Bachmann’s approach.
Drawback: Horrendous computations.

• Aczel and Weyhrauch combined Bachmann’s approach
with uses of higher type functionals.

• Feferman’s new proposal: Bachmann-type hierarchy
without fundamental sequences.

• Bridge and Buchholz showed computability of systems
obtained by Feferman’s approach.
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“Natural” well-orderings

Set-theoretical (Cantor, Veblen, Gentzen, Bachmann, Schütte,
Feferman, Pfeiffer, Isles, Bridge, Buchholz,
Pohlers, Jäger, Rathjen)
• Define hierarchies of functions on the

ordinals.
• Build up terms from function symbols for

those functions.
• The ordering on the values of terms induces

an ordering on the terms.
Reductions in proof figures (Takeuti, Yasugi, Kino, Arai)

• Ordinal diagrams; formal terms endowed with
an inductively defined ordering on them.
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“Natural” well-orderings

Patterns of elementary substructurehood (Carlson)
• Finite structures with Σn-elementary

substructure relations .
Category-theoretical (Aczel, Girard, Jervell, Vauzeilles)

• Functors on the category of ordinals (with
strictly increasing functions) respecting direct
limits and pull-backs.

Representation systems from below (Setzer)
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Second order arithmetic; Z2 aka Analysis

Z2 is a two sorted formal system. Extends PA.
• Variables n,m, . . . range over natural numbers.

Variables X ,Y ,Z , . . . range over sets of natural numbers.
Relation symbols =, <,∈. Function symbols +,×, . . .

• Comprehension Principle/Axiom:

For any property P definable in the language of Z2,

{n ∈ N | P(n)}

is a set; or more formally

(CA) ∃X ∀n [n ∈ X ↔ A(x)]

for any formula A(x) of Z2.
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Stratification of Comprehension

• A Π1
k -formula (Σ1

k -formula) is a formula of Z2 of the form

∀X1 . . .QXk A(X1, . . . ,Xk ) (∃X1 . . .QXk A(X1, . . . ,Xk ))

with ∀X1 . . .QXk (∃X1 . . .QXk ) a string of k alternating set
quantifiers, beginning with a universal quantifier (existential
quantifier), followed by a formula A(X1, . . . ,Xk ) without set
quantifiers.

• Π1
k -comprehension (Σ1

k -comprehension) is the scheme

∃X ∀n [n ∈ X ↔ A(x)]

with A(x) Π1
k (Σ1

k ).
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Subsystems of Z2

• Basic arithmetical axioms in all subtheories of Z2 are:
defining axioms for 0,1,+,×,E , < (as for PA) and the
induction axiom

∀X [ 0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X )→ ∀n (n ∈ X )].

• For each axiom scheme Ax, (Ax)0 denotes the theory
consisting of the basic arithmetical axioms plus the
scheme Ax.

• (Ax) stands for the theory (Ax)0 augmented by the
scheme of induction for all L2-formulae.

• Let F be a collection of formulae of Z2.
Another important axiom scheme for formulae F in C is

C − AC ∀n∃YF (n,Y )→ ∃Y∀nF (x ,Yn),

where Yn := {m : 2n3m ∈ Y}.
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How much of Z2 is needed?

• Hermann Weyl 1918 “Das Kontinuum"
Predicative Analysis.

• Hilbert, Bernays 1938:
Z2 sufficient for “Ordinary Mathematics"

• Minimal foundational frameworks for Ordinary
Mathematics:
Feferman, Lorenzen, Takeuti ....

• Reverse Mathematics, early 1970s-now
H. Friedman, S. Simpson, ....

Given a specific theorem τ of ordinary
mathematics, which set existence axioms are
needed in order to prove τ?
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Five Systems

For many mathematical theorems τ , there is a weakest natural
subsystem S(τ) of Z2 such that S(τ) proves τ .
Moreover, it has turned out that S(τ) often belongs to a small
list of specific subsystems of Z2. Reverse Mathematics has
singled out five subsystems of Z2:
• RCA0 Recursive Comprehension

• WKL0 Weak König’s Lemma
• ACA0 Arithmetic Comprehension
• ATR0 Arithmetic Transfinite Recursion
• (Π1

1−CA)0 Π1
1-Comprehension
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Mathematical Equivalences: Examples

• RCA0 “Every countable field has an algebraic closure";
“Every countable ordered field has a real closure"

• WKL0 “Cauchy-Peano existence theorem for solutions of
ordinary differential equations";
“Hahn-Banch theorem for separable Banach spaces"

• ACA0 “Bolzano-Weierstrass theorem";
“Every countable commutative ring with a unit has a
maximal ideal"

• ATR0 “Every countable reduced abelian p-group has an
Ulm resolution"

• (Π1
1−CA)0 “Every uncountable closed set of real

numbers is the union of a perfect set and a countable set";
“Every countable abelian group is a direct sum of a
divisible group and a reduced group"
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numbers is the union of a perfect set and a countable set";
“Every countable abelian group is a direct sum of a
divisible group and a reduced group"
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|ATR0| = Γ0

|ACA0| = ε0

|RCA0| = ωω = |WKL0|

0
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|(Σ1
2-AC) + BI| = ψΩ1 I

|(∆1
2-CA)| = ψΩ1Ωε0

|(Π1
1−CA)0| = ψΩ1Ωω

|ATR0| = Γ0
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|(Π1
2−CA)0| = ψΩ1Rω
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A Brief History of Ordinal Analysis

• Gentzen 1936
theory PA
ordinal ε0

• Feferman, Schütte 1963
Predicative Second Order Arithmetic
ordinal Γ0

• Takeuti 1967
(Π1

1-CA)0, (Π1
1-CA) + BI

ordinals ψΩ1Ωω, ψΩ1εΩω+1
cardinal analogue: ω-many regular cardinals

• Takeuti, Yasugi 1983
(∆1

2-CA)
ordinal ψΩ1Ωε0

cardinal analogue: ε0-many regular cardinals
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A Brief History of Ordinal Analysis cont’d

• Buchholz, Pohlers, Sieg 1977
Theories of Iterated Inductive Definitions
ordinals ψΩ1Ων

cardinal analogue: ν-many regular cardinals

• Buchholz 1977
Ων+1-rules

• Pohlers
Method of Local Predicativity

• Girard 1979
Π1

2-Logic
• Jäger 1979

Constructible Hierarchy in Proof Theory
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A Brief History of Ordinal Analysis cont’d

• Jäger, Pohlers 1982
(Σ1

2-AC) + BI, KPi
ordinal ψΩ1 I
cardinal analogue: I inaccessible cardinal

• R 1989
KPM
ordinal ψΩ1M
cardinal analogue: M Mahlo cardinal

• Buchholz 1990
Operator Controlled Derivations
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A Brief History of Ordinal Analysis cont’d

• R 1992
Π3-reflection
ordinal ψΩ1K
cardinal analogue: K weakly compact cardinal

• R 1992
First-order reflection
cardinal analogue: totally indescribable cardinal

• R 1995
Π1

2-Comprehension
cardinal analogue: ω-many reducible cardinals

• Arai Ordinal Analysis of Theories up to Π1
2-Comprehension

using Reductions on Finite Proof Figures and Ordinal
Diagrams.
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Rewards of Ordinal Analyses

• I. Hilbert’s Programme Extended:
Constructive Consistency Proofs

• II. Equiconsistency, Conservativity and Independence
Results

• III. Classification of Provable Functions and Functionals of
Theories

• IV. Combinatorial Independence Results
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Examples

• I. (R; Setzer) Consistency proof of (Σ1
2-AC) + BI in

Martin-Löf Type Theory.
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Combinatorial Independence Results

• A finite tree is a finite partially ordered set

B = (B,≤)

such that:
(i) B has a smallest element (called the root of B);

(ii) for each s ∈ B the set {t ∈ B : t ≤ s} is a totally ordered
subset of B.

• For finite trees B1 and B2, an embedding of B1 into B2 is a
one-to-one mapping

f : B1 → B2

such that
f (a ∧ b) = f (a) ∧ f (b)

for all a,b ∈ B1, where a ∧ b denotes the infimum of a and
b.
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• Kruskal’s Theorem. For every infinite sequence of trees(
Bk : k < ω

)
, there exist i and j such that i < j < ω and Bi

is embeddable into Bj .
(In particular, there is no infinite set of pairwise
nonembeddable trees.)

• Theorem (H. Friedman, D. Schmidt) Kruskal’s Theorem is
not provable in ATR0.

• The proof utilizes that Kruskal’s Theorem implies that Γ0 is
well-founded.
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The Extended Kruskal Theorem

• For n < ω, let Bn be the set of all finite trees with labels
from n, i.e. (B, `) ∈ Bn if B is a finite tree and

` : B → {0, . . . ,n − 1}.

The set Bn is quasiordered by putting (B1, `1) ≤ (B2, `2) if
there exists an embedding

f : B1 → B2 such that:

• `1(b) = `2(f (b)) for each b ∈ B1;
• if b is an immediate successor of a ∈ B1, then for each

c ∈ B2 in the interval f (a) < c < f (b),

`2(c) ≥ `2(f (b)).

This condition is called a gap condition.
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The Extended Kruskal Theorem

Theorem. (Friedman) For each n < ω, Bn is a well quasi
ordering (abbreviated WQO(Bn)), i.e. there is no infinite
set of pairwise nonembeddable trees.

Theorem ∀n < ω WQO(Bn) is not provable in Π1
1 − CA0.

• The proof employs an ordinal representation system for the
proof-theoretic ordinal of Π1

1 − CA0.
The ordinal is ψΩ1(Ωω).
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The Graph Minor Theorem

• G, H graphs. If H is obtained from G by first deleting some
vertices and edges, and then contracting some further
edges, H is a minor of G.

GMT Theorem. (Robertson and Seymour 1986-1997) If
G0,G1,G2, . . . is an infinite sequence of finite graphs, then
there exist i < j so that Gi is isomorphic to a minor of Gj .

• The proof of GMT uses the EKT.

• Corollary. (Vázsonyi’s conjecture) If all the Gk are
trivalent, then there exist i < j so that Gi is embeddable
into Gj .

• Corollary. (Wagner’s conjecture) For any 2-manifold M
there are only finitely many graphs which are not
embeddable in M and are minimal with this property.
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The Graph Minor Theorem

• Theorem. (Friedman, Robertson, Seymour)

• GMT implies EKT within, say, RCA0.

• GMT is not provable in Π1
1 − CA0.

FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



The Graph Minor Theorem

• Theorem. (Friedman, Robertson, Seymour)

• GMT implies EKT within, say, RCA0.

• GMT is not provable in Π1
1 − CA0.

FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



The Graph Minor Theorem

• Theorem. (Friedman, Robertson, Seymour)

• GMT implies EKT within, say, RCA0.

• GMT is not provable in Π1
1 − CA0.

FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



Ockham’s Razor
In what follows, we shall be solely dealing with classical logic.
Therefore we can simplify the sequent calculus as follows:
• We get rid of the structural rules by using sets of

formulae rather than sequents of formulae. This has the
effect that exchange and contraction happen
automatically:

{C1, . . . ,Cr ,A,A,D1, . . . ,Ds} = {D1, . . . ,Ds,A,C1, . . . ,Cr}

We take care of weakening by adding all the formulae we
may be interested in from the start; thus we have more
liberal axioms:

A, Γ ⇒ ∆,A
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• Using the De Morgan laws of classical logic we can push
negations in front of atomic formulae. Also, in classical
logic ¬,∧,∨ forms a complete set of connectives. Thus we
can simplify matters, by demanding that formulae are built
up from atomic and negated atomic formulae (literals) by
means of ∧,∨,∀,∃.
Negating a formula A then becomes a defined operation:

• ¬¬A := A if A is atomic;
• ¬(A ∧ B) = ¬A ∨ ¬B; ¬(A ∨ B) = ¬A ∧ ¬B;
• ¬∀x F (x) := ∃x ¬F (x); ¬∃x F (x) := ∀x ¬F (x).

• In classical logic we don’t need the two sides of a sequent

A1, . . . ,Ar ⇒ ∆

since it can be re-written as

⇒ ¬A1, . . . ,¬Ar ,∆
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In the Tait-style version of the classical sequent calculus
Γ,∆,Λ,Θ, . . . range over finite sets of formulae in negation
normal form. Γ,∆ stands for Γ ∪ ∆ and ∆,A is short for
∆ ∪ {A}.
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The inferences of the Tait-calculus are as follows:

(Axiom) Γ, A, ¬A

(∧) Γ,A Γ,A′

Γ,A ∧ A′

(∨) Γ,Ai
Γ,A0 ∨ A1

if i = 0 or i = 1

(∀)
Γ, F (a)

Γ, ∀x F (x)

(∃)
Γ, F (t)

Γ, ∃x F (x)

(Cut) Γ, A Γ, ¬ A
Γ

Of course, the variable a in (∀) is an eigenvariable.FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



Part II: Predicative Proof Theory
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Ramified Analysis RAα

• These are theories for Gödel’s notion of constructibility
restricted to sets of natural numbers.

• Use ordinal indexed variables Xα,Yα,Zα, . . ..

1 Level 0 variables range over sets definable by numerical
quantification.

2 Level α > 0 variables range over sets definable by
numerical quantification and level < α quantification.

Theorem: (Schütte)

The proof-theoretic ordinal of RAα is ϕα0.
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Infinite Ramified Analysis RA∞

• Uses ordinal indexed free set variables Uα,Vα,Wα, . . .
and and bound set variables Xβ,Y β,Zβ, . . . with β > 0.

1 Every free set variable Uα is a set term of level α.
2 If P is a set term of level α and t is a numerical term, then

t ∈ P and t /∈ P are formulas of level α.
3 If A and B are formulas of levels α and β, then A ∨ B and

A ∧ B are formulas of level max(α, β).
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The calculus RA∞

Axioms
Γ,L where L is a true literal
Γ, s ∈ Uα, t /∈ Uα where s

N
= t

N
.

Rules
(∧), (∨), (ω), numerical (∃) and (Cut) as per usual

(∃α)
Γ,F (P)

Γ,∃XαF (Xα)
P set term of level < α.

(∀α)
... Γ,F (P) . . . for all P of level < α

Γ, ∀XαF (Xα)

(ST1)
Γ,F (t)

Γ, t ∈ {x | F (x)}

(ST2)
Γ,¬F (t)

Γ, t /∈ {x | F (x)}
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Cut rank in RA∞

The cut-rank of a formula A, |A|, is defined as follows:
1 |L| = 0 for arithmetical literals L.

2 |t ∈ Uα| = |t /∈ Uα| = ω · α
3 |B0 ∧ B1| = |B0 ∨ B1| = max(|B0|, |B1|) + 1

4 |∀xB(x)| = |∃xB(x)| = |t ∈ {x | B(x)}| = |t /∈ {x | B(x)}| =
|B(0)|+ 1

5 |∀XαA(Xα)| = |∃XαA(Xα)| = max(ω · γ, |A(U0)|+ 1)

where γ is the level of ∀XαA(Xα).
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Cut-elimination for RA∞

Theorem:
Cut-elimination I:

If RA∞
α

η+1
Γ then RA∞

ωα

η Γ

Theorem:
Cut-elimination II:

If RA∞
α

ωρ
Γ then RA∞

ϕρα

0
Γ
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Impredicative Proof Theory
Impredicative Definitions: Poincaré, Russell, Weyl

• An impredicative definition of an object refers to a
presumed totality of which the object being defined is itself
to be a member.

• Example: to define a set of natural numbers X as

X = {n∈N : ∀Y ⊆ N F (n,Y )}

is impredicative since it involves the quantified variable ‘Y ’
ranging over arbitrary subsets of the natural numbers N, of
which the set X being defined is one member.

• Π1
1-CA0 is an impredicative theory.
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Kripke-Platek Set Theory

• Kripke-Platek set theory, KP, is a fragment of ZFC.

• KP has no Choice, no Power Set Axiom
• Separation and Collection are restricted to formulas with

bounded quantifiers
• Admissible Sets are transitive models of KP
• Admissible Ordinals: ordinals α satisfying Lα |= KP
• Gödel’s Constructible Hierarchy L:

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 =
{

X : X ⊆ Lβ; X definable over 〈Lβ,∈〉
}
.
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The axioms of KP are:

Extensionality: a = b → [F (a)↔ F (b)]

Foundation: ∃xG(x)→ ∃x [G(x) ∧ (∀y ∈x)¬G(y)]

Pair: ∃x (x = {a,b}).

Union: ∃x (x =
⋃

a).

Infinity: ∃x
[
x 6= ∅ ∧ (∀y ∈x)(∃z∈x)(y ∈z)

]
.

∆0 Separation: ∃x
(
x = {y ∈a : F (y)}

)
F (y) ∆0-formula.

∆0 Collection: (∀x ∈a)∃yG(x , y)→ ∃z(∀x ∈a)(∃y ∈z)G(x , y)

for all ∆0–formulas G.

By a ∆0 formula we mean a formula of set theory in which all
the quantifiers appear restricted, that is have one of the forms
(∀x ∈b) or (∃x ∈b).
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A set theory corresponding to Σ1
2-AC + BI

The language of KPi is an extension of that KP by means of a
unary predicate symbol Ad.
KPi is a set theory which comprises Kripke-Platek set theory
and in addition has an axiom which says that any set is
contained in an admissible set

∀x ∃y [x ∈ y ∧ Ad(y)]

∀z [Ad(z)→ Tran(z) ∧ Bz ]

for any axiom B of KP. Thus the standard models of KPi in L
are the segments Lκ with κ recursively inaccessible. The
ordinal analysis for KPi used an EORS built from ordinal
functions which had originally been defined with the help of a
weakly inaccessible cardinal. In this subsection we expound on
the development of this particular EORS with an eye towards
the role of cardinals therein.
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Ordinal functions based on a weakly inaccessible cardinal

I := “first weakly inaccessible cardinal” (3)

(α 7→ Ωα)α<I (4)

is a function that enumerates the cardinals below I. Further let

<I := {I} ∪ {Ωξ+1 : ξ < I}. (5)

Variables κ, π will range over <I.
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Definition:

An ordinal representation system for the analysis of KPi can be
derived from the following functions and Skolem hulls of
ordinals defined by recursion on α:

CI(α, β) =


closure of β ∪ {0, I}
under:

+, (ξ 7→ ωξ)
(ξ 7→ Ωξ)ξ<I
(ξπ 7−→ ψξ(π))ξ<α

ψα(π) ' min{ρ < π : CI(α, ρ) ∩ π = ρ ∧ π ∈CI(α, ρ)}.
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Note that if ρ = ψα(π), then ψα(π) < π and [ρ, π)∩CI(α, ρ) = ∅,
thus the order-type of the ordinals below π which belong to the
Skolem hull CI(α, ρ) is ρ . In more pictorial terms, ρ is the αth

collapse of π.
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Lemma:

If π ∈ CI(α, π), then ψα(π) is defined; in particular ψα(π) < π.

Proof: Note first that for a limit ordinal λ,

CI(α, λ) =
⋃
ξ<λ

CI(α, ξ)

since the right hand side is easily shown to be closed under the
clauses that define CI(α, λ). Thus we can pick ω ≤ η < π such
that π ∈ CI(α, η). Now define

η0 = sup CI(α, η) ∩ π (6)
ηn+1 = sup CI(α, ηn) ∩ π
η∗ = sup

n<ω
ηn.

Since the cardinality of CI(α, η) is the same as that of η and
therefore less than π, the regularity of π implies that η0 < π.
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By repetition of this argument one obtains ηn < π, and
consequently η∗ < π. The definition of η∗ then ensures

CI(α, η∗) ∩ π =
⋃
n

CI(α, ηn) ∩ π = η∗ < π.

Therefore, ψα(π) < π. ut
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Let εI+1 be the least ordinal α > I such that ωα = α. The next
definition singles out a subset T (I) of CI(εI+1,0) which gives
rise to an ordinal representation system, i.e., there is an
elementary ordinal representation system 〈OR,�, <̂, ψ̂, . . .〉, so
that

〈T (I), <,<, ψ, . . .〉 ∼= 〈OR,�, <̂, ψ̂, . . .〉. (7)

“. . .” is supposed to indicate that more structure carries over to
the ordinal representation system.
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Definition:

T (I) is defined inductively as follows:
1 0, I ∈ T (I).
2 If α1, . . . , αn ∈ T (I) and α1 ≥ . . . ≥ αn, then
ωα1 + · · ·+ ωαn ∈ T (I).

3 If α ∈ T (I), 0 < α < I and α < Ωα, then Ωα ∈ T (I).
4 If α, π ∈ T (I), π ∈ CI(α, π) and α ∈ CI(α,ψα(π)), then
ψα(π) ∈ T (I).

The side conditions in (2) and (3) are easily explained by the
desire to have unique representations in T (I). The requirement
α ∈ CI(α,ψα(π)) in (4) also serves the purpose of unique
representations (and more) but is probably a bit harder to
explain. The idea here is that from ψα(π) one should be able to
retrieve the stage (namely α) where it was generated. This is
reflected by α ∈ CI(α,ψα(π)).
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the definition of T (I) is deterministic, that is to say every ordinal
in T (I) is generated by the inductive clauses of in exactly one
way. As a result, every γ ∈ T (I) has a unique representation in
terms of symbols for 0, I and function symbols for
+, (α 7→ Ωα), (α, π 7→ ψα(π). Thus, by taking some primitive
recursive (injective) coding function d· · · e on finite sequences of
natural numbers, we can code T (I) as a set of natural numbers
as follows:

`(α) =


d0,0e if α = 0
d1,0e if α = I
d2, `(α1), · · · , `(αn)e if α = ωα1 + · · ·+ ωαn

d3, `(β)e if α = Ωβ

d4, `(β), `(π)e if α = ψβ(π),
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We have seen that in the case of PA the addition of an infinitary
rule enables us to regain cut elimination.

ω–rule:
Γ,A(n̄) for all n

Γ, ∀x A(x)
.

An ordinal analysis for PA is then attained as follows:

• Each PA–proof can be “unfolded” into a PAω–proof of the
same sequent.

• Each such PAω–proof can be transformed into a cut–free
PAω–proof of the same sequent of length < ε0.
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In order to obtain a similar result for set theories like KPi, we
have to work a bit harder. Guided by the ordinal analysis of PA,
we would like to invent an infinitary rule which, when added to
KPi, enables us to eliminate cuts.

The first ordinal analysis of KPi was given by Jäger, Pohlers in
1982.
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As opposed to the natural numbers, it is not clear how to
bestow a canonical name to each element of the set–theoretic
universe.
Here we will use Gödel’s constructible universe L. The
constructible universe is “made" from the ordinals. It is pretty
obvious how to “name” sets in L once we have names for
ordinals at our disposal.
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Recall that Lα, the αth level of Gödel’s constructible
hierarchy L, is defined by

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 =
{

X : X ⊆ Lβ; X definable over 〈Lβ,∈〉
}
.

So any element of L of level α is definable from elements of L
with levels < α and the parameter Lα0 if α = α0 + 1.
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• Henceforth I will be a name for a large ordinal or even the
whole class of ordinals.

• The problem of “naming” sets will be solved by building a
formal constructible hierarchy using the ordinals ≤ I.
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Definition The RSI–terms and their levels are generated as
follows.

1. For each α ≤ I,
Lα

is an RSI–term of level α.
2. The formal expression

{x∈Lα : F (x ,~s)Lα}

is an RSI–term of level α if F (a, ~b) is an L–formula (whose
free variables are among the indicated) and ~s ≡ s1, · · · , sn
are RSI–terms with levels < α.

F (x ,~s)Lα results from F (x ,~s) by restricting all unbounded
quantifiers to Lα.
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Let T be the collection of all RSI-terms.
For t ∈ T , |t | denotes the level of t , i.e. the maximum ordinal α
such that Lα occurs in t .

We denote by upper case Greek letters

Γ,∆,Λ, . . .

finite sets of RSI–formulae. The intended meaning of

Γ = {A1, · · · ,An}

is the disjunction
A1 ∨ · · · ∨ An

Γ,A stands for Γ ∪ {A} etc..
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The rules of RSI are:

(∧) Γ,A Γ,A′
Γ,A ∧ A′

(∨) Γ,Ai
Γ,A0 ∨ A1

if i = 0 or i = 1

(b∀)
· · · Γ, s ∈ t → F (s) · · · (| s | < | t |)

Γ, (∀x ∈ t)F (x)

(b∃)
Γ, s ∈ t ∧ F (s)
Γ, (∃x ∈ t)F (x)

if | s | < | t |
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(6∈)
· · · Γ, s ∈ t → r 6= s · · · · · · (| s | < | t |)

Γ, r 6∈ t

(∈) Γ, s ∈ t ∧ r = s
Γ, r ∈ t if | s | < | t |

(Cut) Γ,A Γ,¬ A
Γ

(RefΣ(π)) Γ,ALπ

Γ, (∃z ∈ Lπ) Az if A is a Σ-formula,

where a formula is said to be in Σ if all its unbounded
quantifiers are existential.
Az results from A by restricting all unbounded quantifiers to z.

FROM ARITHMETIC TO SET THEORY FROM ARITHMETIC TO SET THEORY



H–controlled derivations
If we dropped the rules (RefΣ(π)) from RSI, the remaining
calculus would enjoy full cut elimination owing to the symmetry
of the pairs of rules

(∧) (∨)

(∀) (∃)

(6∈) (∈)
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However, partial cut elimination for RSI can be attained by
delimiting a collection of derivations of a very uniform kind.
Buchholz developed a very elegant and flexible setting for
describing uniformity in infinitary proofs, called operator
controlled derivations.
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Definition Let

P(ON) = {X : X is a set of ordinals}.

A class function
H : P(ON)→ P(ON)

will be called operator if H is a closure operator, i.e monotone,
inclusive and idempotent, and satisfies the following conditions
for all X ∈P(ON):

1 0∈H(X ).
2 If α has Cantor normal form ωα1 + · · ·+ ωαn , then
α∈H(X ) ⇐⇒ α1, ..., αn∈H(X ).

The latter ensures that H(X ) will be closed under + and
σ 7→ ωσ, and decomposition of its members into additive and
multiplicative components.
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For a term s, the operator H[s] is defined by

H[s](X ) = H(X ∪ { all ordinals in s})
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Definition Let H be an operator and let Γ be a finite set of
RSI–formulae.

H
α

ρ Γ

is defined by recursion on α. It is always demanded that

{α} ∪ k(Γ) ⊆ H(∅).

The inductive clauses are:
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(b∃)
H

α0

ρ Γ,F (s)

H
α

ρ Γ, (∃x ∈ t)F (x)

α0 < α
| s | < α
| s | < | t |

(b∀)
H[s]

αs

ρ Γ,F (s) for all | s | < | t |

H
α

ρ Γ, (∀x ∈ t)F (x)
| s | ≤ αs < α

(Cut)
H

α0

ρ Γ,B H
α0

ρ Γ,¬B

H
α

ρ Γ

α0 < α
rk(B) < ρ

(RefΣ(π))
H

α0

ρ Γ,ALπ

H
α

ρ Γ, (∃z ∈ Lπ) Az

α0,Ω < α
A∈Σ
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To connect KPi with the infinitary system RSI one has to show
that KPi can be embedded into RSI. Indeed, the finite
KPi-derivations give rise to very uniform infinitary derivations.
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Theorem:
If

KPi ` B(a1, . . . ,ar )

then
H

I·m

I+n
B(s1, . . . , sr )

holds for some m,n and all set terms s1, . . . , sr and operators
H satisfying

{ξ : ξ occurs in B(~s)} ⊆ H(∅).

m and n depend only on the KPi-derivation of B(~a).
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Das Ende

OBRIGADO!
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