Model theory (analytic part)

Mário Edmundo
U. Aberta \& CMAF/UL

Days in Logic 2014

The tutorial

The tutorial

- A bit of o-minimality

The tutorial

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck

The tutorial

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck
- A bit of o-minimality and André-Oort.

A bit of o-minimality and Andre-Oort

A bit of o-minimality and Andre-Oort

Applications: a special case

Applications: a special case

Applications: a special case

Theorem (Manin-Mumford conjecture)
Let A be an abelian variety and X an algebraic sub variety of A, both defined over a number field. Suppose that X does no contain any translate of an abelian sub variety of A of dimension >0. Then X contains only finitely many torsion points of A.

Applications: a special case

Theorem (Manin-Mumford conjecture)
Let A be an abelian variety and X an algebraic sub variety of A, both defined over a number field. Suppose that X does no contain any translate of an abelian sub variety of A of dimension >0. Then X contains only finitely many torsion points of A.

Proved by Raynaud (1983), later other proofs all using methods from arithmetic geometry...

Applications: a special case

Theorem (Manin-Mumford conjecture)

Let A be an abelian variety and X an algebraic sub variety of A, both defined over a number field. Suppose that X does no contain any translate of an abelian sub variety of A of dimension >0. Then X contains only finitely many torsion points of A.

Proved by Raynaud (1983), later other proofs all using methods from arithmetic geometry...
Pila and Zanier (2008) give a new proof using o-minimality which they generalize to other cases of André-Oort type conjectures...

Applications: a special case

Applications: a special case

Special case of abelian variety A are the elliptic curves, given by equations of the form:

$$
y=x^{3}+a x+b
$$

with $a, b \in \mathbb{Q}$ (see picture....)

Applications: a special case

Special case of abelian variety A are the elliptic curves, given by equations of the form:

$$
y=x^{3}+a x+b
$$

with $a, b \in \mathbb{Q}$ (see picture....)
They:

- have a group operation (A, \oplus) also given (on charts) by rational functions $\frac{P(\bar{X})}{Q(\bar{x})}$ where $P(\bar{x}), Q(\bar{x})$ are polynomials with coefficients in some number field (i.e. finite extension of $\mathbb{Q})$.
- are complete (like "compact")

Applications: a special case

Applications: a special case

- an abelian sub variety is another abelian variety B which is a subgroup.
- an T-torsion point is a point $x \in A$ such that $\underbrace{x \oplus \ldots \oplus x}=e$ (the identity).

T times

- a translate is something of the form $x \oplus B$.
- an algebraic variety is something defined on charts by

$$
\left\{\bar{x} \in \mathbb{C}^{n}: P_{1}(\bar{x})=\ldots=P_{k}(\bar{x})=0\right\}
$$

where $P_{i}(\bar{x})$ are polynomials with coefficients in some number field (i.e. finite extension of \mathbb{Q}).

Applications: a special case

Applications: a special case

.... ingredients from arithmetic geometry
Theorem (Masser (1984))
Suppose A is defined over a number field K. If x is a T-torsion point of A, then

$$
[K(x): \mathbb{Q}] \geq c_{2}(A) T^{\rho}
$$

for $c_{2}(A)>0$ and $\rho>0$ which depend only on $\operatorname{dim} A$. In particular,

$$
\# \text { conjugates of } x \text { is } \geq c_{3}(A) T^{\rho}
$$

Applications: a special case

Applications: a special case

.... ingredients from o-minimality

Applications: a special case

.... ingredients from o-minimality
Let

$$
\mathcal{M}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

be an o-minimal structure over the field of real numbers.

Applications: a special case

.... ingredients from o-minimality
Let

$$
\mathcal{M}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

be an o-minimal structure over the field of real numbers.
If Z is definable, let

$$
Z^{\text {alg }}
$$

be the union of all definably connected, semi-algebraic subsets of Z of positive dimension.

Applications: a special case

.... ingredients from o-minimality
Let

$$
\mathcal{M}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

be an o-minimal structure over the field of real numbers.
If Z is definable, let

$$
Z^{\text {alg }}
$$

be the union of all definably connected, semi-algebraic subsets of Z of positive dimension.

If $T \in \mathbb{N}$ and $W \subseteq \mathbb{R}^{n}$ is a set, let

$$
N(W, T)=\#\left\{\bar{q} \in W \cap \mathbb{Q}^{n}: \text { denominators of } \bar{q} \text { divide } T\right\}
$$

Applications: a special case

Applications: a special case

Theorem (Pila and Wilkie (2006))
Let Z be a definable set. For every $\epsilon>0$ we have

$$
N\left(Z \backslash Z^{\text {alg }}, T\right) \leq c_{1}(Z, \epsilon) T^{\epsilon} .
$$

Applications: a special case

Theorem (Pila and Wilkie (2006))
Let Z be a definable set. For every $\epsilon>0$ we have

$$
N\left(Z \backslash Z^{\text {alg }}, T\right) \leq c_{1}(Z, \epsilon) T^{\epsilon} .
$$

This follows from a parametrization (after Gromov) result for definable sets and functions in o-minimal expansions of real closed field... this is like a dual of C^{r}-Cell decomposition theorem.

Applications: a special case

Applications: a special case

the new proof of Manin-Mumford:

Applications: a special case

.... the new proof of Manin-Mumford:
There is a complex analytic uniformization

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}^{g} \rightarrow A \rightarrow 0
$$

periodic with period lattice Λ, where $g=\operatorname{dim} A$.

Applications: a special case

.... the new proof of Manin-Mumford:
There is a complex analytic uniformization

$$
0 \rightarrow \Lambda \rightarrow \mathbb{C}^{g} \rightarrow A \rightarrow 0
$$

periodic with period lattice Λ, where $g=\operatorname{dim} A$.

- \mathbb{C}^{g} / Λ is a complex abelian Lie group, so a torus.
- sub-torus of \mathbb{C}^{g} / Λ corresponde to abelian sub-varieties of A (by Chow's theorem).

Applications: a special case

Applications: a special case

Applications: a special case

Fix a \mathbb{Z}-basis $\lambda_{1}, \ldots, \lambda_{2 g}$ of Λ and use it to identify \mathbb{C}^{g} with $\mathbb{R}^{2 g}$.

Applications: a special case

Fix a \mathbb{Z}-basis $\lambda_{1}, \ldots, \lambda_{2 g}$ of Λ and use it to identify \mathbb{C}^{g} with $\mathbb{R}^{2 g}$.

- T-torsions of A correspond to $\bar{q} \in \mathbb{Q}^{2 g}$ with denominators dividing T.

Theorem (Peterzil-Starchenko)
There is a fundamental domain $H \subseteq \mathbb{C}^{g}$ such that the restriction of the uniformization $\mathbb{C}^{g} \rightarrow A$ is definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in a n},<\right) .
$$

- a subvariety X of A corresponds to a definable set $Z \subseteq H$.

Applications: a special case

Applications: a special case

Applications: a special case

Lemma
If X a sub variety of A does not contain a translate of an abelian sub variety of A of positive dimension, then $Z^{\text {alg }}=\emptyset$.
...this is where an actual proof is needed in the paper... it uses also finiteness properties of o-minimal structuctures.

Applications: a special case

Lemma

If X a sub variety of A does not contain a translate of an abelian sub variety of A of positive dimension, then $Z^{\text {alg }}=\emptyset$.
...this is where an actual proof is needed in the paper... it uses also finiteness properties of o-minimal structuctures.
Conclusion of proof:

- by Masser $c_{3}(A) T^{\rho} \leq N(Z, T)$.
- by Pila-Wilkie with $\epsilon=\frac{\rho}{2}$ we get

$$
c_{3}(A) T^{\rho} \leq N(Z, T) \leq c_{1}(A, \rho) T^{\frac{\rho}{2}}
$$

- \# T-torsions in X is bounded as $T \rightarrow+\infty$, so is finite

Applications: André-Oort

Applications: André-Oort

Applications: André-Oort

Conjecture (André-Ort type conjectures)
Let A be an algebraic variety of suitable type and X an algebraic sub variety of A, both defined over a number field. Suppose that X does no contain any special sub variety of A of dimension >0. Then X contains only finitely many special points of A.

Applications: André-Oort

Applications: André-Oort

Applications: André-Oort

Proved by Klingler, Ullmo and Yafaev (2007), under GRH.

Applications: André-Oort

Proved by Klingler, Ullmo and Yafaev (2007), under GRH.
Pila extends the new proof of Manin-Mumford to other special cases which were unknown unconditionally.

Applications: André-Oort

Applications: André-Oort

...in one of these other special cases:

Applications: André-Oort

...in one of these other special cases:

- $A=\mathbb{C}^{2}$ parametrizing pairs of elliptic curves, up to isomorphism, by their j-invariant.
- $\left(j, j^{\prime}\right) \in A=\mathbb{C}^{2}$ is special, if j, j^{\prime} are both j-invariants of CM elliptic curves.
- the special sub varieties of positive dimension are:
- $\left\{z, z_{2}\right) \in \mathbb{C}^{2}: z$ is a $C M j$-invariant $\}$
- $\left\{z_{1}, z\right) \in \mathbb{C}^{2}: z$ is a $C M j$-invariant $\}$
- modular curves defined by $F_{N}\left(z, z^{\prime}\right)=0$ where for each N, F_{N} is such that $F_{N}(j(\tau), j(N \tau))=0$ for all $\tau \in \mathcal{H}$.
- \mathbb{C}^{2}.

Applications: André-Oort

Applications: André-Oort

...the proof is similar with the following replacements:

Applications: André-Oort

...the proof is similar with the following replacements:

- lower bound on T-torsion by lower bounds on discriminates of CM fields;
- uniformization by action of Λ on \mathbb{C}^{g} by uniformization by action of $\mathrm{SL}_{2}(\mathbb{Z})$ on upper half plane \mathcal{H};
- $\overline{\mathbb{R}}_{\mathrm{an}}$ by $\overline{\mathbb{R}}_{\mathrm{an}, \exp }$.
- upper bound of $N(Z, T)$ by upper bound of $N_{k}(Z, T)$

THANK YOU!

