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Applications: a special case

...

Theorem (Manin-Mumford conjecture)
Let A be an abelian variety and X an algebraic sub variety of A,
both defined over a number field. Suppose that X does no
contain any translate of an abelian sub variety of A of dimension
> 0. Then X contains only finitely many torsion points of A.

Proved by Raynaud (1983), later other proofs all using methods
from arithmetic geometry...

Pila and Zanier (2008) give a new proof using o-minimality
which they generalize to other cases of André-Oort type
conjectures...
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Applications: a special case

Special case of abelian variety A are the elliptic curves, given
by equations of the form:

y = x3 + ax + b

with a,b ∈ Q (see picture....)

They:
• have a group operation (A,⊕) also given (on charts) by

rational functions P(x)
Q(x) where P(x),Q(x) are polynomials

with coefficients in some number field (i.e. finite extension
of Q).

• are complete (like “compact”)
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Applications: a special case

• an abelian sub variety is another abelian variety B which is
a subgroup.

• an T -torsion point is a point x ∈ A such that
x ⊕ . . .⊕ x︸ ︷︷ ︸

T times

= e (the identity).

• a translate is something of the form x ⊕ B.
• an algebraic variety is something defined on charts by

{x ∈ Cn : P1(x) = . . . = Pk (x) = 0}

where Pi(x) are polynomials with coefficients in some
number field (i.e. finite extension of Q).



Applications: a special case

• an abelian sub variety is another abelian variety B which is
a subgroup.

• an T -torsion point is a point x ∈ A such that
x ⊕ . . .⊕ x︸ ︷︷ ︸

T times

= e (the identity).

• a translate is something of the form x ⊕ B.
• an algebraic variety is something defined on charts by

{x ∈ Cn : P1(x) = . . . = Pk (x) = 0}

where Pi(x) are polynomials with coefficients in some
number field (i.e. finite extension of Q).



Applications: a special case

.... ingredients from arithmetic geometry

Theorem (Masser (1984))
Suppose A is defined over a number field K . If x is a T -torsion
point of A, then

[K (x) : Q] ≥ c2(A)T ρ

for c2(A) > 0 and ρ > 0 which depend only on dim A. In
particular,

# conjugates of x is ≥ c3(A)T ρ.
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.... ingredients from o-minimality

Let
M = (R,0,1,−,+, ·, (f )f∈F , (R)R∈R, <)

be an o-minimal structure over the field of real numbers.

If Z is definable, let
Z alg

be the union of all definably connected, semi-algebraic subsets
of Z of positive dimension.

If T ∈ N and W ⊆ Rn is a set, let

N(W ,T ) = #{q ∈W ∩Qn : denominators of q divide T}
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Theorem (Pila and Wilkie (2006))
Let Z be a definable set. For every ε > 0 we have

N(Z \ Z alg,T ) ≤ c1(Z , ε)T ε.

This follows from a parametrization (after Gromov) result for
definable sets and functions in o-minimal expansions of real
closed field... this is like a dual of Cr -Cell decomposition
theorem.
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There is a complex analytic uniformization

0→ Λ→ Cg → A→ 0

periodic with period lattice Λ, where g = dim A.

• Cg/Λ is a complex abelian Lie group, so a torus.
• sub-torus of Cg/Λ corresponde to abelian sub-varieties of

A (by Chow’s theorem).
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Fix a Z-basis λ1, . . . , λ2g of Λ and use it to identify Cg with R2g .

• T -torsions of A correspond to q ∈ Q2g with denominators
dividing T .

Theorem (Peterzil-Starchenko)
There is a fundamental domain H ⊆ Cg such that the restriction
of the uniformization Cg → A is definable in

Ran = (R,0,1,−,+, ·, (f )f∈an, <).

• a subvariety X of A corresponds to a definable set Z ⊆ H.
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Lemma
If X a sub variety of A does not contain a translate of an abelian
sub variety of A of positive dimension, then Z alg = ∅.
...this is where an actual proof is needed in the paper... it uses
also finiteness properties of o-minimal structuctures.

Conclusion of proof:
• by Masser c3(A)T ρ ≤ N(Z ,T ).

• by Pila-Wilkie with ε = ρ
2 we get

c3(A)T ρ ≤ N(Z ,T ) ≤ c1(A, ρ)T
ρ
2

• #T -torsions in X is bounded as T → +∞, so is finite
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Conjecture (André-Ort type conjectures)
Let A be an algebraic variety of suitable type and X an
algebraic sub variety of A, both defined over a number field.
Suppose that X does no contain any special sub variety of A of
dimension > 0. Then X contains only finitely many
special points of A.
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...in one of these other special cases:

• A = C2 parametrizing pairs of elliptic curves, up to
isomorphism, by their j-invariant.

• (j , j ′) ∈ A = C2 is special, if j , j ′ are both j-invariants of CM
elliptic curves.

• the special sub varieties of positive dimension are:
• {z, z2) ∈ C2 : z is a CM j-invariant}
• {z1, z) ∈ C2 : z is a CM j-invariant}
• modular curves defined by FN(z, z ′) = 0 where for each N,

FN is such that FN(j(τ), j(Nτ)) = 0 for all τ ∈ H.
• C2.
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...the proof is similar with the following replacements:

• lower bound on T -torsion by lower bounds on
discriminates of CM fields;

• uniformization by action of Λ on Cg by uniformization by
action of SL2(Z) on upper half plane H;

• Ran by Ran,exp.

• upper bound of N(Z ,T ) by upper bound of Nk (Z ,T )
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