Model theory (analytic part)

Mário Edmundo U. Aberta & CMAF/UL

Days in Logic 2014

• A bit of o-minimality

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck
- A bit of o-minimality and André-Oort.

A bit of o-minimality

A bit of o-minimality

Lets consider the question tame vs wild topology in the following setting:

Lets consider the question tame vs wild topology in the following setting:

Consider a mathematical structure

$$\mathcal{M} = (M, (c)_{c \in \mathcal{C}}, (f)_{f \in \mathcal{F}}, (R)_{R \in \mathcal{R}}, <)$$

where (M, <) is a dense total order with no endpoints.

Consider the category

 $Def(\mathcal{M})$

of definable sets and maps in $\ensuremath{\mathcal{M}}.$

Consider the category

 $\operatorname{Def}(\mathcal{M})$

of definable sets and maps in $\ensuremath{\mathcal{M}}.$

- X is object of Def(M) iff X ⊆ Mⁿ (some n) and is defined by a first-order formula (with parameters) in the language of M.
- *f* : X → Y is morphism of Def(M) iff its graph Γ(*f*) is an object of Def(M).

What can be said about the topology of the objects of

 $Def(\mathcal{M})$?

What can be said about the topology of the objects of

 $Def(\mathcal{M})$?

• Poincaré paradise: with some glimpses of the rich algebraic-analytic-topological structure of the continuum.

What can be said about the topology of the objects of

 $Def(\mathcal{M})$?

- Poincaré paradise: with some glimpses of the rich algebraic-analytic-topological structure of the continuum.
- Cantor paradise: where only set theoretic features ultimately survive (Cantor/Borel like sets).

To know in which paradise we enter it is useful to know:

To know in which paradise we enter it is useful to know:

Defining formula	Defined set	
$\phi(\overline{\mathbf{x}})$	A	
$\psi(\overline{\textbf{X}})$	В	
$\neg \phi(\overline{x})$	$M^n \setminus A$	
$\phi(\overline{\pmb{x}}) \wedge \psi(\overline{\pmb{x}})$	$A \cap B$	
$\phi(\overline{\pmb{x}}) \lor \psi(\overline{\pmb{x}})$	$A \cup B$	
$\exists x_i \phi(\overline{x})$	$\pi_i^n(A)$	
where $\pi_i^n(x_1,,x_n) = (x_1,,\hat{x}_i,,x_n)$.		

To know in which paradise we enter it is useful to know:

Defining formula	Defined set	
$\phi(\overline{\mathbf{X}})$	A	
$\psi(\overline{\pmb{x}})$	В	
$\neg \phi(\overline{x})$	$M^n \setminus A$	
$\phi(\overline{\pmb{x}}) \wedge \psi(\overline{\pmb{x}})$	$A \cap B$	
$\phi(\overline{\pmb{x}}) \lor \psi(\overline{\pmb{x}})$	$A \cup B$	
$\exists x_i \phi(\overline{x})$	$\pi_i^n(\mathbf{A})$	
where $\pi_i^n(x_1,\ldots,x_n)$	$(x_1,\ldots,\widehat{x_i},\ldots,x_n).$	If we know QF

definable sets we must know the effect of

$$\setminus \cap \cup \pi_i^n$$

What should one avoid to remain tame?

What should one avoid to remain tame?

• (Kechris book) Let

$$\mathcal{M} = (\mathbb{R}, (c)_{c \in \mathcal{C}}, (f)_{f \in \mathcal{F}}, (R)_{R \in \mathcal{R}}, <)$$

and suppose that $(\mathbb{R}, 0, 1, +, \cdot, <)$ and \mathbb{Z} are in $\text{Def}(\mathcal{M})$. Then X in $\text{Def}(\mathcal{M})$ iff X is a projective subset of some \mathbb{R}^n . In particular, all Borel subsets of some \mathbb{R}^n are in $\text{Def}(\mathcal{M})$.

What should one avoid to remain tame?

• (Kechris book) Let

$$\mathcal{M} = (\mathbb{R}, (c)_{c \in \mathcal{C}}, (f)_{f \in \mathcal{F}}, (R)_{R \in \mathcal{R}}, <)$$

and suppose that $(\mathbb{R}, 0, 1, +, \cdot, <)$ and \mathbb{Z} are in $\text{Def}(\mathcal{M})$. Then *X* in $\text{Def}(\mathcal{M})$ iff *X* is a projective subset of some \mathbb{R}^n . In particular, all Borel subsets of some \mathbb{R}^n are in $\text{Def}(\mathcal{M})$.

• So one should avoid having $(\mathbb{Z}, 0, 1, +, \cdot)$ in $Def(\mathcal{M})$.

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's *Esquisse d'un programme* (unpublished research proposal from 1984)

proposes an axiomatic development of topology based on <u>stratifications</u> that should <u>include</u> as special cases:

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's *Esquisse d'un programme* (unpublished research proposal from 1984)

proposes an axiomatic development of topology based on <u>stratifications</u> that should <u>include</u> as special cases:

• Real algebraic and semi-algebraic geometry.

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's *Esquisse d'un programme* (unpublished research proposal from 1984)

proposes an axiomatic development of topology based on <u>stratifications</u> that should <u>include</u> as special cases:

- Real algebraic and semi-algebraic geometry.
- Semi-analytic and sub-analytic geometry.

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

• the field of real numbers

$$\overline{\mathbb{R}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, <);$$

 the field of real numbers expanded by restricted analytic functions

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <).$$

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

• the field of real numbers

$$\overline{\mathbb{R}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, <);$$

 the field of real numbers expanded by restricted analytic functions

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <).$$

Hopefully o-minimal structures:

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

• the field of real numbers

$$\overline{\mathbb{R}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, <);$$

 the field of real numbers expanded by restricted analytic functions

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <).$$

Hopefully o-minimal structures:

- capture <u>tameness;</u>
- provide new insights originated from model-theoretic methods into the real analytic-like setting.

So what is an o-minimal structure?
O-minimal structures

So what is an o-minimal structure?

(van den Dries 84; Pillay and Steinhorn 86):

$$\mathcal{M} = (M, (c)_{c \in \mathcal{C}}, (f)_{f \in \mathcal{F}}, (R)_{R \in \mathcal{R}}, <)$$

is <u>o-minimal</u> if every definable subset of M in the structure \mathcal{M} is already definable in the dense linearly ordered set

(M, <).

Let's find out what are the subset of M definable in the dense linearly ordered set

(M, <).

Let's find out what are the subset of *M* definable in the dense linearly ordered set

(*M*, <).

QF definable subsets of M^n are finite unions of simple sets:

	$(f_{i_1}(\overline{x})=f_{i'_1}(\overline{x}))$		$\int f_{j_1}(\overline{x}) < f_{j'_1}(\overline{x})$	
$\{\overline{x}\in M^n: \langle$:	and	{:	}
where	$f_{i_k}(\overline{x}) = f_{i'_k}(\overline{x})$		$\int f_{j_{s}}(\overline{x}) < f_{j'_{s}}(\overline{x})$	

 $\{i_1, \ldots i_k\}, \{i'_1, \ldots, i'_k\}, \{j_1, \ldots, j_s\}, \{j'_1, \ldots, j_s\} \subseteq \{1, \ldots, N\}$

and each f_l (l = 1, ..., N) is a simple function, i.e.:

$$f_l = x_l$$
 or $f_l = c_l \in M$.

The collection of finite unions of simple sets is closed under the operations

 $\setminus \cap \cup$

What about under the operations

 π_i^n ?

The collection of finite unions of simple sets is closed under the operations $\ \ \ \cap \ \ \cup$

What about under the operations

 π_i^n ?

Yes by ...

Theorem The first-order theory of DLO has QE.

Theorem The first-order theory of DLO has QE.

Corollary $A \subseteq M^n$ definable in (M, <) iff X is finite unions of simple sets.

Corollary

 $A \subseteq M$ be definable in (M, <) iff A is a finite union of sets of the form $\{a\}$, $(-\infty, a)$, (a, b) or $(b, +\infty)$ with $a, b \in M$.

A geometric approach is instructive.....

A geometric approach is instructive.....

Proposition (Cell decomposition) Let $f_1, \ldots, f_N : M^{n+1} \to M$ be simple. Then exists a partition $\{C_1, \ldots, C_k\}$ of M^n by simple sets and functions $\zeta_{C,j} : C \to M$ $(C \in \{C_1, \ldots, C_k\}$ and $j = 1, \ldots, j(C)$) such that:

- (i) $\zeta_{C,1} < \ldots < \zeta_{C,j(C)}$
- (ii) $\zeta_{C,j}$ is the restriction of a simple function.
- (iii) for each $(p, q) \in N^2$ we have either $f_p < f_q$ or $f_p = f_q$ or $f_q < f_p$ on the simple sets

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

Proof. By induction on *n*. Let $s \le N$ be such that for each $l \le s$, $f_l : M^{n+1} \to M$ is not x_i and consider $\overline{f}_l : M^n \to M$ simple given by f_l . Apply Proposition to $\overline{f}_1, \ldots, \overline{f}_s$ and take $\{C_1, \ldots, C_k\}$ a partition of M^n by simple sets given by (iii).

For $C \in \{C_1, \dots, C_k\}$ let $\zeta_{C,j} = \overline{f}_{s+j|C} : C \to M$ with $i = 1, \dots, j(C) = N - s$.

Let B be one of the

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

Let $\epsilon_{(l,r)} = \operatorname{sign}(f_{l|B}, f_{r|B})$ (obvious definition) and let

$$\boldsymbol{B}' = \{(\boldsymbol{x},t) \in \boldsymbol{C} \times \boldsymbol{V} : \operatorname{sign}(f_{l|}(\boldsymbol{x},t),f_{r|}(\boldsymbol{x},t)) = \epsilon_{(l,r)}, \forall (l,r)\}$$

<u>Then B = B'.</u> If $B' \setminus B \neq \emptyset$, fix $(x, t') \in B'$ and take $(x, t) \in B$ say t < t'.Since $\{s \in V : (x, s) \in B'\}$ is an interval (easy), $[t, t'] \subseteq B'$. Contradiction: one $(f_{l|B'}, f_{r|B'})$ must change sign and it does not change sign.

Corollary

Let $A \subseteq M^{n+1}$ be a finite union of simple sets. Then A is a finite union of simple sets of the form

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a finite union of simple sets.

Corollary

Let $A \subseteq M^{n+1}$ be a finite union of simple sets. Then A is a finite union of simple sets of the form

$$\Gamma(\zeta_{C,j}), \ (-\infty, \zeta_{C,1}), \ (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a finite union of simple sets.

Corollary

Let $A \subseteq M$ be definable in (M, <). Then A is a finite union of sets of the form $\{a\}$, $(-\infty, a), (a, b)$ or $(b, +\infty)$ with $a, b \in M$.

Let's find out what are the subset of V definable in

 $(V, 0, -, +, (\lambda)_{\lambda \in D}, <)$

an ordered vector space over an ordered division ring D with (V, 0, -, +) an ordered divisible abelian group.

Let's find out what are the subset of V definable in

 $(V, 0, -, +, (\lambda)_{\lambda \in D}, <)$

an ordered vector space over an ordered division ring D with (V, 0, -, +) an ordered divisible abelian group.

QF definable subsets of V^n are finite unions of <u>basic</u> <u>semi-linear sets</u>:

 $\{\overline{x} \in V^n : \begin{cases} f_1(\overline{x}) = 0 \\ \vdots & \text{and} \\ f_t(\overline{x}) = 0 \end{cases} \quad \text{and} \quad \begin{cases} g_1(\overline{x}) > 0 \\ \vdots & \end{cases} \\ g_s(\overline{x}) > 0 \\ \text{where each } f_l \text{ and each } g_k \text{ is an affine function, i.e.} \end{cases}$

$$h(\overline{x}) = \lambda_1 x_1 + \ldots + \lambda_n x_n + c.$$

The collection of <u>semi-linear sets</u> i.e., finite unions of simple sets, is closed under the operations

 $\setminus \cap \cup$

What about under the operations

 π_i^n ?

The collection of <u>semi-linear sets</u> i.e., finite unions of simple sets, is closed under the operations

$\setminus \cap \cup$

What about under the operations

 π_i^n ?

Yes by the next slides ...

The collection of <u>semi-linear sets</u> i.e., finite unions of simple sets, is closed under the operations

$\setminus \cap \cup$

What about under the operations

π_i^n ?

Yes by the next slides ...

PL geometry is the geometry of semi-linear spaces.

Theorem

The first-order theory of ordered vector spaces over ordered division rings which are ordered divisible abelian groups has QE.

Theorem

The first-order theory of ordered vector spaces over ordered division rings which are ordered divisible abelian groups has QE.

Corollary

 $A \subseteq V^n$ definable in $(V, 0, -, +, (\lambda)_{\lambda \in D}, <)$ iff A is a semi-linear set.

Corollary

 $(V, 0, -, +, (\lambda)_{\lambda \in D}, <)$ is o-minimal.

A geometric approach is instructive.....

A geometric approach is instructive.....

Proposition (Cell decomposition)

Let $f_1, \ldots, f_N : V^{n+1} \to V$ be affine. Then exists a partition $\{C_1, \ldots, C_k\}$ of V^n by basic semi-linear sets and functions $\zeta_{C,j} : C \to V$ ($C \in \{C_1, \ldots, C_k\}$ and $j = 1, \ldots, j(C)$) such that: (i) $\zeta_{C,1} < \ldots < \zeta_{C,j(C)}$

(ii) $\zeta_{C,j}$ is the restriction of an affine function.

(iii) each f_l has constant sign on the basic semi-linear sets

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

Proof. By induction on *n*. Let $s \le N$ be such that for each $l \le s$, $f_l : V^{n+1} \to V$ is does not depend on x_i and consider $\overline{f_l} : V^n \to V$ affine given by f_l . For $s < l \le N$ let $\overline{f_l} : V^n \to V$ be

$$\overline{f}_{l}(\overline{x}) = (\lambda_{i}^{l})^{-1}(-f_{l}(\overline{x}) - \lambda_{i}x_{i})$$

which for each fixed $(x_1, \ldots, \hat{x}_i, \ldots, x_n)$ gives the only zero of f_l , where

$$f_l(\overline{x}) = \lambda_1^l x_1 + \ldots + \lambda_i^l x_i + \ldots + \lambda_{n+1}^l x_{n+1} + c.$$

Apply Proposition to $\{\overline{f}_1, \ldots, \overline{f}_s\} \cup \{\overline{f}_p - \overline{f}_q : s < p, q \le N\}$ and take $\{C_1, \ldots, C_k\}$ a partition of V^n by basic semi-linear sets given by (iii). For $C \in \{C_1, \ldots, C_k\}$ let $\zeta_{C,j} = \overline{f}_{s+j|C} : C \to V$ with $j = 1, \ldots, j(C) = N - s$.
Let B be one of the

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

Let $\epsilon_l = \operatorname{sign}(f_{l|B})$ and let

$$B' = \{(x,t) \in C \times V : \operatorname{sign}(f_{l|}(x,t)) = \epsilon_l, \forall l\}$$

<u>Then B = B'.</u> If $B' \setminus B \neq \emptyset$, fix $(x, t') \in B'$ and take $(x, t) \in B$ say t < t'.Since $\{s \in V : (x, s) \in B'\}$ is an interval (easy), $[t, t'] \subseteq B'$. Contradiction: one $f_{l|B'}$ must change sign and it does not change sign.

Corollary

Let $A \subseteq V^{n+1}$ be a semi-linear set. Then A is a finite union of basic semi-linear sets of the form

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a semi-linear set.

Corollary

Let $A \subseteq V^{n+1}$ be a semi-linear set. Then A is a finite union of basic semi-linear sets of the form

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a semi-linear set.

Corollary

Let $A \subseteq V$ be definable in $(V, 0, -, +, (\lambda)_{\lambda \in D}, <)$. Then A is a finite union of sets of the form $\{a\}, (-\infty, a), (a, b)$ or $(b, +\infty)$ with $a, b \in V$.

Let's find out what are the subset of *R* definable in

```
(R, 0, 1, -, +, \cdot, <)
```

a real closed ordered field.

Let's find out what are the subset of *R* definable in

$$(R, 0, 1, -, +, \cdot, <)$$

a real closed ordered field.

QF definable subsets of R^n are <u>semi-algebraic sets</u> i.e., finite unions of sets of the form:

$$\{\overline{x} \in \mathbb{R}^{n} : \begin{cases} f_{1}(\overline{x}) = 0 \\ \vdots & \text{and} \\ f_{t}(\overline{x}) = 0 \end{cases} \quad \begin{cases} g_{1}(\overline{x}) > 0 \\ \vdots & \} \\ g_{s}(\overline{x}) > 0 \\ \end{cases}$$
where each f_{l} and each g_{k} is a polynomial in $\mathbb{R}[X_{1}, \dots, X_{n}]$.

The collection of semi-algebraic sets is closed under the operations $$\setminus \quad \cap \quad \cup$$

What about under the operations

 π_i^n ?

The collection of $\underline{\text{semi-algebraic sets}}$ is closed under the operations

What about under the operations

 π_i^n ?

 $\setminus \cap \cup$

Yes by the next slides....

The collection of semi-algebraic sets is closed under the operations

What about under the operations

 π_i^n ?

 $\setminus \cap \cup$

Yes by the next slides....

Semi-algebraic geometry is the geometry of semi-algebraic (subsets of real algebraic) spaces.

Theorem (Tarski-Seidenberg) The first-order theory of RCF has QE.

Theorem (Tarski-Seidenberg) The first-order theory of RCF has QE.

Corollary $A \subseteq R^n$ definable in $(R, 0, 1, -, +, \cdot, <)$ iff A is a semi-algebraic set.

Corollary $(R, 0, 1, -, +, \cdot, <)$ is o-minimal.

A geometric approach is instructive.....

A geometric approach is instructive.....

Theorem (Cell decomposition)

Let f_1, \ldots, f_N be in $R[X_1, \ldots, X_n][T]$ such that all non zero $\frac{\partial^r f_i}{\partial T^r}$ are in list. Then exists a partition $\{C_1, \ldots, C_k\}$ of R^n by semi-algebraic sets and functions $\zeta_{C,j} : C \to R$ $(C \in \{C_1, \ldots, C_k\}$ and $j = 1, \ldots, j(C)$) such that:

(i)
$$\zeta_{C,1} < \ldots < \zeta_{C,j(C)}$$

(ii) $\zeta_{C,j}$ is continuous and semi-algebraic (i.e., the graph is semi-algebraic).

(iii) each f_l has constant sign on the semi-algebraic sets

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

The proof is bit harder...

The proof is bit harder...

due to Łojasiewicz (1965) in the real field

$$\overline{\mathbb{R}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, <);$$

other proofs by Bochnak and Efroymson (1980), Delzell (1982), Bochnak, Coste and Roy (1987), van den Dries (1982).

Sketch of the proof... first we need

Sketch of the proof... first we need

Lemma (Thom's lemma)

Let $f_1, \ldots f_N$ be in $\mathbb{R}[T]$ such that all non zero $\frac{df_l}{dT}$ are in the list. For each *l*, let $\epsilon_l \in \{-1, 0, 1\}$. Then

$$\{x \in \mathbb{R} : \operatorname{sign}(f_l(x)) = \epsilon_l, \ l = 1, \ldots, N\}$$

is either empty, a point or an open interval. Moreover, the closure of such set is obtained by relaxing the sign conditions.

Sketch of the proof... first we need

Lemma (Thom's lemma)

Let f_1, \ldots, f_N be in $\mathbb{R}[T]$ such that all non zero $\frac{df_i}{dT}$ are in the list. For each *I*, let $\epsilon_I \in \{-1, 0, 1\}$. Then

$$\{x \in \mathbb{R} : \operatorname{sign}(f_l(x)) = \epsilon_l, \ l = 1, \ldots, N\}$$

is either empty, a point or an open interval. Moreover, the closure of such set is obtained by relaxing the sign conditions.

Proof. By induction on *N* assuming deg(f_i) \leq deg(f_{i+1}). Case N = 0 is obvious and when we add f_N note that $\frac{df_N}{dT} \in \{f_1, \dots, f_{N-1}\}$ and has constant sign on

$$\{x \in \mathbb{R} : \operatorname{sign}(f_I(x)) = \epsilon_I, \ I = 1, \ldots, N-1\}.$$

Sketch of the proof of Cell decomposition...

Sketch of the proof of Cell decomposition...

By induction on *n*. Take

$$f_{\Delta}(T) = \Pi_{(l,r)\in\Delta} \frac{\partial^r f_l}{\partial T^r}(T),$$

$$e = 0, 1, \dots, \max\{\deg(f_{\Delta}(T))\}$$

$$A_{\Delta,e} = \{x \in \mathbb{R}^n : \#\{z \in \mathbb{C} : f_{\Delta}(x,z) = 0\} = e\}$$

<u>Claim 1:</u> each $A_{\Delta,e}$ is semi-algebraic subset of \mathbb{R}^n .

Sketch of the proof of Cell decomposition...

By induction on *n*. Take

$$f_{\Delta}(T) = \Pi_{(l,r) \in \Delta} \frac{\partial^r f_l}{\partial T^r}(T),$$

$$e = 0, 1, \dots, \max\{\deg(f_{\Delta}(T))\}$$

$$A_{\Delta,e} = \{x \in \mathbb{R}^n : \#\{z \in \mathbb{C} : f_{\Delta}(x,z) = 0\} = e\}$$

<u>Claim 1:</u> each $A_{\Delta,e}$ is semi-algebraic subset of \mathbb{R}^n .

(A special and easy case of Chevalley's constructibility theorem in (C, 0, 1, +, -, \cdot), i.e., QE for ACF...)

Apply the Theorem to all the $A_{\Delta,e}$ and take $\{C_1, \ldots, C_k\}$ partition of \mathbb{R}^n by semi-algebraic sets given by (iii). Let $C \in \{C_1, \ldots, C_k\}$. Then exists $\mu(C)$ such that $C \subseteq A_{\Delta,\mu(C)}$. Claim 2: exists j(C) such that

$$\#\{y \in \mathbb{R} : f_{\Delta}(x, y) = 0\} = j(C) \text{ for all } x \in C,$$

moreover, the $\zeta_{C,j} : C \to \mathbb{R}$ (j = 1, ..., j(C)) giving the roots are continuous and be ordered $\zeta_1 < ... < \zeta_{j(C)}$.

Apply the Theorem to all the $A_{\Delta,e}$ and take $\{C_1, \ldots, C_k\}$ partition of \mathbb{R}^n by semi-algebraic sets given by (iii). Let $C \in \{C_1, \ldots, C_k\}$. Then exists $\mu(C)$ such that $C \subseteq A_{\Delta,\mu(C)}$. Claim 2: exists j(C) such that

$$\#\{y \in \mathbb{R} : f_{\Delta}(x, y) = 0\} = j(C) \text{ for all } x \in C,$$

moreover, the $\zeta_{C,j} : C \to \mathbb{R}$ (j = 1, ..., j(C)) giving the roots are continuous and be ordered $\zeta_1 < ... < \zeta_{j(C)}$.

(Follows from Continuity of complex roots from complex analysis...)

Let B be one of the

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

Let $\epsilon_{l,r} = \operatorname{sign}(\frac{\partial^r f_l}{\partial T^r}|_B)$ and let

$$B' = \{(x,t) \in C \times \mathbb{R} : \operatorname{sign}(\frac{\partial^r f_l}{\partial T^r}(x,t)) = \epsilon_{l,r}, \ \forall (l,r)\}$$

<u>Then B = B'.</u> If $B' \setminus B \neq \emptyset$, fix $(x, t') \in B'$ and take $(x, t) \in B$ say t < t'. Since $\{s \in \mathbb{R} : (x, s) \in B'\}$ is an interval (<u>Thom's lemma</u>), $[t, t'] \subseteq B'$. Contradiction: $f_{\Delta|B'}$ must change sign and it does not change sign.

Corollary

Let $A \subseteq R^{n+1}$ be a semi-algebraic set. Then A is a finite union of semi-algebraic sets of the form

$$\Gamma(\zeta_{C,j}), \ (-\infty, \zeta_{C,1}), \ (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a semi-algebraic set.

Corollary

Let $A \subseteq R^{n+1}$ be a semi-algebraic set. Then A is a finite union of semi-algebraic sets of the form

$$\Gamma(\zeta_{C,j}), (-\infty, \zeta_{C,1}), (\zeta_{C,j}, \zeta_{C,j+1}) \text{ and } (\zeta_{C,j(C)}, +\infty).$$

In particular, $\pi_i^{n+1}(A)$ is a semi-algebraic set.

Corollary

Let $A \subseteq R$ be definable in $(R, 0, 1, -, +, \cdot, <)$. Then A is a finite union of sets of the form $\{a\}$, $(-\infty, a)$, (a, b) or $(b, +\infty)$ with $a, b \in R$.
Cell decomposition is a nice <u>stratification</u> result which gives <u>finiteness results</u> such as:

Cell decomposition is a nice <u>stratification</u> result which gives <u>finiteness results</u> such as:

Corollary (Łojasiewicz property)

Let $A \subseteq \mathbb{R}^n$ be definable in $(\mathbb{R}, 0, 1, -, +, \cdot, <)$. Then A has finitely many semi-algebraically connected components.

Cell decomposition is a nice <u>stratification</u> result which gives <u>finiteness results</u> such as:

Corollary (Łojasiewicz property)

Let $A \subseteq R^n$ be definable in $(R, 0, 1, -, +, \cdot, <)$. Then A has finitely many semi-algebraically connected components.

Corollary (Uniform Łojasiewicz property)

Let $A \subseteq R^m \times R^n$ be definable in $(R, 0, 1, -, +, \cdot, <)$. Then there is $M_A \in \mathbb{N}$ such that for each $x \in R^m$, the fiber $A_x \subseteq R^n$ has at most M_A many semi-algebraically connected components.

A restricted analytic function $f : \mathbb{R}^n \to \mathbb{R}$ is a function given by

$$f(\overline{x}) = \begin{cases} \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}, & \text{for } \overline{x} \in I^n \\ 0, & \text{otherwise} \end{cases}$$

where $\sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is convergent in some open neighborhood of the compact box $I = [-1, 1]^n$ and $f(I^n) \subseteq I$.

A restricted analytic function $f : \mathbb{R}^n \to \mathbb{R}$ is a function given by

$$f(\overline{x}) = \begin{cases} \sum_{\alpha \in \mathbb{N}^n} a_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n}, & \text{for } \overline{x} \in I^n \\\\ 0, & \text{otherwise} \end{cases}$$

where $\sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ is convergent in some open neighborhood of the compact box $I = [-1, 1]^n$ and $f(I^n) \subseteq I$.

Example: restricted sin(x)

$$f(x) = \begin{cases} \sum_{l \in \mathbb{N}} \frac{(-1)^l}{(2l+1)!} x^{2l+1}, & \text{for } x \in l \\ \\ 0, & \text{otherwise} \end{cases}$$

.... similarly, restricted $\cos(x)$, $\frac{1}{10} \exp(x)$, etc...

Let's find out what are the subset of $\ensuremath{\mathbb{R}}$ definable in

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathsf{0}, \mathsf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <)$$

the real field expanded by the restricted analytic functions.

Let's find out what are the subset of $\ensuremath{\mathbb{R}}$ definable in

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <)$$

the real field expanded by the restricted analytic functions.

QF definable subsets of I^n are subsets of I^n semi-analytic in \mathbb{R}^n i.e., finite unions of sets of the form:

$$\{\overline{x} \in I^n : \begin{cases} f_1(\overline{x}) = 0 \\ \vdots & \text{and} \\ f_t(\overline{x}) = 0 \end{cases} \quad \text{and} \quad \begin{cases} g_1(\overline{x}) > 0 \\ \vdots & \end{cases} \\ g_s(\overline{x}) > 0 \\ \text{with each } f_l, g_k \text{ a restricted analytic function.} \end{cases}$$

Let's find out what are the subset of $\ensuremath{\mathbb{R}}$ definable in

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <)$$

the real field expanded by the restricted analytic functions.

QF definable subsets of I^n are subsets of I^n semi-analytic in \mathbb{R}^n i.e., finite unions of sets of the form:

$$\{\overline{x} \in I^{n}: \begin{cases} f_{1}(\overline{x}) = 0 \\ \vdots & \text{and} \\ f_{t}(\overline{x}) = 0 \end{cases} \quad \text{and} \quad \begin{cases} g_{1}(\overline{x}) > 0 \\ \vdots & \end{cases} \\ g_{s}(\overline{x}) > 0 \\ \text{with each } f_{l}, g_{k} \text{ a restricted analytic function.} \end{cases}$$

(... local description of subsets of I^n semi-analytic in \mathbb{R}^n)

The collection of subsets of I^n semi-analytic in \mathbb{R}^n is closed under the operations $\setminus \cap \cup$

What about under the operations

 π_i^n ?

The collection of subsets of I^n semi-analytic in \mathbb{R}^n is closed under the operations $\setminus \cap \cup$

What about under the operations

 π_i^n ?

No by the next slide....

Example by Osgood (1916's):

Example by Osgood (1916's): Let

$$B = \{(x, y, z, u) \in I^4 : y = xu, z = x\frac{1}{10} \exp_{|I|}(u)\}$$

a compact semi-analytic in \mathbb{R}^4 and <u>A the projection of B</u> onto the first 3 coordinates. Then $A \subseteq I^3$ is not semi-analytic in \mathbb{R}^3 .

Example by Osgood (1916's): Let

$$B = \{(x, y, z, u) \in I^4 : y = xu, z = x\frac{1}{10} \exp_{|I|}(u)\}$$

a compact semi-analytic in \mathbb{R}^4 and <u>A</u> the projection of <u>B</u> onto the first 3 coordinates. Then $A \subseteq I^3$ is not semi-analytic in \mathbb{R}^3 .

If it were ... since dim A < 3 there would be a non zero formal power series G(x, y, z) such that $G(x, xu, x \exp_{|I|}(u)) = 0$. Writing $G = \sum_{j=0}^{\infty} G_j$ with G_j homogenous polynomials of degree j,

$$\sum_{j=0}^{\infty} x^j G_j(1, u, \exp_{|I|}(u)) = 0$$

and so all $G_j(1, u, \exp_{|I|}(u)) = 0$, and all polynomial $G_j \equiv 0$ since $\exp_{|I|}(u)$ is transcendental.

A subset of I^n sub-analytic in \mathbb{R}^n is a projection of some subset of $\overline{I^{n+m}}$ semi-analytic in \mathbb{R}^{n+m} for some *m*. (local description...)

A subset of I^n sub-analytic in \mathbb{R}^n is a projection of some subset of $\overline{I^{n+m}}$ semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^n sub-analytic in \mathbb{R}^n is closed under the operations

$\pi_i^n \cap \cup$

What about under the operation

\ ?

A subset of I^n sub-analytic in \mathbb{R}^n is a projection of some subset of $\overline{I^{n+m}}$ semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^n sub-analytic in \mathbb{R}^n is closed under the operations

$\pi_i^n \cap \cup$

What about under the operation

\?

Yes by the next slide....

A subset of I^n sub-analytic in \mathbb{R}^n is a projection of some subset of $\overline{I^{n+m}}$ semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^n sub-analytic in \mathbb{R}^n is closed under the operations

 $\pi_i^n \cap \cup$

What about under the operation

\ ?

Yes by the next slide....

Sub-analytic geometry is the geometry of subsets sub-analytic in real-analytic spaces.

Theorem (Gabrielov's (1968))

The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Theorem (Gabrielov's (1968))

The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:

Theorem (Gabrielov's (1968))

The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:

Theorem (Łojasiewicz (1965))

Locally a subset semi-analytic in a real-analytic space X has finitely many connected components each of which is a subset semi-analytic in X.

Theorem (Gabrielov's (1968))

The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:

Theorem (Łojasiewicz (1965))

Locally a subset semi-analytic in a real-analytic space X has finitely many connected components each of which is a subset semi-analytic in X.

These things are very hard and use other <u>stratification</u> results (uniformization and rectilinearization) based on resolutions of singularities!

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

Corollary $A \subseteq I^n$ is definable in

$$\overline{\mathbb{R}}_{an} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in an}, <)$$

iff A is subset of I^n sub-analytic in \mathbb{R}^n .

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

Corollary $A \subseteq I^n$ is definable in

$$\overline{\mathbb{R}}_{\mathrm{an}} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, -, +, \cdot, (f)_{f \in \mathrm{an}}, <)$$

iff A is subset of I^n sub-analytic in \mathbb{R}^n .

Corollary

 $\overline{\mathbb{R}}_{an} = (\mathbb{R}, 0, 1, -, +, \cdot, (f)_{f \in an}, <)$ is o-minimal.

Later

Later

van den Dries and Denef (1988) show that

 $Th(\overline{\mathbb{R}}_{an})$

has QE if we add a function symbol $^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1} = 0$ by convention.

Later

van den Dries and Denef (1988) show that

$Th(\overline{\mathbb{R}}_{an})$

has QE if we add a function symbol $^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1} = 0$ by convention.

van den Dries, Macintyre and Marker (1994) give a complete axiomatization of

 $Th(\overline{\mathbb{R}}_{an}).$
Conclusion...

Later

van den Dries and Denef (1988) show that

$Th(\overline{\mathbb{R}}_{an})$

has QE if we add a function symbol $^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1} = 0$ by convention.

van den Dries, Macintyre and Marker (1994) give a complete axiomatization of

 $\operatorname{Th}(\overline{\mathbb{R}}_{an}).$

.....

THANK YOU!