Model theory (analytic part)

Mário Edmundo
U. Aberta \& CMAF/UL

Days in Logic 2014

The tutorial

The tutorial

- A bit of o-minimality

The tutorial

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck

The tutorial

- A bit of o-minimality
- A bit of o-minimality and Gronthendieck
- A bit of o-minimality and André-Oort.

A bit of o-minimality

A bit of o-minimality

Tame vs wild topology

Tame vs wild topology

Lets consider the question tame vs wild topology in the following setting:

Tame vs wild topology

Lets consider the question tame vs wild topology in the following setting:

Consider a mathematical structure

$$
\mathcal{M}=\left(M,(c)_{c \in \mathcal{C}},(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

where $(M,<)$ is a dense total order with no endpoints.

Tame vs wild topology

Tame vs wild topology

Consider the category

$$
\operatorname{Def}(\mathcal{M})
$$

of definable sets and maps in \mathcal{M}.

Tame vs wild topology

Consider the category

$$
\operatorname{Def}(\mathcal{M})
$$

of definable sets and maps in \mathcal{M}.

- X is object of $\operatorname{Def}(\mathcal{M})$ iff $X \subseteq M^{n}$ (some n) and is defined by a first-order formula (with parameters) in the language of \mathcal{M}.
- $f: X \rightarrow Y$ is morphism of $\operatorname{Def}(\mathcal{M})$ iff its graph $\Gamma(f)$ is an object of $\operatorname{Def}(\mathcal{M})$.

Tame vs wild topology

Tame vs wild topology

What can be said about the topology of the objects of
$\operatorname{Def}(\mathcal{M})$?

Tame vs wild topology

What can be said about the topology of the objects of

$$
\operatorname{Def}(\mathcal{M}) ?
$$

- Poincaré paradise: with some glimpses of the rich algebraic-analytic-topological structure of the continuum.

Tame vs wild topology

What can be said about the topology of the objects of

$$
\operatorname{Def}(\mathcal{M}) ?
$$

- Poincaré paradise: with some glimpses of the rich algebraic-analytic-topological structure of the continuum.
- Cantor paradise: where only set theoretic features ultimately survive (Cantor/Borel like sets).

Tame vs wild topology

Tame vs wild topology

To know in which paradise we enter it is useful to know:

Tame vs wild topology

To know in which paradise we enter it is useful to know:

Defining formula	Defined set
$\phi(\bar{x})$	A
$\psi(\bar{x})$	B
$\neg \phi(\bar{x})$	$M^{n} \backslash A$
$\phi(\bar{x}) \wedge \psi(\bar{x})$	$A \cap B$
$\phi(\bar{x}) \vee \psi(\bar{x})$	$A \cup B$
$\exists x_{i} \phi(\bar{x})$	$\pi_{i}^{n}(A)$

where $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)$.

Tame vs wild topology

To know in which paradise we enter it is useful to know:

Defining formula	Defined set
$\phi(\bar{x})$	A
$\psi(\bar{x})$	B
$\neg \phi(\bar{x})$	$M^{n} \backslash A$
$\phi(\bar{x}) \wedge \psi(\bar{x})$	$A \cap B$
$\phi(\bar{x}) \vee \psi(\bar{x})$	$A \cup B$
$\exists x_{i} \phi(\bar{x})$	$\pi_{i}^{n}(A)$

where $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)$. If we know QF
definable sets we must know the effect of

$$
\backslash \cap \cup \pi_{i}^{n}
$$

Tame vs wild topology

Tame vs wild topology

What should one avoid to remain tame?

Tame vs wild topology

What should one avoid to remain tame?

- (Kechris book) Let

$$
\mathcal{M}=\left(\mathbb{R},(c)_{c \in \mathcal{C}},(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

and suppose that $(\mathbb{R}, 0,1,+, \cdot,<)$ and \mathbb{Z} are in $\operatorname{Def}(\mathcal{M})$. Then X in $\operatorname{Def}(\mathcal{M})$ iff X is a projective subset of some \mathbb{R}^{n}. In particular, all Borel subsets of some \mathbb{R}^{n} are in $\operatorname{Def}(\mathcal{M})$.

Tame vs wild topology

What should one avoid to remain tame?

- (Kechris book) Let

$$
\mathcal{M}=\left(\mathbb{R},(c)_{c \in \mathcal{C}},(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

and suppose that $(\mathbb{R}, 0,1,+, \cdot,<)$ and \mathbb{Z} are in $\operatorname{Def}(\mathcal{M})$. Then X in $\operatorname{Def}(\mathcal{M})$ iff X is a projective subset of some \mathbb{R}^{n}. In particular, all Borel subsets of some \mathbb{R}^{n} are in $\operatorname{Def}(\mathcal{M})$.

- So one should avoid having $(\mathbb{Z}, 0,1,+, \cdot)$ in $\operatorname{Def}(\mathcal{M})$.

Tame vs wild topology

Tame vs wild topology

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's Esquisse d'un programme (unpublished research proposal from 1984)
proposes an axiomatic development of topology based on stratifications that should include as special cases:

Tame vs wild topology

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's Esquisse d'un programme (unpublished research proposal from 1984)
proposes an axiomatic development of topology based on stratifications that should include as special cases:

- Real algebraic and semi-algebraic geometry.

Tame vs wild topology

What exactly is to be tame? Well...it is too vague, but in

Grothendieck's Esquisse d'un programme (unpublished research proposal from 1984)
proposes an axiomatic development of topology based on stratifications that should include as special cases:

- Real algebraic and semi-algebraic geometry.
- Semi-analytic and sub-analytic geometry.

O-minimal structures

O-minimal structures

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

O-minimal structures

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

- the field of real numbers

$$
\overline{\mathbb{R}}=(\mathbb{R}, 0,1,-,+, \cdot,<) ;
$$

- the field of real numbers expanded by restricted analytic functions

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

O-minimal structures

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

- the field of real numbers

$$
\overline{\mathbb{R}}=(\mathbb{R}, 0,1,-,+, \cdot,<) ;
$$

- the field of real numbers expanded by restricted analytic functions

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

Hopefully o-minimal structures:

O-minimal structures

O-minimal structures are a class of ordered structures which are a model theoretic (logic) generalization of interesting classical structures such as:

- the field of real numbers

$$
\overline{\mathbb{R}}=(\mathbb{R}, 0,1,-,+, \cdot,<)
$$

- the field of real numbers expanded by restricted analytic functions

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

Hopefully o-minimal structures:

- capture tameness;
- provide new insights originated from model-theoretic methods into the real analytic-like setting.

O-minimal structures

O-minimal structures

So what is an o-minimal structure?

O-minimal structures

So what is an o-minimal structure?
(van den Dries 84; Pillay and Steinhorn 86):

$$
\mathcal{M}=\left(M,(c)_{c \in \mathcal{C}},(f)_{f \in \mathcal{F}},(R)_{R \in \mathcal{R}},<\right)
$$

is o-minimal if every definable subset of M in the structure \mathcal{M} is already definable in the dense linearly ordered set

$$
(M,<)
$$

The simplest example

The simplest example

Let's find out what are the subset of M definable in the dense linearly ordered set

$$
(M,<)
$$

The simplest example

Let's find out what are the subset of M definable in the dense linearly ordered set

$$
(M,<)
$$

QF definable subsets of M^{n} are finite unions of simple sets:
$\left\{\bar{x} \in M^{n}:\left\{\begin{array}{l}f_{i_{1}}(\bar{x})=f_{i_{1}^{\prime}}(\bar{x}) \\ \vdots \\ f_{i_{k}}(\bar{x})=f_{i_{k}^{\prime}}(\bar{x})\end{array} \quad\right.\right.$ and $\quad\left\{\begin{array}{ll}f_{j_{1}}(\bar{x})<f_{j_{1}^{\prime}}(\bar{x}) & \\ \vdots & \\ f_{j_{s}}(\bar{x})<f_{j_{s}^{\prime}}(\bar{x}) & \end{array}\right\}$
where

$$
\left\{i_{1}, \ldots i_{k}\right\},\left\{i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right\},\left\{j_{1}, \ldots, j_{s}\right\},\left\{j_{1}^{\prime}, \ldots, j_{s}\right\} \subseteq\{1, \ldots, N\}
$$

and each $f_{l}(I=1, \ldots N)$ is a simple function, i.e.:

$$
f_{l}=x_{l} \quad \text { or } \quad f_{l}=c_{l} \in M .
$$

The simplest example

The simplest example

The collection of finite unions of simple sets is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

The simplest example

The collection of finite unions of simple sets is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Yes by...

The simplest example

The simplest example

Theorem
The first-order theory of DLO has QE.

The simplest example

Theorem
The first-order theory of DLO has QE.
Corollary
$A \subseteq M^{n}$ definable in $(M,<)$ iff X is finite unions of simple sets.
Corollary
$A \subseteq M$ be definable in $(M,<)$ iff A is a finite union of sets of the form $\{a\},(-\infty, a),(a, b)$ or $(b,+\infty)$ with $a, b \in M$.

The simplest example

The simplest example

A geometric approach is instructive.....

The simplest example

A geometric approach is instructive.....
Proposition (Cell decomposition)
Let $f_{1}, \ldots f_{N}: M^{n+1} \rightarrow M$ be simple. Then exists a partition $\left\{C_{1}, \ldots, C_{k}\right\}$ of M^{n} by simple sets and functions $\zeta_{C, j}: C \rightarrow M$
$\left(C \in\left\{C_{1}, \ldots, C_{k}\right\}\right.$ and $\left.j=1, \ldots, j(C)\right)$ such that:
(i) $\zeta_{C, 1}<\ldots<\zeta_{C, j(C)}$
(ii) $\zeta_{C, j}$ is the restriction of a simple function.
(iii) for each $(p, q) \in N^{2}$ we have either $f_{p}<f_{q}$ or $f_{p}=f_{q}$ or $f_{q}<f_{p}$ on the simple sets

$$
\Gamma\left(\zeta_{C, j}\right),\left(-\infty, \zeta_{C, 1}\right),\left(\zeta_{C, j}, \zeta_{C, j+1}\right) \text { and }\left(\zeta_{C, j(C)},+\infty\right)
$$

The simplest example

The simplest example

Proof. By induction on n. Let $s \leq N$ be such that for each $I \leq s$, $f_{l}: M^{n+1} \rightarrow M$ is not x_{i} and consider $\bar{f}_{l}: M^{n} \rightarrow M$ simple given by f_{l}. Apply Proposition to $\bar{f}_{1}, \ldots, \bar{f}_{s}$ and take $\left\{C_{1}, \ldots, C_{k}\right\}$ a partition of M^{n} by simple sets given by (iii).

For $C \in\left\{C_{1}, \ldots, C_{k}\right\}$ let

$$
\zeta_{C, j}=\bar{f}_{s+j \mid C}: C \rightarrow M
$$

with $j=1, \ldots, j(C)=N-s$.

The simplest example

The simplest example

Let B be one of the

$$
\Gamma\left(\zeta_{C, j}\right),\left(-\infty, \zeta_{C, 1}\right),\left(\zeta_{c, j}, \zeta_{C, j+1}\right) \text { and }\left(\zeta_{C, j(C)},+\infty\right)
$$

Let $\epsilon_{(1, r)}=\operatorname{sign}\left(f_{| | B}, f_{r \mid B}\right)$ (obvious definition) and let

$$
B^{\prime}=\left\{(x, t) \in C \times V: \operatorname{sign}\left(f_{l \mid}(x, t), f_{r \mid}(x, t)\right)=\epsilon_{(I, r)}, \forall(I, r)\right\}
$$

Then $B=B^{\prime}$.
If $B^{\prime} \backslash B \neq \emptyset$, fix $\left(x, t^{\prime}\right) \in B^{\prime}$ and take $(x, t) \in B$ say $t<t^{\prime}$. Since $\left\{s \in V:(x, s) \in B^{\prime}\right\}$ is an interval (easy), $\left[t, t^{\prime}\right] \subseteq B^{\prime}$.
Contradiction: one ($f_{| | B^{\prime}}, f_{r \mid B^{\prime}}$) must change sign and it does not change sign.

The simplest example

The simplest example

Corollary

Let $A \subseteq M^{n+1}$ be a finite union of simple sets. Then A is a finite union of simple sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(C)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a finite union of simple sets.

The simplest example

Corollary

Let $A \subseteq M^{n+1}$ be a finite union of simple sets. Then A is a finite union of simple sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(C)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a finite union of simple sets.
Corollary
Let $A \subseteq M$ be definable in $(M,<)$. Then A is a finite union of sets of the form $\{a\},(-\infty, a),(a, b)$ or $(b,+\infty)$ with $a, b \in M$.

PL geometry

PL geometry

Let's find out what are the subset of V definable in

$$
\left(V, 0,-,+,(\lambda)_{\lambda \in D},<\right)
$$

an ordered vector space over an ordered division ring D with $(V, 0,-,+)$ an ordered divisible abelian group.

PL geometry

Let's find out what are the subset of V definable in

$$
\left(V, 0,-,+,(\lambda)_{\lambda \in D},<\right)
$$

an ordered vector space over an ordered division ring D with $(V, 0,-,+)$ an ordered divisible abelian group.

QF definable subsets of V^{n} are finite unions of basic semi-linear sets:
$\left\{\bar{x} \in V^{n}:\left\{\begin{array}{l}f_{1}(\bar{x})=0 \\ \vdots \\ f_{t}(\bar{x})=0\end{array} \quad\right.\right.$ and $\quad\left\{\begin{array}{l}g_{1}(\bar{x})>0 \\ \vdots \\ g_{s}(\bar{x})>0\end{array}\right\}$
where each f_{l} and each g_{k} is an affine function, i.e.:

$$
h(\bar{x})=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}+c .
$$

PL geometry

PL geometry

The collection of semi-linear sets i.e., finite unions of simple sets, is closed under the operations

What about under the operations
π_{i}^{n} ?

PL geometry

The collection of semi-linear sets i.e., finite unions of simple sets, is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Yes by the next slides ...

PL geometry

The collection of semi-linear sets i.e., finite unions of simple sets, is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Yes by the next slides ...
$\underline{P L}$ geometry is the geometry of semi-linear spaces.

PL geometry

PL geometry

Theorem
The first-order theory of ordered vector spaces over ordered division rings which are ordered divisible abelian groups has QE.

PL geometry

Theorem
The first-order theory of ordered vector spaces over ordered division rings which are ordered divisible abelian groups has QE.

Corollary
$A \subseteq V^{n}$ definable in $\left(V, 0,-,+,(\lambda)_{\lambda \in D},<\right)$ iff A is a semi-linear set.

Corollary
$\left(V, 0,-,+,(\lambda)_{\lambda \in D},<\right)$ is o-minimal.

PL geometry

PL geometry

A geometric approach is instructive.....

PL geometry

A geometric approach is instructive.....
Proposition (Cell decomposition)
Let $f_{1}, \ldots f_{N}: V^{n+1} \rightarrow V$ be affine. Then exists a partition $\left\{C_{1}, \ldots, C_{k}\right\}$ of V^{n} by basic semi-linear sets and functions $\zeta_{C, j}: C \rightarrow V\left(C \in\left\{C_{1}, \ldots, C_{k}\right\}\right.$ and $\left.j=1, \ldots, j(C)\right)$ such that:
(i) $\zeta_{C, 1}<\ldots<\zeta_{C, j(C)}$
(ii) $\zeta_{c, j}$ is the restriction of an affine function.
(iii) each f_{l} has constant sign on the basic semi-linear sets

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(c)},+\infty\right) .
$$

PL geometry

PL geometry

Proof. By induction on n. Let $s \leq N$ be such that for each $I \leq s$, $f_{l}: V^{n+1} \rightarrow V$ is does not depend on x_{i} and consider
$\bar{f}_{l}: V^{n} \rightarrow V$ affine given by f_{l}. For $s<I \leq N$ let $\bar{f}_{l}: V^{n} \rightarrow V$ be

$$
\bar{f}_{l}(\bar{x})=\left(\lambda_{i}^{\prime}\right)^{-1}\left(-f_{l}(\bar{x})-\lambda_{i} x_{i}\right)
$$

which for each fixed $\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right)$ gives the only zero of f_{l}, where

$$
f_{l}(\bar{x})=\lambda_{1}^{\prime} x_{1}+\ldots+\lambda_{i}^{\prime} x_{i}+\ldots+\lambda_{n+1}^{\prime} x_{n+1}+c .
$$

Apply Proposition to $\left\{\bar{f}_{1}, \ldots, \bar{f}_{s}\right\} \cup\left\{\bar{f}_{p}-\bar{f}_{q}: s<p, q \leq N\right\}$ and take $\left\{C_{1}, \ldots, C_{k}\right\}$ a partition of V^{n} by basic semi-linear sets given by (iii). For $C \in\left\{C_{1}, \ldots, C_{k}\right\}$ let $\zeta_{C, j}=\bar{f}_{s+j \mid C}: C \rightarrow V$ with $j=1, \ldots, j(C)=N-s$.

PL geometry

PL geometry

Let B be one of the

$$
\Gamma\left(\zeta_{C, j}\right),\left(-\infty, \zeta_{C, 1}\right),\left(\zeta_{C, j}, \zeta_{C, j+1}\right) \text { and }\left(\zeta_{C, j(C)},+\infty\right)
$$

Let $\epsilon_{I}=\operatorname{sign}\left(f_{| | B}\right)$ and let

$$
B^{\prime}=\left\{(x, t) \in C \times V: \operatorname{sign}\left(f_{l \mid}(x, t)\right)=\epsilon_{l}, \forall /\right\}
$$

Then $B=B^{\prime}$.
If $B^{\prime} \backslash B \neq \emptyset$, fix $\left(x, t^{\prime}\right) \in B^{\prime}$ and take $(x, t) \in B$ say $t<t^{\prime}$. Since $\left\{s \in V:(x, s) \in B^{\prime}\right\}$ is an interval (easy), $\left[t, t^{\prime}\right] \subseteq B^{\prime}$.
Contradiction: one $f_{| | B^{\prime}}$ must change sign and it does not change sign.

PL geometry

PL geometry

Corollary

Let $A \subseteq V^{n+1}$ be a semi-linear set. Then A is a finite union of basic semi-linear sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(c)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a semi-linear set.

PL geometry

Corollary

Let $A \subseteq V^{n+1}$ be a semi-linear set. Then A is a finite union of basic semi-linear sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(c)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a semi-linear set.
Corollary
Let $A \subseteq V$ be definable in $\left(V, 0,-,+,(\lambda)_{\lambda \in D},<\right)$. Then A is a finite union of sets of the form $\{a\},(-\infty, a),(a, b)$ or $(b,+\infty)$ with $a, b \in V$.

Semi-algebraic geometry

Semi-algebraic geometry

Let's find out what are the subset of R definable in

$$
(R, 0,1,-,+, \cdot,<)
$$

a real closed ordered field.

Semi-algebraic geometry

Let's find out what are the subset of R definable in

$$
(R, 0,1,-,+, \cdot,<)
$$

a real closed ordered field.

QF definable subsets of R^{n} are semi-algebraic sets i.e., finite unions of sets of the form:
$\left\{\bar{x} \in R^{n}:\left\{\begin{array}{l}f_{1}(\bar{x})=0 \\ \vdots \\ f_{t}(\bar{x})=0\end{array}\right.\right.$

$$
\text { and }\left\{\begin{array}{l}
g_{1}(\bar{x})>0 \\
\vdots \\
g_{s}(\bar{x})>0
\end{array}\right\}
$$

where each f_{l} and each g_{k} is a polynomial in $R\left[X_{1}, \ldots, X_{n}\right]$.

Semi-algebraic geometry

Semi-algebraic geometry

The collection of semi-algebraic sets is closed under the operations
$\backslash \cap \cup$
What about under the operations

$$
\pi_{i}^{n} ?
$$

Semi-algebraic geometry

The collection of semi-algebraic sets is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Yes by the next slides....

Semi-algebraic geometry

The collection of semi-algebraic sets is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Yes by the next slides....
Semi-algebraic geometry is the geometry of semi-algebraic (subsets of real algebraic) spaces.

Semi-algebraic geometry

Semi-algebraic geometry

Theorem (Tarski-Seidenberg)
The first-order theory of RCF has QE.

Semi-algebraic geometry

Theorem (Tarski-Seidenberg)
The first-order theory of RCF has QE.
Corollary
$A \subseteq R^{n}$ definable in $(R, 0,1,-,+, \cdot,<)$ iff A is a semi-algebraic set.

Corollary
($R, 0,1,-,+, \cdot \cdot,<$) is o-minimal.

Semi-algebraic geometry

Semi-algebraic geometry

A geometric approach is instructive.....

Semi-algebraic geometry

A geometric approach is instructive.....

Theorem (Cell decomposition)

Let $f_{1}, \ldots f_{N}$ be in $R\left[X_{1}, \ldots, X_{n}\right][T]$ such that all non zero $\frac{\partial^{r} f_{1}}{\partial T^{T}}$ are in list. Then exists a partition $\left\{C_{1}, \ldots, C_{k}\right\}$ of R^{n} by semi-algebraic sets and functions $\zeta_{c, j}: C \rightarrow R$
($C \in\left\{C_{1}, \ldots, C_{k}\right\}$ and $\left.j=1, \ldots, j(C)\right)$ such that:
(i) $\zeta_{C, 1}<\ldots<\zeta_{C, j(C)}$
(ii) $\zeta_{C, j}$ is continuous and semi-algebraic (i.e., the graph is semi-algebraic).
(iii) each $f_{\boldsymbol{\prime}}$ has constant sign on the semi-algebraic sets

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(C)},+\infty\right) .
$$

Semi-algebraic geometry

Semi-algebraic geometry

The proof is bit harder...

Semi-algebraic geometry

The proof is bit harder...
due to $Ł o j a s i e w i c z ~(1965) ~ i n ~ t h e ~ r e a l ~ f i e l d ~$

$$
\overline{\mathbb{R}}=(\mathbb{R}, 0,1,-,+, \cdot,<)
$$

other proofs by Bochnak and Efroymson (1980), Delzell (1982), Bochnak, Coste and Roy (1987), van den Dries (1982).

Semi-algebraic geometry

Semi-algebraic geometry

Sketch of the proof... first we need

Semi-algebraic geometry

Sketch of the proof... first we need
Lemma (Thom's lemma)
Let $f_{1}, \ldots f_{N}$ be in $\mathbb{R}[T]$ such that all non zero $\frac{d f_{l}}{d T}$ are in the list. For each I, let $\epsilon_{I} \in\{-1,0,1\}$. Then

$$
\left\{x \in \mathbb{R}: \operatorname{sign}\left(f_{l}(x)\right)=\epsilon_{l}, I=1, \ldots, N\right\}
$$

is either empty, a point or an open interval. Moreover, the closure of such set is obtained by relaxing the sign conditions.

Semi-algebraic geometry

Sketch of the proof... first we need
Lemma (Thom's lemma)
Let $f_{1}, \ldots f_{N}$ be in $\mathbb{R}[T]$ such that all non zero $\frac{d f_{I}}{d T}$ are in the list. For each I, let $\epsilon_{I} \in\{-1,0,1\}$. Then

$$
\left\{x \in \mathbb{R}: \operatorname{sign}\left(f_{l}(x)\right)=\epsilon_{l}, I=1, \ldots, N\right\}
$$

is either empty, a point or an open interval. Moreover, the closure of such set is obtained by relaxing the sign conditions.
Proof. By induction on N assuming $\operatorname{deg}\left(f_{i}\right) \leq \operatorname{deg}\left(f_{i+1}\right)$. Case $N=0$ is obvious and when we add f_{N} note that $\frac{d f_{N}}{d T} \in\left\{f_{1}, \ldots f_{N-1}\right\}$ and has constant sign on

$$
\left\{x \in \mathbb{R}: \operatorname{sign}\left(f_{l}(x)\right)=\epsilon_{l}, I=1, \ldots, N-1\right\}
$$

Semi-algebraic geometry

Semi-algebraic geometry

Sketch of the proof of Cell decomposition...

Semi-algebraic geometry

Sketch of the proof of Cell decomposition...
By induction on n. Take

$$
\begin{gathered}
f_{\Delta}(T)=\Pi_{(I, r) \in \Delta} \frac{\partial^{r} f_{l}}{\partial T^{r}}(T) \\
e=0,1, \ldots, \max \left\{\operatorname{deg}\left(f_{\Delta}(T)\right)\right\} \\
A_{\Delta, e}=\left\{x \in \mathbb{R}^{n}: \#\left\{z \in \mathbb{C}: f_{\Delta}(x, z)=0\right\}=e\right\}
\end{gathered}
$$

Claim 1: each $A_{\Delta, e}$ is semi-algebraic subset of \mathbb{R}^{n}.

Semi-algebraic geometry

Sketch of the proof of Cell decomposition...
By induction on n. Take

$$
\begin{gathered}
f_{\Delta}(T)=\Pi_{(I, r) \in \Delta} \frac{\partial^{r} f_{l}}{\partial T^{r}}(T) \\
e=0,1, \ldots, \max \left\{\operatorname{deg}\left(f_{\Delta}(T)\right)\right\} \\
A_{\Delta, e}=\left\{x \in \mathbb{R}^{n}: \#\left\{z \in \mathbb{C}: f_{\Delta}(x, z)=0\right\}=e\right\}
\end{gathered}
$$

Claim 1: each $A_{\Delta, e}$ is semi-algebraic subset of \mathbb{R}^{n}.
(A special and easy case of Chevalley's constructibility theorem in ($\mathbb{C}, 0,1,+,-, \cdot)$, i.e., QE for ACF...)

Semi-algebraic geometry

Semi-algebraic geometry

Apply the Theorem to all the $A_{\Delta, e}$ and take $\left\{C_{1}, \ldots, C_{k}\right\}$ partition of \mathbb{R}^{n} by semi-algebraic sets given by (iii). Let $C \in\left\{C_{1}, \ldots, C_{k}\right\}$. Then exists $\mu(C)$ such that $C \subseteq A_{\Delta, \mu(C)}$. Claim 2: exists $j(C)$ such that

$$
\#\left\{y \in \mathbb{R}: f_{\Delta}(x, y)=0\right\}=j(C) \text { for all } x \in C
$$

moreover, the $\zeta_{c, j}: C \rightarrow \mathbb{R}(j=1, \ldots, j(C))$ giving the roots are continuous and be ordered $\zeta_{1}<\ldots<\zeta_{j(C)}$.

Semi-algebraic geometry

Apply the Theorem to all the $A_{\Delta, e}$ and take $\left\{C_{1}, \ldots, C_{k}\right\}$ partition of \mathbb{R}^{n} by semi-algebraic sets given by (iii). Let $C \in\left\{C_{1}, \ldots, C_{k}\right\}$. Then exists $\mu(C)$ such that $C \subseteq A_{\Delta, \mu(C)}$. Claim 2: exists $j(C)$ such that

$$
\#\left\{y \in \mathbb{R}: f_{\Delta}(x, y)=0\right\}=j(C) \text { for all } x \in C
$$

moreover, the $\zeta_{c, j}: C \rightarrow \mathbb{R}(j=1, \ldots, j(C))$ giving the roots are continuous and be ordered $\zeta_{1}<\ldots<\zeta_{j(C)}$.
(Follows from Continuity of complex roots from complex analysis...)

Semi-algebraic geometry

Semi-algebraic geometry

Let B be one of the

$$
\Gamma\left(\zeta_{C, j}\right),\left(-\infty, \zeta_{C, 1}\right),\left(\zeta_{C, j}, \zeta_{C, j+1}\right) \text { and }\left(\zeta_{C, j(C)},+\infty\right)
$$

Let $\epsilon_{l, r}=\operatorname{sign}\left(\frac{\partial^{r} f_{l}}{\partial T^{r} \mid B}\right)$ and let

$$
B^{\prime}=\left\{(x, t) \in C \times \mathbb{R}: \operatorname{sign}\left(\frac{\partial^{r} f_{l}}{\partial T^{r}}(x, t)\right)=\epsilon_{l, r}, \forall(I, r)\right\}
$$

Then $B=B^{\prime}$.
If $B^{\prime} \backslash B \neq \emptyset$, fix $\left(x, t^{\prime}\right) \in B^{\prime}$ and take $(x, t) \in B$ say $t<t^{\prime}$. Since $\left\{s \in \mathbb{R}:(x, s) \in B^{\prime}\right\}$ is an interval (Thom's lemma), $\left[t, t^{\prime}\right] \subseteq B^{\prime}$. Contradiction: $f_{\Delta \mid B^{\prime}}$ must change sign and it does not change sign.

Semi-algebraic geometry

Semi-algebraic geometry

Corollary

Let $A \subseteq R^{n+1}$ be a semi-algebraic set. Then A is a finite union of semi-algebraic sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(c)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a semi-algebraic set.

Semi-algebraic geometry

Corollary

Let $A \subseteq R^{n+1}$ be a semi-algebraic set. Then A is a finite union of semi-algebraic sets of the form

$$
\Gamma\left(\zeta_{c, j}\right),\left(-\infty, \zeta_{c, 1}\right),\left(\zeta_{c, j}, \zeta_{c, j+1}\right) \text { and }\left(\zeta_{c, j(c)},+\infty\right) .
$$

In particular, $\pi_{i}^{n+1}(A)$ is a semi-algebraic set.
Corollary
Let $A \subseteq R$ be definable in $(R, 0,1,-,+, \cdot,<)$. Then A is a finite union of sets of the form $\{a\},(-\infty, a),(a, b)$ or $(b,+\infty)$ with $a, b \in R$.

Semi-algebraic geometry

Semi-algebraic geometry

Cell decomposition is a nice stratification result which gives finiteness results such as:

Semi-algebraic geometry

Cell decomposition is a nice stratification result which gives finiteness results such as:

Corollary (Łojasiewicz property)
Let $A \subseteq R^{n}$ be definable in $(R, 0,1,-,+, \cdot,<)$. Then A has finitely many semi-algebraically connected components.

Semi-algebraic geometry

Cell decomposition is a nice stratification result which gives finiteness results such as:

Corollary (Łojasiewicz property)
Let $A \subseteq R^{n}$ be definable in $(R, 0,1,-,+, \cdot,<)$. Then A has finitely many semi-algebraically connected components.

Corollary (Uniform Łojasiewicz property)
Let $A \subseteq R^{m} \times R^{n}$ be definable in ($R, 0,1,-,+, \cdot,<$). Then there is $M_{A} \in \mathbb{N}$ such that for each $x \in R^{m}$, the fiber $A_{x} \subseteq R^{n}$ has at most M_{A} many semi-algebraically connected components.

Sub-analytic geometry

Sub-analytic geometry

A restricted analytic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function given by

$$
f(\bar{x})= \begin{cases}\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, & \text { for } \bar{x} \in I^{n} \\ 0, \quad \text { otherwise }\end{cases}
$$

where $\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is convergent in some open neighborhood of the compact box $I=[-1,1]^{n}$ and $f\left(I^{n}\right) \subseteq I$.

Sub-analytic geometry

A restricted analytic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function given by

$$
f(\bar{x})= \begin{cases}\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, & \text { for } \bar{x} \in I^{n} \\ 0, \quad \text { otherwise }\end{cases}
$$

where $\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is convergent in some open neighborhood of the compact box $I=[-1,1]^{n}$ and $f\left(I^{n}\right) \subseteq I$.
Example: restricted $\sin (x)$

$$
f(x)=\left\{\begin{array}{l}
\sum_{l \in \mathbb{N}} \frac{(-1)^{\prime}}{(2 l+1)!} x^{2 l+1}, \quad \text { for } \quad x \in I \\
0, \quad \text { otherwise }
\end{array}\right.
$$

.... similarly, restricted $\cos (x), \frac{1}{10} \exp (x)$, etc...

Sub-analytic geometry

Sub-analytic geometry

Let's find out what are the subset of \mathbb{R} definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

the real field expanded by the restricted analytic functions.

Sub-analytic geometry

Let's find out what are the subset of \mathbb{R} definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

the real field expanded by the restricted analytic functions.
QF definable subsets of I^{n} are subsets of I^{n} semi-analytic in \mathbb{R}^{n}
i.e., finite unions of sets of the form:
$\left\{\bar{x} \in I^{n}:\left\{\begin{array}{l}f_{1}(\bar{x})=0 \\ \vdots \\ f_{t}(\bar{x})=0\end{array}\right.\right.$
and

$$
\left\{\begin{array}{l}
g_{1}(\bar{x})>0 \\
\vdots \\
g_{s}(\bar{x})>0
\end{array}\right\}
$$

with each f_{l}, g_{k} a restricted analytic function.

Sub-analytic geometry

Let's find out what are the subset of \mathbb{R} definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

the real field expanded by the restricted analytic functions.
QF definable subsets of I^{n} are subsets of I^{n} semi-analytic in \mathbb{R}^{n}
i.e., finite unions of sets of the form:
$\left\{\bar{x} \in I^{n}:\left\{\begin{array}{l}f_{1}(\bar{x})=0 \\ \vdots \\ f_{t}(\bar{x})=0\end{array} \quad\right.\right.$ and $\quad\left\{\begin{array}{l}g_{1}(\bar{x})>0 \\ \vdots \\ g_{s}(\bar{x})>0\end{array}\right\}$
with each f_{l}, g_{k} a restricted analytic function.
(... local description of subsets of I^{n} semi-analytic in $\mathbb{R}^{n} \ldots$...)

Sub-analytic geometry

Sub-analytic geometry

The collection of subsets of I^{n} semi-analytic in \mathbb{R}^{n} is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

Sub-analytic geometry

The collection of subsets of I^{n} semi-analytic in \mathbb{R}^{n} is closed under the operations

What about under the operations

$$
\pi_{i}^{n} ?
$$

No by the next slide....

Sub-analytic geometry

Sub-analytic geometry

Example by Osgood (1916's):

Sub-analytic geometry

Example by Osgood (1916's):
Let

$$
B=\left\{(x, y, z, u) \in l^{4}: y=x u, z=x \frac{1}{10} \exp _{\mid /}(u)\right\}
$$

a compact semi-analytic in \mathbb{R}^{4} and A the projection of B onto the first 3 coordinates. Then $A \subseteq \beta^{3}$ is not semi-analytic in \mathbb{R}^{3}.

Sub-analytic geometry

Example by Osgood (1916's):

Let

$$
B=\left\{(x, y, z, u) \in I^{4}: y=x u, z=x \frac{1}{10} \exp _{\mid I}(u)\right\}
$$

a compact semi-analytic in \mathbb{R}^{4} and A the projection of B onto the first 3 coordinates. Then $A \subseteq \beta^{3}$ is not semi-analytic in \mathbb{R}^{3}.
If it were ... since $\operatorname{dim} A<3$ there would be a non zero formal power series $G(x, y, z)$ such that $G\left(x, x u, x \exp _{\mid /(}(u)\right)=0$. Writing $G=\sum_{j=0}^{\infty} G_{j}$ with G_{j} homogenous polynomials of degree j,

$$
\sum_{j=0}^{\infty} x^{j} G_{j}\left(1, u, \exp _{\mid /}(u)\right)=0
$$

and so all $G_{j}\left(1, u, \exp _{\mid /}(u)\right)=0$, and all polynomial $G_{j} \equiv 0$ since $\exp _{\mid /}(u)$ is transcendental.

Sub-analytic geometry

Sub-analytic geometry

A subset of I^{n} sub-analytic in \mathbb{R}^{n} is a projection of some subset of I^{n+m} semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

Sub-analytic geometry

A subset of I^{n} sub-analytic in \mathbb{R}^{n} is a projection of some subset of I^{n+m} semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^{n} sub-analytic in \mathbb{R}^{n} is closed under the operations

$$
\pi_{i}^{n} \cap \cup
$$

What about under the operation

Sub-analytic geometry

A subset of I^{n} sub-analytic in \mathbb{R}^{n} is a projection of some subset of I^{n+m} semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^{n} sub-analytic in \mathbb{R}^{n} is closed under the operations

$$
\pi_{i}^{n} \cap \cup
$$

What about under the operation
$\backslash ?$

Yes by the next slide....

Sub-analytic geometry

A subset of I^{n} sub-analytic in \mathbb{R}^{n} is a projection of some subset of I^{n+m} semi-analytic in \mathbb{R}^{n+m} for some m. (local description...)

The collection of subsets of I^{n} sub-analytic in \mathbb{R}^{n} is closed under the operations

$$
\pi_{i}^{n} \cap \cup
$$

What about under the operation

Yes by the next slide....
Sub-analytic geometry is the geometry of subsets sub-analytic in real-analytic spaces.

Sub-analytic geometry

Sub-analytic geometry

Theorem (Gabrielov's (1968))
The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Sub-analytic geometry

Theorem (Gabrielov's (1968))
The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:

Sub-analytic geometry

Theorem (Gabrielov's (1968))
The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:
Theorem (Łojasiewicz (1965))
Locally a subset semi-analytic in a real-analytic space X has finitely many connected components each of which is a subset semi-analytic in X.

Sub-analytic geometry

Theorem (Gabrielov's (1968))
The complement of a subset sub-analytic in a real-analytic space X is a subset sub-analytic in X.

Moreover.... we have Łojasiewicz property:
Theorem (Łojasiewicz (1965))
Locally a subset semi-analytic in a real-analytic space X has finitely many connected components each of which is a subset semi-analytic in X.

These things are very hard and use other stratification results (uniformization and rectilinearization) based on resolutions of singularities!

Sub-analytic geometry

Sub-analytic geometry

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

Sub-analytic geometry

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

Corollary
$A \subseteq I^{n}$ is definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

iff A is subset of I^{n} sub-analytic in \mathbb{R}^{n}.

Sub-analytic geometry

van den Dries (1986) observes that by Gabrielov and Łojasiewicz respectively:

Corollary
$A \subseteq I^{n}$ is definable in

$$
\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)
$$

iff A is subset of I^{n} sub-analytic in \mathbb{R}^{n}.
Corollary
$\overline{\mathbb{R}}_{\mathrm{an}}=\left(\mathbb{R}, 0,1,-,+, \cdot,(f)_{f \in \mathrm{an}},<\right)$ is o-minimal.

Conclusion...

Conclusion...

Later

Conclusion...

Later
van den Dries and Denef (1988) show that

$$
\operatorname{Th}\left(\overline{\mathbb{R}}_{\mathrm{an}}\right)
$$

has QE if we add a function symbol ${ }^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1}=0$ by convention.

Conclusion...

Later
van den Dries and Denef (1988) show that

$$
\operatorname{Th}\left(\overline{\mathbb{R}}_{\mathrm{an}}\right)
$$

has QE if we add a function symbol ${ }^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1}=0$ by convention.
van den Dries, Macintyre and Marker (1994) give a complete axiomatization of

$$
\operatorname{Th}\left(\overline{\mathbb{R}}_{\mathrm{an}}\right)
$$

Conclusion...

Later
van den Dries and Denef (1988) show that

$$
\operatorname{Th}\left(\overline{\mathbb{R}}_{\mathrm{an}}\right)
$$

has QE if we add a function symbol ${ }^{-1}$ for $x \mapsto \frac{1}{x}$ where $0^{-1}=0$ by convention.
van den Dries, Macintyre and Marker (1994) give a complete axiomatization of

$$
\operatorname{Th}\left(\overline{\mathbb{R}}_{\mathrm{an}}\right)
$$

THANK YOU!

