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Tame vs wild topology

Lets consider the question tame vs wild topology in the
following setting:

Consider a mathematical structure

M = (M, (c)c∈C , (f )f∈F , (R)R∈R, <)

where (M, <) is a dense total order with no endpoints.
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of definable sets and maps inM.

• X is object of Def(M) iff X ⊆ Mn (some n) and is defined
by a first-order formula (with parameters) in the language
ofM.

• f : X → Y is morphism of Def(M) iff its graph Γ(f ) is an
object of Def(M).



Tame vs wild topology

Consider the category
Def(M)

of definable sets and maps inM.

• X is object of Def(M) iff X ⊆ Mn (some n) and is defined
by a first-order formula (with parameters) in the language
ofM.

• f : X → Y is morphism of Def(M) iff its graph Γ(f ) is an
object of Def(M).



Tame vs wild topology

Consider the category
Def(M)

of definable sets and maps inM.

• X is object of Def(M) iff X ⊆ Mn (some n) and is defined
by a first-order formula (with parameters) in the language
ofM.

• f : X → Y is morphism of Def(M) iff its graph Γ(f ) is an
object of Def(M).



Tame vs wild topology

What can be said about the topology of the objects of

Def(M)?

• Poincaré paradise: with some glimpses of the rich
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• Cantor paradise: where only set theoretic features
ultimately survive (Cantor/Borel like sets).
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Tame vs wild topology

To know in which paradise we enter it is useful to know:

Defining formula Defined set
φ(x) A
ψ(x) B
¬φ(x) Mn \ A

φ(x) ∧ ψ(x) A ∩ B
φ(x) ∨ ψ(x) A ∪ B
∃xiφ(x) πn

i (A)

where πn
i (x1, . . . , xn) = (x1, . . . , x̂i , . . . , xn). If we know QF

definable sets we must know the effect of

\ ∩ ∪ πn
i
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Tame vs wild topology

What should one avoid to remain tame?

• (Kechris book) Let

M = (R, (c)c∈C , (f )f∈F , (R)R∈R, <)

and suppose that (R,0,1,+, ·, <) and Z are in Def(M).
Then X in Def(M) iff X is a projective subset of some Rn.
In particular, all Borel subsets of some Rn are in Def(M).

• So one should avoid having (Z,0,1,+, ·) in Def(M).
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What exactly is to be tame? Well...it is too vague, but in

Grothendieck’s Esquisse d’un programme (unpublished
research proposal from 1984)

proposes an axiomatic development of topology based on
stratifications that should include as special cases:

• Real algebraic and semi-algebraic geometry.
• Semi-analytic and sub-analytic geometry.
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are a model theoretic (logic) generalization of interesting
classical structures such as:

• the field of real numbers

R = (R,0,1,−,+, ·, <);

• the field of real numbers expanded by restricted analytic
functions

Ran = (R,0,1,−,+, ·, (f )f∈an, <).

Hopefully o-minimal structures:

• capture tameness;
• provide new insights originated from model-theoretic

methods into the real analytic-like setting.
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So what is an o-minimal structure?

(van den Dries 84; Pillay and Steinhorn 86):

M = (M, (c)c∈C , (f )f∈F , (R)R∈R, <)

is o-minimal if every definable subset of M in the structureM is
already definable in the dense linearly ordered set

(M, <).
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The simplest example

Let’s find out what are the subset of M definable in the dense
linearly ordered set

(M, <).

QF definable subsets of Mn are finite unions of simple sets:

{x ∈ Mn :


fi1(x) = fi ′1(x)
...
fik (x) = fi ′k (x)

and


fj1(x) < fj ′1(x)
...
fjs (x) < fj ′s (x)

}

where

{i1, . . . ik}, {i ′1, . . . , i ′k}, {j1, . . . , js}, {j ′1, . . . , js} ⊆ {1, . . . ,N}

and each fl (l = 1, . . .N) is a simple function, i.e.:

fl = xl or fl = cl ∈ M.
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Theorem
The first-order theory of DLO has QE.

Corollary
A ⊆ Mn definable in (M, <) iff X is finite unions of simple sets.

Corollary
A ⊆ M be definable in (M, <) iff A is a finite union of sets of the
form {a}, (−∞,a), (a,b) or (b,+∞) with a,b ∈ M.
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The simplest example

A geometric approach is instructive.....

Proposition (Cell decomposition)
Let f1, . . . fN : Mn+1 → M be simple. Then exists a partition
{C1, . . . ,Ck} of Mn by simple sets and functions ζC,j : C → M
(C ∈ {C1, . . . ,Ck} and j = 1, . . . , j(C)) such that:

(i) ζC,1 < . . . < ζC,j(C)

(ii) ζC,j is the restriction of a simple function.
(iii) for each (p,q) ∈ N2 we have either fp < fq or fp = fq or

fq < fp on the simple sets

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).
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Proof. By induction on n. Let s ≤ N be such that for each l ≤ s,
fl : Mn+1 → M is not xi and consider f l : Mn → M simple given
by fl . Apply Proposition to f 1, . . . , f s and take {C1, . . . ,Ck} a
partition of Mn by simple sets given by (iii).

For C ∈ {C1, . . . ,Ck} let

ζC,j = f s+j|C : C → M

with j = 1, . . . , j(C) = N − s.
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Let B be one of the

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

Let ε(l,r) = sign(fl|B, fr |B) (obvious definition) and let

B′ = {(x , t) ∈ C × V : sign(fl|(x , t), fr |(x , t)) = ε(l,r),∀(l , r)}

Then B = B′.
If B′ \ B 6= ∅, fix (x , t ′) ∈ B′ and take (x , t) ∈ B say t < t ′.Since
{s ∈ V : (x , s) ∈ B′} is an interval (easy), [t , t ′] ⊆ B′.
Contradiction: one (fl|B′ , fr |B′) must change sign and it does not
change sign.
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Corollary
Let A ⊆ Mn+1 be a finite union of simple sets. Then A is a finite
union of simple sets of the form

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

In particular, πn+1
i (A) is a finite union of simple sets.

Corollary
Let A ⊆ M be definable in (M, <). Then A is a finite union of
sets of the form {a}, (−∞,a), (a,b) or (b,+∞) with a,b ∈ M.
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PL geometry

Let’s find out what are the subset of V definable in

(V ,0,−,+, (λ)λ∈D, <)

an ordered vector space over an ordered division ring D with
(V ,0,−,+) an ordered divisible abelian group.

QF definable subsets of V n are finite unions of basic
semi-linear sets:

{x ∈ V n :


f1(x) = 0
...
ft (x) = 0

and


g1(x) > 0
...
gs(x) > 0

}

where each fl and each gk is an affine function, i.e.:

h(x) = λ1x1 + . . .+ λnxn + c.
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The collection of semi-linear sets i.e., finite unions of simple
sets, is closed under the operations
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What about under the operations

πn
i ?

Yes by the next slides ...

PL geometry is the geometry of semi-linear spaces.



PL geometry

The collection of semi-linear sets i.e., finite unions of simple
sets, is closed under the operations

\ ∩ ∪

What about under the operations

πn
i ?

Yes by the next slides ...

PL geometry is the geometry of semi-linear spaces.



PL geometry

The collection of semi-linear sets i.e., finite unions of simple
sets, is closed under the operations

\ ∩ ∪

What about under the operations

πn
i ?

Yes by the next slides ...

PL geometry is the geometry of semi-linear spaces.



PL geometry

The collection of semi-linear sets i.e., finite unions of simple
sets, is closed under the operations

\ ∩ ∪

What about under the operations

πn
i ?

Yes by the next slides ...

PL geometry is the geometry of semi-linear spaces.



PL geometry

Theorem
The first-order theory of ordered vector spaces over ordered
division rings which are ordered divisible abelian groups has
QE.

Corollary
A ⊆ V n definable in (V ,0,−,+, (λ)λ∈D, <) iff A is a semi-linear
set.

Corollary
(V ,0,−,+, (λ)λ∈D, <) is o-minimal.



PL geometry

Theorem
The first-order theory of ordered vector spaces over ordered
division rings which are ordered divisible abelian groups has
QE.

Corollary
A ⊆ V n definable in (V ,0,−,+, (λ)λ∈D, <) iff A is a semi-linear
set.

Corollary
(V ,0,−,+, (λ)λ∈D, <) is o-minimal.



PL geometry

Theorem
The first-order theory of ordered vector spaces over ordered
division rings which are ordered divisible abelian groups has
QE.

Corollary
A ⊆ V n definable in (V ,0,−,+, (λ)λ∈D, <) iff A is a semi-linear
set.

Corollary
(V ,0,−,+, (λ)λ∈D, <) is o-minimal.



PL geometry

A geometric approach is instructive.....

Proposition (Cell decomposition)
Let f1, . . . fN : V n+1 → V be affine. Then exists a partition
{C1, . . . ,Ck} of V n by basic semi-linear sets and functions
ζC,j : C → V (C ∈ {C1, . . . ,Ck} and j = 1, . . . , j(C)) such that:

(i) ζC,1 < . . . < ζC,j(C)

(ii) ζC,j is the restriction of an affine function.
(iii) each fl has constant sign on the basic semi-linear sets

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).
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Proof. By induction on n. Let s ≤ N be such that for each l ≤ s,
fl : V n+1 → V is does not depend on xi and consider
f l : V n → V affine given by fl . For s < l ≤ N let f l : V n → V be

f l(x) = (λl
i)
−1(−fl(x)− λixi)

which for each fixed (x1, . . . , x̂i , . . . , xn) gives the only zero of fl ,
where

fl(x) = λl
1x1 + . . .+ λl

ixi + . . .+ λl
n+1xn+1 + c.

Apply Proposition to {f 1, . . . , f s} ∪ {f p − f q : s < p,q ≤ N} and
take {C1, . . . ,Ck} a partition of V n by basic semi-linear sets
given by (iii). For C ∈ {C1, . . . ,Ck} let ζC,j = f s+j|C : C → V
with j = 1, . . . , j(C) = N − s.
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Let B be one of the

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

Let εl = sign(fl|B) and let

B′ = {(x , t) ∈ C × V : sign(fl|(x , t)) = εl , ∀l}

Then B = B′.
If B′ \ B 6= ∅, fix (x , t ′) ∈ B′ and take (x , t) ∈ B say t < t ′.Since
{s ∈ V : (x , s) ∈ B′} is an interval (easy), [t , t ′] ⊆ B′.
Contradiction: one fl|B′ must change sign and it does not
change sign.
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Corollary
Let A ⊆ V n+1 be a semi-linear set. Then A is a finite union of
basic semi-linear sets of the form

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

In particular, πn+1
i (A) is a semi-linear set.

Corollary
Let A ⊆ V be definable in (V ,0,−,+, (λ)λ∈D, <). Then A is a
finite union of sets of the form {a}, (−∞,a), (a,b) or (b,+∞)
with a,b ∈ V .
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Semi-algebraic geometry

Let’s find out what are the subset of R definable in

(R,0,1,−,+, ·, <)

a real closed ordered field.

QF definable subsets of Rn are semi-algebraic sets i.e., finite
unions of sets of the form:

{x ∈ Rn :


f1(x) = 0
...
ft (x) = 0

and


g1(x) > 0
...
gs(x) > 0

}

where each fl and each gk is a polynomial in R[X1, . . . ,Xn].
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What about under the operations
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Yes by the next slides....

Semi-algebraic geometry is the geometry of semi-algebraic
(subsets of real algebraic) spaces.
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Semi-algebraic geometry

Theorem (Tarski-Seidenberg)
The first-order theory of RCF has QE.

Corollary
A ⊆ Rn definable in (R,0,1,−,+, ·, <) iff A is a semi-algebraic
set.

Corollary
(R,0,1,−,+, ·, <) is o-minimal.
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A geometric approach is instructive.....

Theorem (Cell decomposition)
Let f1, . . . fN be in R[X1, . . . ,Xn][T ] such that all non zero ∂r fl

∂T r

are in list. Then exists a partition {C1, . . . ,Ck} of Rn by
semi-algebraic sets and functions ζC,j : C → R
(C ∈ {C1, . . . ,Ck} and j = 1, . . . , j(C)) such that:

(i) ζC,1 < . . . < ζC,j(C)

(ii) ζC,j is continuous and semi-algebraic (i.e., the graph is
semi-algebraic).

(iii) each fl has constant sign on the semi-algebraic sets

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).
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Semi-algebraic geometry

The proof is bit harder...

due to Łojasiewicz (1965) in the real field

R = (R,0,1,−,+, ·, <);

other proofs by Bochnak and Efroymson (1980), Delzell (1982),
Bochnak, Coste and Roy (1987), van den Dries (1982).
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Semi-algebraic geometry

Sketch of the proof... first we need

Lemma (Thom’s lemma)
Let f1, . . . fN be in R[T ] such that all non zero dfl

dT are in the list.
For each l , let εl ∈ {−1,0,1}. Then

{x ∈ R : sign(fl(x)) = εl , l = 1, . . . ,N}

is either empty, a point or an open interval. Moreover, the
closure of such set is obtained by relaxing the sign conditions.

Proof. By induction on N assuming deg(fi) ≤ deg(fi+1). Case
N = 0 is obvious and when we add fN note that
dfN
dT ∈ {f1, . . . fN−1} and has constant sign on

{x ∈ R : sign(fl(x)) = εl , l = 1, . . . ,N − 1}.
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Semi-algebraic geometry

Sketch of the proof of Cell decomposition...

By induction on n. Take

f∆(T ) = Π(l,r)∈∆
∂r fl
∂T r (T ),

e = 0,1, . . . ,max{deg(f∆(T ))}

A∆,e = {x ∈ Rn : #{z ∈ C : f∆(x , z) = 0} = e}

Claim 1: each A∆,e is semi-algebraic subset of Rn.

(A special and easy case of Chevalley’s constructibility theorem
in (C,0,1,+,−, ·), i.e., QE for ACF...)
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Semi-algebraic geometry

Apply the Theorem to all the A∆,e and take {C1, . . . ,Ck}
partition of Rn by semi-algebraic sets given by (iii). Let
C ∈ {C1, . . . ,Ck}. Then exists µ(C) such that C ⊆ A∆,µ(C).
Claim 2: exists j(C) such that

#{y ∈ R : f∆(x , y) = 0} = j(C) for all x ∈ C,

moreover, the ζC,j : C → R (j = 1, . . . , j(C)) giving the roots are
continuous and be ordered ζ1 < . . . < ζj(C).

(Follows from Continuity of complex roots from complex
analysis...)
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Let B be one of the

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

Let εl,r = sign( ∂
r fl

∂T r |B) and let

B′ = {(x , t) ∈ C × R : sign(
∂r fl
∂T r (x , t)) = εl,r , ∀(l , r)}

Then B = B′.
If B′ \ B 6= ∅, fix (x , t ′) ∈ B′ and take (x , t) ∈ B say t < t ′. Since
{s ∈ R : (x , s) ∈ B′} is an interval (Thom’s lemma), [t , t ′] ⊆ B′.
Contradiction: f∆|B′ must change sign and it does not change
sign.
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Corollary
Let A ⊆ Rn+1 be a semi-algebraic set. Then A is a finite union
of semi-algebraic sets of the form

Γ(ζC,j), (−∞, ζC,1), (ζC,j , ζC,j+1) and (ζC,j(C),+∞).

In particular, πn+1
i (A) is a semi-algebraic set.

Corollary
Let A ⊆ R be definable in (R,0,1,−,+, ·, <). Then A is a finite
union of sets of the form {a}, (−∞,a), (a,b) or (b,+∞) with
a,b ∈ R.
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Semi-algebraic geometry

Cell decomposition is a nice stratification result which gives
finiteness results such as:

Corollary (Łojasiewicz property)
Let A ⊆ Rn be definable in (R,0,1,−,+, ·, <). Then A has
finitely many semi-algebraically connected components.

Corollary (Uniform Łojasiewicz property)
Let A ⊆ Rm × Rn be definable in (R,0,1,−,+, ·, <). Then there
is MA ∈ N such that for each x ∈ Rm, the fiber Ax ⊆ Rn has at
most MA many semi-algebraically connected components.
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Sub-analytic geometry

A restricted analytic function f : Rn → R is a function given by

f (x) =


∑

α∈Nn aαxα1
1 · · · x

αn
n , for x ∈ In

0, otherwise

where
∑

α∈Nn aαxα1
1 · · · x

αn
n is convergent in some open

neighborhood of the compact box I = [−1,1]n and f (In) ⊆ I.

Example: restricted sin(x)

f (x) =


∑

l∈N
(−1)l

(2l+1)!x
2l+1, for x ∈ I

0, otherwise

.... similarly, restricted cos(x), 1
10 exp(x), etc...
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Sub-analytic geometry

Let’s find out what are the subset of R definable in

Ran = (R,0,1,−,+, ·, (f )f∈an, <)

the real field expanded by the restricted analytic functions.

QF definable subsets of In are subsets of In semi-analytic in Rn

i.e., finite unions of sets of the form:

{x ∈ In :


f1(x) = 0
...
ft (x) = 0

and


g1(x) > 0
...
gs(x) > 0

}

with each fl ,gk a restricted analytic function.
(... local description of subsets of In semi-analytic in Rn....)
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Sub-analytic geometry

Example by Osgood (1916’s):

Let

B = {(x , y , z,u) ∈ I4 : y = xu, z = x
1

10
exp|I(u)}

a compact semi-analytic in R4 and A the projection of B onto
the first 3 coordinates. Then A ⊆ I3 is not semi-analytic in R3.

If it were ... since dim A < 3 there would be a non zero formal
power series G(x , y , z) such that G(x , xu, x exp|I(u)) = 0.
Writing G =

∑∞
j=0 Gj with Gj homogenous polynomials of

degree j ,
∞∑

j=0

x jGj(1,u,exp|I(u)) = 0

and so all Gj(1,u,exp|I(u)) = 0, and all polynomial Gj ≡ 0
since exp|I(u) is transcendental.
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Sub-analytic geometry

A subset of In sub-analytic in Rn is a projection of some subset
of In+m semi-analytic in Rn+m for some m. (local description...)

The collection of subsets of In sub-analytic in Rn is closed
under the operations

πn
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What about under the operation

\ ?

Yes by the next slide....

Sub-analytic geometry is the geometry of subsets sub-analytic
in real-analytic spaces.
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Sub-analytic geometry

Theorem (Gabrielov’s (1968))
The complement of a subset sub-analytic in a real-analytic
space X is a subset sub-analytic in X .

Moreover.... we have Łojasiewicz property:

Theorem (Łojasiewicz (1965))
Locally a subset semi-analytic in a real-analytic space X has
finitely many connected components each of which is a subset
semi-analytic in X .

These things are very hard and use other stratification results
(uniformization and rectilinearization) based on resolutions of
singularities!
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Sub-analytic geometry

van den Dries (1986) observes that by Gabrielov and
Łojasiewicz respectively:

Corollary
A ⊆ In is definable in

Ran = (R,0,1,−,+, ·, (f )f∈an, <)

iff A is subset of In sub-analytic in Rn.

Corollary
Ran = (R,0,1,−,+, ·, (f )f∈an, <) is o-minimal.
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Later ....

van den Dries and Denef (1988) show that

Th(Ran)

has QE if we add a function symbol −1 for x 7→ 1
x where

0−1 = 0 by convention.

van den Dries, Macintyre and Marker (1994) give a complete
axiomatization of

Th(Ran).
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