
Characterising strongly normalising
intuitionistic sequent terms

J. Espirito-Santo1, S. Ghilezan2, J. Ivetić2

1 Mathematics Department, University of Minho, Portugal
jes@math.uminho.pt

2 Faculty of Engineering, University of Novi Sad, Serbia
gsilvia@uns.ns.ac.yu jelena@imft.ftn.ns.ac.yu

Abstract. This paper gives a characterisation, via intersection types,
of the strongly normalising terms of an intuitionistic sequent calculus
(where LJ easily embeds). The soundness of the typing system is re-
duced to that of a well known typing system with intersection types
for the ordinary λ-calculus. The completeness of the typing system is
obtained from subject expansion at root position. This paper’s sequent
term calculus integrates smoothly the λ-terms with generalised appli-
cation or explicit substitution. Strong normalisability of these terms as
sequent terms characterises their typeability in certain “natural” typing
systems with intersection types. The latter are in the natural deduction
format, like systems previously studied by Matthes and Lengrand et al.,
except that they do not contain any extra, exceptional rules for typing
generalised applications or substitution.

Introduction

The recent interest in the Curry-Howard correspondence for sequent calculus [9,
2, 5, 8, 6] made it clear that the computational content of sequent derivations and
cut-elimination can be expressed through an extension of the λ-calculus, where
the construction that interprets cut subsumes both explicit substitution and
an enlarged concept of application, exhibiting the features of “multiarity” and
“generality” [8]. The sequent calculus acts relatively to such calculus of sequent
terms as a typing system, and the ensuing notion of typeability is sufficient, but
not necessary, for strong normalisability.

This situation is well-known in the context of the ordinary λ-calculus, where
simple-typeability is sufficient, but not necessary, for strong β-normalisability.
A form of getting a characterisation of strongly normalising λ-terms is to ex-
tend the typing system with intersection types. For this reason intersection type
assignment systems were introduced into λ-calculus in the late 1970s by Coppo
and Dezani [3], Pottinger [15] and Sallé [18]. Intersection types completely char-
acterise strong normalisation in lambda calculus (see [1]).

In this paper we seek a characterisation of strongly normalising sequent terms
via intersection types. We first introduce, following [6], an extension of the λ-
calculus named λGtz (after Gentzen) corresponding to a sequent calculus for intu-
itionistic implicational logic, equipped with reduction rules for cut-elimination.

The typing system is from the beginning equipped with intersection types, fol-
lowing [4]. The correctness of the typing system is obtained by a reduction to
the correctness of the system D [12]. The completeness of the typing system is
obtained as a corollary to subject expansion at root position.

A recent topic of research is the use of intersection types for the characteri-
sation of strong-normalisability in extensions of the λ-calculus with generalised
applications or explicit substitutions [14, 13, 11]. A common symptom of these
works is the need to throw in the typing system some extra, exceptional rules
for typing generalised applications or substitutions. This breaks somehow the
harmony observed in the ordinary λ-calculus between typeability induced by
intersection types and strong β-normalisability. One may wonder whether, in
the extended scenario with generalised applications or explicit substitutions the
blame for the slight mismatch is on some insufficiency of the intersection types
technique, or on some insufficiency of the reduction relations causing too many
terms to be terminating.

It turns out that, because of its expressive power, λGtz is a good tool to an-
alyze this question. A simple analysis of our main characterisation result shows
that strong normalisability as sequent terms (i.e. inside λGtz) of λ-terms with
generalised applications or explicit substitutions characterises their typeability
in certain “natural” typing systems with intersection types. The latter are in
the natural deduction format, like systems previously studied in [14, 13], except
that they do not contain any extra, exceptional rules for typing generalised ap-
plications or substitution. So one is led to compare the behavior under reduction
of λ-terms with generalised applications or explicit substitutions inside λGtz and
inside their native system ΛJ [10] or λx [17]. We conclude that the problem in
ΛJ is that we cannot form explicit substitutions, and in λx is that we cannot
compose substitutions.

The paper is organized as follows. Section 1 presents the syntax of the un-
typed λGtz calculus. Section 2 introduces an intersection type system λGtz∩.
Strong normalisation is proved in Section 3, and characterisation of strong nor-
malisation is given in Section 4. In Section 5, the relation between λGtz calculus
and calculi with generalised applications and explicit substitutions is discussed.
Finally, Section 6 concludes this paper.

1 Syntax of λGtz

The abstract syntax of λGtz is given by:

(Terms) t, u, v ::= x |λx.t | tk
(Contexts) k ::= x̂.t |u :: k,

where x ranges over a denumerable set of term variables.

Terms are either variables, abstractions or cuts tk. A context is either a
selection or a context cons(tructor). Terms and contexts are together referred to
as the expressions and will be ranged over by E. In λx.t and x̂.t, t is the scope of

the binders λx and x̂, respectively. Free variables in λGtz calculus are those that
are not bound neither by abstraction nor by selection operator and Barendregt’s
convention should be applied in both cases. In order to avoid parentheses, we let
the scope of binders extend to the right as much as possible.

According to the form of k, a cut may be an explicit substitution t(x̂.v) or
a multiary generalised application t(u1 :: · · · :: um :: x̂.v) (m ≥ 1). In the last
case, if m = 1, we get a generalised application t(u :: x̂.v); if v = x, we get a
multiary application t[u1, · · · , um] (think of x̂.x as the empty list of arguments);
a combination of constraints m = 1 and v = x brings cuts to the form of an
ordinary application.

Reduction rules of λGtz are as follows:

(β) (λx.t)(u :: k)→ u(x̂.tk)
(π) (tk)k′ → t(k@k′)
(σ) t(x̂.v)→ v[x := t]
(µ) x̂.xk → k, if x /∈ k

where t[x := u] (or k[x := u]) denotes meta-substitution, and k@k′ is defined by
(u :: k)@k′ = u :: (k@k′) and (x̂.v)@k′ = x̂.vk′.

The rules β, π, and σ reduce cuts to the trivial form y(u1 :: · · ·um :: x̂.v), for
some m ≥ 1, which represents a sequence of left introductions. Rule β generates
a substitution, and rule σ executes a substitution in the meta-level. Rule π gener-
alises the permutative conversion of the λ-calculus with generalised applications.
Rule µ has a structural character, and either performs a trivial substitution in
the reduction t(x̂.xk)→ tk, or minimizes the use of the generality feature in the
reduction t(u1 · · ·um :: x̂.xk)→ t(u1 · · ·um :: k).

βπσ-normal forms of λGtz are:

(Terms) tnf , unf , vnf = x | λx.tnf | x(unf :: knf)
(Contexts) knf = x̂.tnf | tnf :: knf

λGtz is a flexible system for representing logical derivations in the sequent cal-
culus format and studying cut-elimination. The inference rules of LJ axiom, right
introduction, left introduction, and cut, are represented by the constructions x,
λx.t, y(u :: x̂.v), and t(x̂.v), respectively. The βπσ-normal forms correspond to
the multiary, cut-free, sequent terms of [19]. See [6] for more on λGtz.

2 Intersection types for λGtz

Definition 1. The set of types Types, ranged over by A,B,C, ..., A1, ..., is in-
ductively defined as follows:

A,B ::= p | A→ B | A ∩B

where p ranges over a denumerable set of type atoms.

Definition 2. (i) Pre-order ≤ over the set of types is the smallest relation that
satisfies the following properties:

1. A ≤ A
2. A ∩B ≤ A and A ∩B ≤ B
3. (A→ B) ∩ (A→ C) ≤ A→ (B ∩ C)
4. A ≤ B and B ≤ C implies A ≤ C
5. A ≤ B and A ≤ C implies A ≤ B ∩ C
6. A′ ≤ A and B ≤ B′ implies A→ B ≤ A′ → B′

(ii) Two types are equivalent, A ∼ B , if and only if A ≤ B and B ≤ A.

In this paper, we will consider types modulo the equivalence relation.

Remark 3. The equivalence (A → B) ∩ (A → C) ∼ A → (B ∩ C), or more
generally ∩(∩Ak → Bi) ∼ ∩Ak → ∩Bi, follows from the given set of rules, and
will be used in the sequel.

Definition 4. (i) A basic type assignment is an expression of the form x : A,
where x is a term variable and A is a type.

(ii) A basis Γ is a set of basic type assignments, where all term variables are
different.

(iii) There are two kinds of type assignment:
- Γ ` t : A for typing terms;
- Γ ;B ` k : A for typing contexts.

The following typing system for λGtz is named λGtz∩. In Ax, →L, and Cut
∩Ai = A1 ∩ · · · ∩An, for some n ≥ 1.

j ∈ {1, · · · , n}
Γ, x : ∩Ai ` x : Aj

(Ax)

Γ, x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` u : Ai, ∀i ∈ {1, · · · , n} Γ ;B ` k : C

Γ ;∩Ai → B ` u :: k : C
(→L)

Γ ` t : Ai, ∀i ∈ {1, · · · , n} Γ ;∩Ai ` k : B
Γ ` tk : B

(Cut)
Γ, x : A ` v : B
Γ ;A ` x̂.v : B

(Sel)

By taking n = 1 in Ax, →L, and Cut we get the typing rules of [6] for
assigning simple types.

Notice that in this typing system there are no separate rules for the right
introduction of intersections. The management of intersection is built in the
other rules.

Proposition 5 (Admissible rule - (∩L)).

(i) If Γ, x : Ai ` t : B, for some i, then Γ, x : ∩Ai ` t : B.

(ii) If Γ, x : Ai;C ` k : B, for some i, then Γ, x : ∩Ai;C ` k : B.

Proof. By mutual induction on the derivation. ut

Proposition 6 (Basis expansion).

(i) Γ ` t : A ⇔ Γ, x : B ` t : A and x /∈ Fv(t).
(ii) Γ ;C ` k : A ⇔ Γ, x : B;C ` k : A and x /∈ Fv(k).

Definition 7.

Γ1 ∩ Γ2 = {x : A|x : A ∈ Γ1 & x /∈ Γ2}
∪ {x : A|x : A ∈ Γ2 & x /∈ Γ1}
∪ {x : A ∩B|x : A ∈ Γ1 & x : B ∈ Γ2}.

Proposition 8 (Bases intersection).

(i) Γ1 ` t : A ⇒ Γ1 ∩ Γ2 ` t : A.
(ii) Γ1;B ` k : A ⇒ Γ1 ∩ Γ2;B ` k : A.

Proposition 9 (Generation lemma - GL).

(i) Γ ` x : A iff x : ∩Ai ∈ Γ and A ≡ Ai, for some i.
(ii) Γ ` λx.t : A iff A ≡ B → C and Γ, x : B ` t : C.

(iii) Γ ;A ` x̂.t : B iff Γ, x : A ` t : B.

(iv) Γ ` tk : A iff there is a type B ≡ ∩Bi such that Γ ` t : Bi for all i, and
Γ ;∩Bi ` k : A.

(v) Γ ;D ` t :: k : C iff D ≡ ∩Ai → B, and Γ ;B ` k : C and Γ ` t : Ai for
all i.

Proof. The proof is straightforward since all rules are syntax-directed. ut

Lemma 10 (Substitution and append lemma).

(i) If Γ, x : ∩Ai ` t : B and Γ ` u : Ai, for each i, then Γ ` t[x := u] : B.

(ii) If Γ, x : ∩Ai;C ` k : B and Γ ` u : Ai, for each i, then Γ ;C ` k[x := u] : B.

(iii) If Γ ;B ` k : Ci, ∀i, and Γ ;∩Ci ` k : A, then Γ ;B ` k@k′ : A.

Proof. (i) and (ii) is proved by simultaneous induction on t and k. (iii) is proved
by induction on k. ut

Theorem 11 (Subject Reduction). If Γ ` t : A and t→ t′, then Γ ` t′ : A.

Proof. The proof employs the previous lemma. It is omitted because of the lack
of space. ut
Example 12. In λ-calculus, the term λx.xx has the type (A ∩ (A→ B))→ B.
The corresponding term in λGtz-calculus is λx.x(x :: ŷ.y). Although being a
normal form this term is not typeable in the simply typed λGtz-calculus. It is
typeable in λGtz∩ in the following way:

Ax
x : A ∩ (A→ B) ` x : A→ B

Ax
x : A ∩ (A→ B) ` x : A

Ax
x : A ∩ (A→ B), y : B ` y : B

Sel
x : A ∩ (A→ B);B ` ŷ.y : B

→L

x : A ∩ (A→ B);A→ B ` (x :: ŷ.y) : B
Cut

x : A ∩ (A→ B) ` x(x :: ŷ.y) : B
→R .

` λx.x(x :: ŷ.y) : (A ∩ (A→ B))→ B

3 Typeability ⇒ SN

In order to prove strong normalisation for the λGtz∩ system, we connect it with
the well-known system D for λ-calculus via an appropriate mapping, and then
use strong normalisation theorem for λ-terms typeable in D system.

λ-terms are given by

M,N,P ::= x |λx.M |MN

and equipped with

(β) (λx.M)N →M [x := N]
(π1) (λx.M)NP → (λx.MP)N
(π2) M((λx.P)N)→ (λx.MP)N

without clash of free and bound variables (Barendregt’s convention). We let
π = π1 ∪ π2.

Proposition 13. If a λ-term M is β-SN, then M is βπ-SN.

Proof. This is Theorem 2 in [7]. ut
The following typing system for λ is named D in [12].

Γ, x : A ` x : A Ax

Γ, x : A `M : B
Γ ` λx.M : A→ B

→ I
Γ `M : A→ B Γ ` N : A

Γ `MN : B → E

Γ `M : A Γ `M : B
Γ `M : A ∩B ∩I

Γ `M : A1 ∩A2

Γ `M : Ai
∩E

Lemma 14. The following rules are admissible in D:

Γ `M : A Γ ⊆ Γ ′
Γ ′ `M : A Weak

Γ ` N : A Γ, x : A `M : B
Γ `M [x := N] : B Subst

Proposition 15 (SN). If a λ-term M is typeable in D, then M is β-SN.

Proof. A result from [16], [12]. ut

We define a mapping F from λGtz to λ. The idea is as follows. If F (t) =
M , F (ui) = Ni and F (v) = P , then t(u1 :: u2 :: x̂.v), say, is mapped to
(λx.P)(MN1N2). Formally, a mapping F : λGtz − Terms −→ λ − Terms is
defined simultaneously with an auxiliary mapping F ′ : λ − Terms × λGtz −
Contexts −→ λ− Terms as follows:

F (x) = x

F (λx.t) = λx.F (t)
F (tk) = F ′(F (t), k)

F ′(N, x̂.t) = (λx.F (t))N
F ′(N, u :: k) = F ′(NF (u), k)

Proposition 16. If λGtz∩ proves Γ ` t : A, then D proves Γ ` F (t) : A.

Proof. The proposition is proved together with the claim: if λGtz∩ proves Γ ;A `
k : B and D proves Γ ` N : A, then D proves Γ ` F ′(N, k) : B. The proof is by
simultaneous induction on derivations Π1 and Π2 of Γ ` t : A and Γ ;A ` k : B,
respectively. Cases according to the last typing rule used.

The case (Ax) is obtained by the corresponding Ax in D together with the
∩E. The case → R, is easy, because D has the corresponding typing rule.

Case (Cut). Π1 has the shape

Π11i

Γ ` t : Ai,∀i
Π12

Γ ;∩Ai ` k : B
Γ ` tk : B

(Cut)

By IH(Π11i), D proves Γ ` F (t) : Ai. By repeated application of ∩I, D proves
Γ ` F (t) : Ai. By IH(Π12), D proves Γ ` F ′(F (t), k) : B. This is what we want,
since F ′(F (t), k) = F (tk).

Case (Sel). Π2 has the shape

Π21

Γ, x : A ` t : B
Γ ;A ` x̂.t : B

(Sel)

Suppose D proves Γ ` N : A. Then in D one has

IH
Γ, x : A ` F (t) : B
Γ ` λx.F (t) : A→ B

→ I
Γ ` N : A

Γ ` (λx.F (t))N : B
(→ E)

This is what we want, since F ′(N, x̂.t) = (λx.F (t))N .
Case (→ L). Π2 has the shape

Π21i

Γ ` u : Ai,∀i
Π22

Γ ;B ` k : C
Γ ;∩Ai → B ` u :: k : C

(→ L)

Suppose D proves Γ ` N : ∩Ai → B. By IH (Π21i) D proves Γ ` F (u) : Ai,∀i;
therefore, by repeated application of ∩I, D proves Γ ` F (u) : ∩Ai. Then in D
one has

Γ ` N : ∩Ai → B Γ ` F (u) : ∩Ai
Γ ` NF (u) : B

(→ E)

Hence, by IH(Π22), D proves Γ ` F ′(NF (u), k) : C. This is what we want, since
F ′(NF (u), k) = F ′(N, u :: k). ut

Proposition 17. For all t ∈ λGtz, if F (t) is βπ-SN, then t is βπσµ-SN.

Proof. Consequence of the following properties of F : (i) if t→βπ u in λGtz, then
F (t)→+

π F (u) in λ; (ii) if t→σµ u in λGtz, then F (t)→β F (u) in λ. ut

Theorem 18 (Typeability ⇒ SN). If a λGtz-term t is typeable in λGtz∩, then
t is βπσµ-SN.

Proof. Suppose t is typeable in λGtz∩. Then, by Proposition 16, F (t) is typeable
in D. So, by Proposition 15, F (t) is β-SN. Hence, by Proposition 13, F (t) is
βπ-SN. Finally, by Proposition 17, t is βπσµ-SN. ut

4 SN ⇒ Typeability

4.1 Typeability of normal forms

Proposition 19. βπσ-normal forms of λGtz calculus are typeable in λGtz∩ sys-
tem. Hence so are βπσµ-normal forms.

Proof. By simultaneous induction on the structure of βπσ-normal terms and
contexts.

– Basic case: Every variable is typeable.
– λx.tnf is typeable.

By IH, tnf is typeable, so Γ ` tnf : B. We examine two cases:

Case 1. If x : A ∈ Γ , then Γ = Γ ′, x : A and we can assign the following type to
λx.tnf :

Γ ′, x : A ` tnf : B
(→R)

Γ ′ ` λx.tnf : A→ B.

Case 2. If x : A /∈ Γ , then by Proposition 6 we get Γ, x : A ` tnf : B thus
concluding

Γ, x : A ` tnf : B
(→R)

Γ ` λx.tnf : A→ B.

– x̂.tnf is typeable.
Proof is very similar to the previous one.

– tnf :: knf is typeable.
By IH tnf and knf are typeable, i.e. Γ1 ` tnf : A and Γ2;B ` knf : C. Then,
by Proposition 8 we get Γ1 ∩ Γ2 ` tnf : A and Γ1 ∩ Γ2;B ` knf : C, so we
assign the following type to tnf :: knf :

Γ1 ∩ Γ2 ` tnf : A Γ1 ∩ Γ2;B ` knf : C
(→L)

Γ1 ∩ Γ2;A→ B ` tnf :: knf : C.

– x(tnf :: knf) is typeable.
By IH and the previous case, context tnf :: knf is typeable, i.e. Γ ;A→ B `
tnf :: knf : C. We examine 3 cases:

Case 1. If x : A→ B ∈ Γ , then:

(Ax)
Γ ` x : A→ B Γ ;A→ B ` tnf :: knf : C

(Cut)
Γ ` x(tnf :: knf) : C.

Case 2. If x : D ∈ Γ , then Γ = Γ ′, x : D and we can expand basis of x : A →
B ` x : A → B to Γ ′, x : D ∩ (A → B) ` x : A → B using Propositions
5 and 6. Also, by Proposition 5, we can write Γ ′, x : D ∩ (A→ B);A→
B ` tnf :: knf : C. Now, the corresponding type assignment is:

Γ
′
, x : D ∩ (A→ B) ` x : A→ B Γ

′
, x : D ∩ (A→ B);A→ B ` tnf :: knf : C

(Cut)
Γ

′
, x : D ∩ (A→ B) ` x(tnf :: knf) : C.

Case 3. If x isn’t declared at all, by Proposition 6 we get Γ, x : A→ B;A→ B `
tnf :: knf : C from Γ ;A→ B ` tnf :: knf : C, and then conclude:

(Ax)
Γ, x : A→ B ` x : A→ B Γ, x : A→ B;A→ B ` tnf :: knf : C

(Cut)
Γ, x : A→ B ` x(tnf :: knf) : C.

ut

4.2 Subject expansion at root position

Lemma 20. If Γ ` u(x̂.tk) : A and x 6∈ Fv(u) ∪ Fv(k), then Γ ` (λx.t)(u ::
k) : A.

Proof. Γ ` ux̂.(tk) : A implies, by GL(iv), that there is a type B ≡ ∩Bi, such
that Γ ` u : Bi, for all i and Γ ;∩Bi ` x̂.(tk) : A. Further, this implies, by
GL(iii), that Γ, x : ∩Bi ` tk : A so then there is a C ≡ ∩Cj such that Γ, x :
∩Bi ` t : Cj for all j and Γ, x : ∩Bi;∩Cj ` k : A. By assumption, the variable
x is not free in k, so using Proposition 6 we can write the previous sequent as
Γ ;∩Cj ` k : A. Now, because of the equivalence ∩(∩Bi → Cj) ∼ ∩Bi → ∩Cj ,
we have:

Γ, x : ∩Bi ` t : Cj , ∀j
(→R)

Γ ` λx.t : ∩Bi → Cj , ∀j

Γ ` u : Bi, ∀i Γ ;∩Cj ` k : A
(→L)

Γ ;∩Bi → ∩Cj ` u :: k : A
(Cut)

Γ ` (λx.t)(u :: k) : A.

ut

Lemma 21 (Inverse substitution lemma).

(i) Let Γ ` v[x := t] : A, and let t be typeable. Then there is a basis Γ ′ and a
type B ≡ ∩Bi, such that Γ ′, x : ∩Bi ` v : A and for all i, Γ ′ ` t : Bi.

(ii) Let Γ ;C ` k[x := t] : A, and let t be typeable. Then there is a basis Γ ′ and
a type B ≡ ∩Bi, such that Γ ′, x : ∩Bi;C ` k : A and for all i, Γ ′ ` t : Bi.

Proof. By simultaneous induction on the structure of the term v and the context
k. ut

Lemma 22 (Inverse append lemma). If Γ ;B ` k@k′ : A then there is a
type C ≡ ∩Ci such that Γ ;B ` k : Ci, ∀i and Γ ;∩Ci ` k′ : A.

Proof. By induction on the structure of k.

– Basic case: k ≡ x̂.v
In this case k@k′ = (x̂.v)@k′ = x̂.vk′. From Γ ;B ` x̂.vk′ : A, by GL(iii),
we have that Γ, x : B ` vk′ : A. Then, by GL(iv), there is a C ≡ ∩Ci such
that Γ, x : B ` v : Ci, ∀i and Γ, x : B;∩Ci ` k′ : A. From the first sequent
we get Γ ;B ` x̂.v : Ci, ∀i . From the second one, considering that x is not
free in k′, we get Γ ;∩Ci ` k′ : A.

– k ≡ u :: k′′

In this case, k@k′ = (u :: k′′)@k′ = u :: (k′′@k′). From Γ ;B ` u :: (k′′@k′) :
A, by GL(v), B ≡ ∩Ci → D, Γ ;D ` k′′@k′ : A and Γ ` u : Ci,
for all i. From the first sequent, by IH, we get some E ≡ ∩Ej such that
Γ ;D ` k′′ : Ej , ∀j and Γ ;∩Ej ` k′ : A. Finally, for each j,

Γ ` u : Ci, ∀i Γ ;D ` k′′ : Ej
(→L)

Γ ;∩Ci → D(≡ B) ` u :: k′′ : Ej

so the proof is completed.

ut

Proposition 23 (Subject expansion at root position). If t → t′, t is the
contracted redex and t′ is typeable in λGtz∩, then t is typeable in λGtz∩.

Proof. We examine four different cases, according to the applied reduction.

– (β) : Directly follows from Lemma 20.

– (σ) : We should show that typeability of t′ ≡ v[x := u] leads to typeability
of t ≡ ux̂.v.
Assume that Γ ` v[x := u] : A. By Lemma 21 there are a Γ ′ and a B ≡ ∩Bi
such that Γ ′ ` u : Bi, ∀i and Γ ′, x : ∩Bi ` v : A. Now

Γ ′ ` u : Bi, ∀i

Γ ′, x : ∩Bi ` v : A
(Sel)

Γ ′;∩Bi ` x̂.v : A
(Cut)

Γ ′ ` ux̂.v : A.

– (π) : We should show that typeability of t(k@k′) implies typeability of
(tk)k′. Γ ` t(k@k′) : A, by GL(iv) yields that there is B ≡ ∩Bi such that
Γ ` t : Bi, ∀i, and Γ ;∩Bi ` k@k′ : A. By applying Lemma 22 on previous
sequent, we get Γ ;∩Bi ` k : Cj , ∀j, and Γ ;∩Cj ` k′ : A, for some type
C ≡ ∩Cj . Now, for each j,

Γ ` t : Bi, ∀i Γ ;∩Bi ` k : Cj
(Cut)

Γ ` tk : Cj

So Γ ` tk : Cj , ∀j. We obtain Γ ` (tk)k′ : A with a further application of
(Cut).

– (µ) : It should be shown that typeability of k implies typeability of x̂.xk.
Assume Γ ;B ` k : A. Since x /∈ k we can suppose that x /∈ Γ , and by using
Proposition 6 write Γ, x : B;B ` k : A. Now

Γ, x : B ` x : B Γ, x : B;B ` k : A
(Cut)

Γ, x : B ` xk : A
(Sel)

Γ ;B ` x̂.xk : A.

ut

Theorem 24 (SN ⇒ typeability). All strongly normalising (βσπ − SN) ex-
pressions are typeable in λGtz∩ system.

Proof. The proof is by induction over the length of the longest reduction path
out of a strongly normalising expression E, with a subinduction on the size of
E.

If E is a βσπ-normal form, then E is typeable by Proposition 19.

If E is itself a redex, let E′ be the expression obtained by contracting redex
E. Therefore E′ is strongly normalising and by IH it is typeable. Then E is
typeable, by Proposition 23.

Next suppose that E is not itself a redex nor a normal form. Then E is of
one of the following forms: λx.u, x(u :: k), u :: k, or x̂.u (in each case with
u or k not βπσ-normal). Each of the above u and k is typeable by IH, as the
subexpressions of E. It is easy then to build the typing of E, as in the proof of
Proposition 19. ut

Corollary 25. A term is strongly normalising if and only if it is typeable in
λGtz∩.

Proof. By Theorems 18 and 24. ut

5 Generalised applications and explicit substitutions

We consider two extensions of the λ-calculus: the ΛJ-calculus, where application
M(N, x.P) is generalised [10]; and the λx-calculus, where substitution M〈x :=
N〉 is explicit [17]. Intersection types have been used to characterise the strongly
normalising terms of both ΛJ-calculus [14] and λx-calculus [13].

Both in [14] and [13] the “natural” typing rules for generalised application or
substitution had to be supplemented with extra rules (the rule app2 in [14]; the
rules drop or K−Cut in [13]) in order to secure that every strongly normalising
term is typeable. Indeed, examples of terms are given whose reduction in ΛJ or
λx always terminates, but which would not be typeable, had the extra rules not
been added to the typing system. The examples in ΛJ [14] and λx [13] are

t0 := (λx.x(x,w.w))(λz.z(z, w.w), y.y′), y′ 6= y ,

t1 := y′〈y := xx〉〈x := λz.zz〉 ,

respectively. Two questions are raised by these facts: first, why the “natural”
rules fail to capture the strongly normalising terms; second, how to characterise
in terms of reduction the terms that receive a type under the “natural” typing
rules. We now prove that λGtz and λGtz∩ are useful for giving an answer to these
questions.

Definition 26. Let t be a λGtz-term.

1. t is a λJ-term if every cut occurring in t is of the form t(u :: x̂.v).
2. t is a λx-term if every cut occurring in t has one of the forms t(u :: x̂.x) or

t(x̂.v).

We adopt the terminology “λJ-term” (instead of “ΛJ-term”) for the sake of
uniformity. We may write t(u, x.v) instead of t(u :: x̂.v). Let t(u) abbreviate
t(u :: x̂.x) and v〈x := t〉 denote t(x̂.v). An inductive characterisation is:

(λJ-terms) t, u, v ::= x |λx.t | t(u, x.v)
(λx-terms) t, u, v ::= x |λx.t | t(u) | v〈x := t〉

Definition 27.

1. λJ∩ is the typing system consisting of the rules Ax, →R and the following
rule, where ∩Ak = A1∩· · ·∩An and ∩Bi = B1∩· · ·∩Bm, for some n,m ≥ 1:
Γ ` t : ∩Ak → Bi , ∀i ∈ {1, · · · ,m} Γ ` u : Ak , ∀k ∈ {1, · · · , n} Γ, x : ∩Bi ` v : C

Γ ` t(u, x.v) : C
(Gen.Elim)

2. λx∩ is the typing system consisting of the rules Ax, →R and the following
rules, where ∩Ak = A1 ∩ · · · ∩An, for some n ≥ 1:

Γ ` t : ∩Ak → B Γ ` u : Ak ,∀k ∈ {1, · · · , n}
Γ ` t(u) : B

(Elim)

Γ ` t : Ak, ∀k ∈ {1, · · · , n} Γ, x : ∩Ak
Γ ` v〈x := t〉 : B

(Subst)

If n = m = 1 in (Gen.Elim), then we obtain the usual rule for assigning simple
types to generalised application. If n = 1 in (Elim) or (Subst), then we obtain
the usual rule for assigning simple types to application or substitution.

λJ∩ is a “natural” system for typing λJ-terms, in two senses. First, the rules
in λJ∩ follow the natural deduction format. Notice that we retained in λJ∩ only
the rules of λGtz∩ that act on the RHS formula of sequents, and replaced the
other rules of λGtz∩ by an elimination rule. Second, λJ∩ has just one rule for
typing generalised applications, contrary to in [14]. Similarly, λx∩ is a “natural”
system for typing λx-terms. Again, we retained in λx∩ only the rules of λGtz∩
that act on the RHS formula of sequents, and replaced the other rules of λGtz∩
by an elimination rule and a substitution rule. In addition, no extra cut or
substitution rules are needed, contrary to [13].

The following is an addenda to GL.

Proposition 28. In λGtz∩ one has:

1. Γ ` t(u, x.v) : C iff there are A1, . . . , An, B1, . . . Bm such that Γ ` t :
∩Ak → Bi, for all i; and Γ ` u : Ak, for all k; and Γ, x : ∩Bi ` v : C.

2. Γ ` t(u) : B iff there are A1, . . . , An such that Γ ` t : ∩Ak → B and
Γ ` u : Ak, for all k.

3. Γ ` v〈x := t〉 : B iff there are A1, . . . , An such that Γ ` t : Ai, for all i; and
Γ, x : ∩Ai ` v : B.

Proof. We just sketch the proof of statement 1. The “only if” implication fol-
lows by successive application of GL. As to the “if” implication, let A1, . . . , An,
B1, . . . Bm be such that Γ ` t : ∩Ak → Bi, ∀i, Γ ` u : Ak, ∀k, and
Γ, x : ∩Bi ` v : C. Here we use ∩Ak → ∩Bi ∼ ∩(∩Ak → Bi). Recall t(u :: x̂.v)
is denoted by t(u, x̂.v).

Γ ` t : ∩Ak → Bi, ∀i

Γ ` u : Ak, ∀k

Γ, x : ∩Bi ` v : C
(Sel)

Γ ;∩Bi ` x̂.v : C
(→ L)

Γ ;∩Ak → ∩Bi ` u :: x̂.v
(Cut)

Γ ` t(u :: x̂.v) : C

Proposition 29.

1. Let t be a λJ-term. λGtz∩ derives Γ ` t : A iff λJ∩ derives Γ ` t : A.
2. Let t be a λx-term. λGtz∩ derives Γ ` t : A iff λx∩ derives Γ ` t : A.

Proof. The “if” implications are proved by induction on Γ ` t : A in λJ∩ or
λx∩, using the fact that Gen.Elim, Elim, and Subst are derived rules of λGtz∩
(which is clear from the proof of Proposition 28). The “only if” implications are
proved by induction on t, and rely on GL and its addenda (Proposition 28). ut

So we get a characterisation of typeability of t in the “natural” systems λJ∩
or λx∩ in terms of strong normalisability of t as a sequent term:

Corollary 30.

1. Let t be a λJ-term. t is βπσµ− SN iff t is typeable in λJ∩.
2. Let t be a λx-term. t is βπσµ− SN iff t is typeable in λx∩.

In addition, the “natural” systems λJ∩ and λx∩ do capture the strongly nor-
malising terms, the point being what we mean by “strongly normalising”. Going
back to the examples t0 and t1 of the beginning of this section, although t0 and
t1 are strongly normalising in ΛJ and λx, respectively, they are not so in λGtz.
Indeed, after one β-reduction step, t0 becomes (λz.z(z, w.w))x̂.((x(x,w.w))ŷ.y′),
which, by abbreviation, is y′〈y := x(x)〉〈x := λz.z(z)〉, that is t1! After one σ-
reduction step, t1 becomes the clearly non-terminating y′〈y := (λz.z(z))(λz.z(z))〉.
So, in this sense, it is correct that the natural typing systems λJ∩ and λx∩ (as
well as the typing systems of [14] and [13] without extra-rules app2, drop, and
K − Cut) fail to give a type to t0 and t1, because these terms are, after all,
non-terminating. Why were these terms no so in their native reduction systems?
In ΛJ , t0 becomes y′ after one step of β-reduction because the two substitutions
of t1 cannot be formed and hence are immediately executed. In λx, the execu-
tion of the outer substitution in t1 is blocked because λx has no composition of
substitutions.

6 Conclusion

This paper gives a characterisation, via intersection types, of the strongly nor-
malising intuitionistic sequent terms. This expands the range of application of the
intersection types technique. One of the points of extending the Curry-Howard
correspondence to sequent calculus is that such exercise will shed light on is-
sues like reduction, strong normalisability, or typeability in the original systems
in natural deduction format. In this paper this promise is fulfilled, because the
characterisation of strong normalisability in the sequent calculus proves useful
for analysing recent applications of intersection types in natural deduction sys-
tem containing generalised applications or explicit substitutions. This analysis
confirms that there is a delicate equilibrium between clean typing systems and
expressive reduction systems.

References

1. R. Amadio and P-L. Curien. Domains and Lambda-Calculi, volume 46 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

2. H. Barendregt and S. Ghilezan. Lambda terms for natural deduction, sequent
calculus and cut elimination. J. Funct. Program., 10(1):121–134, 2000.

3. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for lambda terms.
Archiv für Mathematische Logik, 19:139–156, 1978.

4. D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization
in the Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani
heritage. to appear in Theoretical Computer Science, 2007.

5. J. Esṕırito Santo. Revisiting the correspondence between cut-elimination and nor-
malisation. In Proceedings of ICALP’2000, volume 1853 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2000.

6. J. Esṕırito Santo. Completing Herbelin’s programme. In S. Ronchi Della Rocca,
editor, Proceedings of TLCA’07, volume 4583 of Lecture Notes in Computer Sci-
ence, pages 118–132. Springer-Verlag, 2007.

7. J. Esṕırito Santo. Delayed substitutions. In F. Baader, editor, Proceedings
of RTA’07, volume 4533 of Lecture Notes in Computer Science, pages 169–183.
Springer-Verlag, 2007.

8. J. Esṕırito Santo and L. Pinto. Permutative conversions in intuitionistic multiary
sequent calculi with cuts. In in Procedings of TLCA 2003, volume 2071 of Lecture
Notes in Computer Science, pages 286–300, 2003.

9. H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent
calculus structure. In Computer Science Logic, CSL 1994, volume 933 of Lecture
Notes in Computer Science, pages 61–75. Springer-Verlag, 1995.

10. F. Joachimski and R. Matthes. Standardization and confluence for ΛJ . In Pro-
ceedings of RTA 2000, volume 1833 of Lecture Notes in Computer Science, pages
141–155. Springer, 2000.

11. K. Kikuchi. Simple proofs of characterizing strong normalization for explicit sub-
stitution calculi. In F. Baader, editor, Proceedings of RTA 2007, volume 4533 of
Lecture Notes in Computer Science, pages 257–272. Springer, 2007.

12. J.L. Krivine. Lambda-calcul, types et modèles. Masson, Paris, 1990.
13. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel.

Intersection types for explicit substitutions. Inf. Comput., 189(1):17–42, 2004.
14. R. Matthes. Characterizing strongly normalizing terms of a λ-calculus with gener-

alized applications via intersection types. In J. Rolin et al., editor, ICALP Work-
shops 2000, pages 339–354. Carleton Scientific, 2000.

15. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 561–577. Academic Press, London, 1980.

16. S. Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci., 59:181–209, 1988.

17. K. Rose. Explicit substitutions: Tutorial & survey. Technical Report LS-96-3,
BRICS, 1996.

18. P. Sallé. Une extension de la théorie des types en lambda-calcul. In G. Ausiello
and C. Böhm, editors, Fifth International Conference on Automata, Languages
and Programming, volume 62 of Lecture Notes in Computer Science, pages 398–
410. Springer-Verlag, 1978.

19. H. Schwichtenberg. Termination of permutative conversions in intuitionistic
Gentzen calculi. Theoretical Computer Science, 212(1–2):247–260, 1999.

