
Continuation-Passing Style and Strong
Normalisation for Intuitionistic Sequent Calculi

José Esṕırito Santo1, Ralph Matthes2, and Lúıs Pinto1

{jes,luis}@math.uminho.pt matthes@irit.fr

1 Departamento de Matemática, Universidade do Minho, Portugal
2 C.N.R.S. and University of Toulouse III, France

Abstract. The intuitionistic fragment of the call-by-name version of
Curien and Herbelin’s λµµ̃-calculus is isolated and proved strongly nor-
malising by means of an embedding into the simply-typed λ-calculus.
Our embedding is a continuation-and-garbage-passing style translation,
the inspiring idea coming from Ikeda and Nakazawa’s translation of
Parigot’s λµ-calculus. The embedding simulates reductions while usual
continuation-passing-style transformations erase permutative reduction
steps. For our intuitionistic sequent calculus, we even only need “units
of garbage” to be passed. We apply the same method to other calculi,
namely successive extensions of the simply-typed λ-calculus leading to
our intuitionistic system, and already for the simplest extension we con-
sider (λ-calculus with generalised application), this yields the first proof
of strong normalisation through a reduction-preserving embedding.

1 Introduction

CPS (continuation-passing style) translations are a tool with several theoretical
uses. One of them is an interpretation between languages with different type
systems or logical infra-structure, possibly with corresponding differences at the
level of program constructors and computational behavior. Examples are when
the source language (but not the target language): (i) allows permutative con-
versions, possibly related to connectives like disjunction [4]; (ii) is a language
for classical logic, usually with control operators [9, 10, 13]; (iii) is a language
for type theory [1, 2] (extending (ii) to variants of pure type systems that have
dependent types and polymorphism).

This article is about CPS translations for intuitionistic sequent calculi. The
source and the target languages will differ neither in the reduction strategy
(they will be both call-by-name) nor at the types/logic (they will be both based
on intuitionistic implicational logic); instead, they will differ in the structural
format of the type system: the source is in the sequent calculus format (with
cut and left introduction) whereas the target is in the natural deduction format
(with elimination/application). From a strictly logical point of view, this seems
a new proof-theoretical use for double-negation translations.

Additionally, we insist that our translations simulate reduction. This is a
strong requirement, not present, for instance in the concept of reflection of [23].

It seems to have been intended by [1], however does not show up in the journal
version [2]. But it is, nevertheless, an eminently useful requirement if one wants
to infer strong normalisation of the source calculus from strong normalisation
of the simply-typed λ-calculus, as we do. In order to achieve simulation, we de-
fine continuation-and-garbage passing style (CGPS) translations, following an
idea due to Ikeda and Nakazawa [13]. Garbage will provide room for observing
reduction where continuation-passing alone would inevitably produce an identi-
fication, leading to failure of simulation in several published proofs for variants
of operationalized classical logic, noted by [20] (the problem being β-reductions
under vacuous µ-abstractions). As opposed to [13], in our intuitionistic setting
garbage can be reduced to “units”, and garbage reduction is simply erasing a
garbage unit.

The main system we translate is the intuitionistic fragment of the call-by-
name restriction of the λµµ̃-calculus [3], here named λJmse. The elaboration of
this system is interesting on its own. We provide a CPS and a CGPS translation
for λJmse. We also consider other intuitionistic calculi, whose treatment can be
easily derived from the results for λJmse. Among these is included, for instance,
the λ-calculus with generalised application. For all these systems a proof of strong
normalisation through a reduction-preserving embedding into the simply-typed
λ-calculus is provided for the first time.

The article is organized as follows: Section 2 presents λJmse. Sections 3 and
4 deal with the CPS and the CGPS translation of λJmse, respectively. Section 5
considers other intuitionistic calculi. Section 6 compares this work with related
work and concludes.

2 An intuitionistic sequent calculus

In this section, we define and identify basic properties of the calculus λJmse. A
detailed explanation of the connection between λJmse and λµµ̃ is left to the end
of this section.

There are three classes of expressions in λJmse:

(Terms) t, u, v ::= x |λx.t | {c}
(Co-terms) l ::= [] |u :: l | (x)c
(Commands) c ::= tl

An evaluation context E is a co-term of the form [] or u :: l. Terms can be
variables (of which we assume a denumerable set ranged over by letters x, y,
w, z), lambda-abstractions λx.t or coercions {c} from commands to terms1. A
value is a term which is either a variable or a lambda-abstraction. We use letter
V to range over values. Co-terms provide means of forming lists of arguments,
generalised arguments [14], or explicit substitutions. The latter two make use
of the construction (x)c, a new binder that binds x in c. A command tl has a

1 A version of λJmse with implicit coercions would be possible but to the detriment
of the clarity, in particular, of the reduction rule ε below.

double role: if l is of the form (x)c, tl is an explicit substitution; otherwise, tl is
a general form of application.

In writing expressions, sometimes we add parentheses to help their parsing.
Also, we assume that the scope of binders λx and (x) extends as far as possible.
Usually we write only one λ for multiple abstraction.

In what follows, we reserve letter T (“term in a large sense”) for arbitrary
expressions. We write x /∈ T if x does not occur free in T . Substitution [t/x]T of a
term t for all free occurrences of a variable x in T is defined as expected, where
it is understood that bound variables are chosen so that no variable capture
occurs. Evidently, syntactic classes are respected by substitution, i. e., [t/x]u is
a term, [t/x]l is a co-term and [t/x]c is a command.

The calculus λJmse has a form of sequent for each class of expressions:

Γ ` t : A Γ |l : A ` B Γ
c−→ B

Letters A,B, C are used to range over the set of types (=formulas), built from
a base set of type variables (ranged over by X) using the function type (that we
write A ⊃ B). In sequents, contexts Γ are viewed as finite sets of declarations
x : A, where no variable x occurs twice. The context Γ, x : A is obtained from
Γ by adding the declaration x : A, and will only be written if this yields again
a valid context, i. e., if x is not declared in Γ .

The typing rules of λJmse can be presented as follows, stressing the parallel
between left and right rules:

Γ |[] : A ` A
LAx

Γ, x : A ` x : A
RAx

Γ ` u : A Γ |l : B ` C

Γ |u :: l : A ⊃ B ` C
LIntro

Γ, x : A ` t : B

Γ ` λx.t : A ⊃ B
RIntro

Γ, x : A
c−→ B

Γ |(x)c : A ` B
LSel

Γ
c−→ A

Γ ` {c} : A
RSel

Γ ` t : A Γ |l : A ` B

Γ
tl−→ B

Cut

Besides admissibility of usual weakening rules, other forms of cut are admis-
sible as typing rules for substitution for each class of expressions.

We consider the following base reduction rules on expressions:

(β) (λx.t)(u :: l) → u((x)tl) (µ) (x)xl → l, if x /∈ l
(π) {tl}E → t (l@E) (ε) {t[]} → t
(σ) t(x)c → [t/x]c,

where, in general, l@l′ is a co-term that represents an “eager” concatenation of
l and l′, viewed as lists, and is defined as follows2:

[]@l′ = l′ (u :: l)@l′ = u :: (l@l′) ((x)tl)@l′ = (x)t (l@l′)

The one-step reduction relation → is inductively defined as the compatible clo-
sure of the reduction rules.

The reduction rules β, π and σ are relations on commands. The reduction
rule µ (resp. ε) is a relation on co-terms (resp. terms). Rules β and σ generate
and execute an explicit substitution, respectively. Rule π appends fragmented
co-terms, bringing the term t of the π-redex {tl}E closer to root position. Also,
notice here the restricted form of the outer co-term E. This restriction char-
acterizes call-by-name reduction [3]. A µ-reduction step has necessarily one of
two forms: (i) t(x)xl → tl, which is the execution of a linear substitution; (ii)
u :: (x)xl → u :: l, which is the simplification of a generalised argument. Finally,
rule ε erases an empty list under { }. Notice that empty lists are important un-
der (x). Another view of ε is as a way of undoing a sequence of two coercions:
the “coercion” of a term t to a command t[], immediately followed by coercion
to a term {t[]}. By the way, {c}[] → c is a π-reduction step. Most of these rules
have genealogy: see Section 5.

The βπσ-normal forms are obtained by constraining commands to one of the
two forms V [] or x(u :: l), where V, u, l are βπσ-normal values, terms and co-
terms respectively. The βπσε-normal forms are obtained by requiring addition-
ally that, in coercions {c}, c is of the form x(u :: l) (where u, l are βπσε-normal
terms and co-terms respectively). βπσε-normal forms correspond to the multiary
normal forms of [24]. If we further impose µ-normality as in [24], then co-terms
of the form (x)x(u :: l) obey to the additional restriction that x occurs either in
u or l.

Subject reduction holds for →. This fact is established with the help of
the admissible rules for typing substitution and with the help of yet another
admissible form of cut for typing the append operator.

We offer now a brief analysis of critical pairs in λJmse 3. There is a self-
overlap of π ({{tl}E}E′), there are overlaps between π and any of β ({(λx.t)(u ::
l)}E), σ ({t(x)c}E) and ε (the latter in two different ways from {t[]}E and
{{tl}[]}). Finally, µ overlaps with σ (t(x)xl for x /∈ l). The last three critical
pairs are trivial in the sense that both reducts are identical. Also the other
critical pairs are joinable in the sense that both terms have a common →∗-
reduct. We only show this for the first case: {tl}E → t(l@E) by π, hence also
{{tl}E}E′ → {t(l@E)}E′ =: L. On the other hand, a direct application of π

2 Concatenation is “eager” in the sense that, in the last case, the right-hand side is
not (x){tl}l′ but, in the only important case that l′ is an evaluation context E, its
π-reduct. One immediately verifies l@[] = l and (l@l′)@l′′ = l@(l′@l′′) by induction
on l. Associativity would not hold with the lazy version of @. Nevertheless, one would
get that the respective left-hand side reduces in at most one π-step to the right-hand
side.

3 For higher-order rewrite systems, see the formal definition in [18].

yields {{tl}E}E′ → {tl}(E@E′) =: R. Thus the critical pair consists of the
terms L and R. L → t((l@E)@E′) and R → t(l@(E@E′)), hence L and R are
joinable by associativity of @.

Since the critical pairs are joinable, the relation → is locally confluent [18].
Thus, from Corollary 1 below and Newman’s Lemma, → is confluent on typable
terms.

λJmse as the intuitionistic fragment of CBN λµµ̃. An appendix to
this article recalls the (call-by-name) restriction of Curien and Herbelin’s λµµ̃-
calculus [3]. The reader should have in mind the non-standard naming of reduc-
tion rules.

Let ∗ be a fixed co-variable. The intuitionistic terms, co-terms and commands
are generated by the grammar.

(Terms) t, u, v ::= x |λx.t |µ∗.c
(Co-terms) e ::= ∗ |u :: e | µ̃x.c
(Commands) c ::= 〈t|e〉

Terms have no free occurrences of co-variables. Each co-term or command has
exactly one free occurrence of ∗. Sequents are restricted to have exactly one
formula in the RHS. Therefore, they have the particular forms Γ ` t : A, Γ |e :
A ` ∗ : B and c : (Γ ` ∗ : B). We omit writing the intuitionistic typing rules.
Reduction rules read as for λµµ̃, except for π and µ̃:

(π) 〈µ∗.c|E〉 → [E/∗]c (µ̃) µ∗.〈t|∗〉 → t

Since ∗ /∈ t, [E/∗]t = t. Let us spell out [E/∗]c and [E/∗]e.

[E/∗]〈t|e〉 = 〈t|[E/∗]e〉 [E/∗](u :: e) = u :: [E/∗]e
[E/∗]∗ = E [E/∗](µ̃x.c) = µ̃x.[E/∗]c

If we define rule π as 〈µ∗.〈t|e〉|E〉 → 〈t|[E/∗]e〉 and [E/∗](µ̃x.〈t|e〉) = µ̃x.〈t|[E/∗]e〉
we can avoid using [E/∗]c altogether.

The λJmse-calculus is obtained from the intuitionistic fragment as a mere
notational variant. The co-variable ∗ disappears from the syntax. The co-term ∗
is written []. {c} is the coercion of a command to a term, corresponding to µ∗.c.
This coercion is what remains of the µ binder in the intuitionistic fragment. Since
there is no µ, there is little sense for the notation µ̃. So we write (x)c instead
of µ̃x.c. Reduction rule µ̃ now reads {t[]} → t and is renamed as ε. Sequents
Γ |e : A ` ∗ : B and c : (Γ ` ∗ : B) are written Γ |e : A ` B and Γ

c−→ B.
Co-terms are ranged over by l (instead of e) and thought of as generalised lists.
Finally, [E/∗]l is written l@E.

3 CPS for λJmse

We fix a ground type (some type variable) ⊥. Then, ¬A := A ⊃ ⊥, as usual in
intuitionistic logic. While our calculus is strictly intuitionistic in nature, a double-
negation translation nevertheless proves useful for the purposes of establishing

strong normalisation, as has been shown by de Groote [4] for disjunction with
its commuting conversions. A type A will be translated to A = ¬¬A∗, with
the type A∗ defined by recursion on A (where the definition of A is used as an
abbreviation): X∗ = X; (A ⊃ B)∗ = ¬B ⊃ ¬A. This symmetrically-looking
definition of (A ⊃ B)∗ is logically equivalent to A ⊃ ¬¬B. The additional
double negation of B is needed to treat cuts with co-terms ending in (x)c (that
are already present as generalised application in λJ, see Section 5).

The translation of all syntactic elements T will be presented in Plotkin’s [21]
colon notation (T : K) for some term K taken from simply-typed λ-calculus. A
term t of λJmse will then be translated into the simply-typed λ-term

t = λk.(t : k)

with a “new” variable k. The definition of (T : K) uses the definition of t as an
abbreviation (the variables m,w are supposed to be “fresh”):

(x : K) = xK ([] : K) = λw.wK
(λx.t : K) = K(λwx.wt) (u :: l : K) = λw.w(λm.m (l : K)u)
({c} : K) = (c : K) ((x)c : K) = λx.(c : K)

(t[] : K) = (t : K)
(t(u :: l) : K) = (t : λm.m (l : K)u)

(t(x)c : K) = (λx.(c : K))t

The translation obeys to the following typing:

Γ ` t : A Γ ` K : ¬A∗

Γ ` (t : K) : ⊥
Γ

c−→ A Γ ` K : ¬A∗

Γ ` (c : K) : ⊥
Γ |l : A ` B Γ ` K : ¬B∗

Γ ` (l : K) : ¬A

Only the first premise in all these three rules refers to λJmse, the other ones to
simply-typed λ-calculus. Γ is derived from Γ by replacing every x : C in Γ by
x : C. As a direct consequence (to be established during the proof of the above
typings), type soundness of the CPS translation follows:

Γ `λJmse t : A =⇒ Γ `λ t : A

This CPS translation is also sound for reduction, in the sense that each
reduction step in λJmse translates to zero or more β-steps in λ-calculus. Because
of the collapsing of some reductions, this result does not guarantee yet strong
normalisation of λJmse.

Proposition 1. If t → u in λJmse, then t →∗
β u in the λ-calculus.

Proof. Simultaneously we prove T → T ′ =⇒ (T : K) →∗
β (T ′ : K) for T, T ′

terms, co-terms or commands. More specifically, at the base cases, the CPS
translation does the following: identifies ε and π-steps; sends one µ-step into
zero or more β-steps in λ-calculus; sends one β or σ-step into one or more β-
steps in λ-calculus. ut

4 CGPS for λJmse

This is the central mathematical finding of the present article. It is very much
inspired from a “continuation and garbage passing style” translation for Parigot’s
λµ-calculus, proposed by Ikeda and Nakazawa [13]. While they use garbage to
overcome the problems of earlier CPS translations that did not carry β-steps to
at least one β-step if they were under a vacuous µ-binding, as reported in [20],
we ensure proper simulation of ε, π and µ. Therefore, we can avoid the separate
proof of strong normalisation of permutation steps alone that is used in addition
to the CPS in [4] (there in order to treat disjunction and not for sequent calculi
as we do).

We use the type > for “garbage”, i. e., terms that are carried around for
their operational properties, not for denotational purposes. We only require the
following from >: There is a term s(·) : > → > such that s(x) →+

β x. This can,
e. g., be realised by > := ⊥ → ⊥ and s(·) := λx.(λy.x)(λz.z). We abbreviate
[t; u] := (λx.t)u for some x /∈ t. Then, [t;u] →β t, and Γ ` t : A and Γ ` u : B
together imply Γ ` [t; u] : A.

The only change w. r. t. the type translation in CPS is that, now,

A = > ⊃ ¬¬A∗

is used throughout, hence, again, X∗ = X and (A ⊃ B)∗ = ¬B ⊃ ¬A.
We define the simply-typed λ-term (T : G,K) for every syntactic construct

T of λJmse and simply-typed λ-terms G (for “garbage”) and K. Then, the
translation of term t is defined to be

t = λgk.(t : g, k)

with “new” variables g, k, that is again used as an abbreviation inside the recur-
sive definition of (T : G,K) as follows (the variables m,w are again “fresh”):

(x : G,K) = x s(G)K ([] : G,K) = λw.w s(G)K
(λx.t : G,K) = [K(λwx.wt); G] (u :: l : G,K) = λw.w s(G)(λm.m (l : G, K) u)
({c} : G,K) = (c : G,K) ((x)c : G,K) = λx.(c : G,K)

(t[] : G,K) = (t : s(G),K)
(t(u :: l) : G,K) = (t : s(G), λm.m (l : G, K) u)

(t(x)c : G,K) = (λx.(c : G,K))t

If one removes the garbage argument, one precisely obtains the CPS translation.
The translation obeys to the following typing:

Γ ` t : A Γ ` G : > Γ ` K : ¬A∗

Γ ` (t : G,K) : ⊥
Γ |l : A ` B Γ ` G : > Γ ` K : ¬B∗

Γ ` (l : G,K) : ¬A

Γ
c−→ A Γ ` G : > Γ ` K : ¬A∗

Γ ` (c : G,K) : ⊥
For Γ see the previous section. Therefore (and to be proven simultaneously),

the CGPS translation satisfies type soundness, i. e., Γ ` t : A implies Γ ` t : A.

Lemma 1.

1. [t/x](T : G,K) = (T : [t/x]G, [t/x]K) for T any u, l or c such that x /∈ T .
2. [t/x](T : G,K) →∗

β ([t/x]T : [t/x]G, [t/x]K) for T any u, l or c.
3. G and K are subterms of (T : G, K) for T any u, l or c.
4. (l : G,K)t →∗

β (tl : G,K)
5. λx.(xl : G,K) →+

β (l : G,K) if x /∈ l.
6. (a) (tl : s(G), λm.m(l′ : G,K)u) →+

β (t (l@(u :: l′)) : G,K)
(b) (l : s(G), λm.m(l′ : G,K)u) →+

β (l@(u :: l′) : G,K)

Proof. 1./2./3. Each one by simultaneous induction on terms, co-terms and com-
mands. 4./5. Case analysis on l. 6. By simultaneous induction on l. ut

If we remove the garbage argument in statements 6 and 5 of this lemma,
we can no longer guarantee one or more β-steps in λ-calculus. In the first case
we have identity, whereas in the second case we have zero or more β-steps in
λ-calculus. These differences account for the gain of simulation of π and µ-steps,
when moving from CPS to CGPS.

Theorem 1 (Simulation). If t → u in λJmse, then t →+
β u in the λ-calculus.

Proof. Simultaneously we prove: T → T ′ =⇒ (T : G,K) →+
β (T ′ : G,K) for

T, T ′ terms, co-terms or commands. We illustrate the cases of the base rules.
Case β: (λx.t)(u :: l) → u(x)tl.

((λx.t)(u :: l) : G,K) = (λx.t : s(G), λm.m(l : G,K)u)
= [(λm.m(l : G,K)u)(λwx.wt); s(G)]
→3

β (λx.(l : G,K)t)u
→∗

β (λx.(tl : G, K))u (Lemma 1.4)
= (u(x)tl : G,K)

Case π: {tl}E → t (l@E). Sub-case E = [].

({tl}[] : G, K) = (tl : s(G),K) →+
β (tl : G,K) (Lemma 1.3/1.1)

= (t (l@[]) : G, K).

Sub-case E = u :: l′.

({tl}(u :: l′) : G,K) = (tl : s(G), λm.m(l′ : G,K)u)
→+

β (t (l@(u :: l′)) : G,K) (Lemma 1.6)

Case σ: t(x)c → [t/x]c.

(t(x)c : G,K) = (λx.(c : G,K))t
→β [t/x](c : G,K)
→∗

β ([t/x]c : G,K) (Lemma 1.2)

Case µ: (x)xl → l, if x /∈ l.

((x)xl : G,K) = λx.(xl : G, K) →+
β (l : G,K) (Lemma 1.5)

Case ε: {t[]} → t.

({t[]} : G, K) = (t[] : G,K) = (t : s(G),K) →+
β (t : G,K)

The cases corresponding to the closure rule t → t′ =⇒ tl → t′l (resp. l →
l′ =⇒ tl → tl′) can be proved by case analysis on l (resp. l → l′). The cases
corresponding to the other closure rules follow by routine induction. ut
Remark 1. Unlike the failed simulation by CPS reported in [20] that only oc-
curred with the closure rules, the need for garbage in our translation is already
clearly visible in the subcase E = [] for π and the case ε. But the garbage is also
effective for the closure rules, where the most delicate rule is the translation of
t(u :: l) that mentions l and u only in the continuation argument K to t’s trans-
lation. Lemma 1.3 is responsible for propagation of simulation. The structure of
our garbage – essentially just “units of garbage” – can thus be easier than in
the CGPS in [13] for λµ-calculus since there, K cannot be guaranteed to be a
subterm of (T : G, K), again because of the problem with void µ-abstractions.
The solution of [13] for the most delicate case of application is to copy the K
argument into the garbage. We do not need this in our intuitionistic calculi.

Corollary 1. The typable terms of λJmse are strongly normalising.

Recalling our discussion in Section 2, we already could have inferred strong
normalisation of λJmse from that of λµµ̃, which has been shown directly by
Polonovski [22] using reducibility candidates and before by Lengrand’s [16] em-
bedding into a calculus by Urban that also has been proven strongly normalizing
by the candidate method. Our proof is just by a syntactic transformation to
simply-typed λ-calculus.

5 CGPS for other intuitionistic calculi

As a consequence of the results of the previous section, we obtain in this section
the embedding, by a CGPS translation, of several intuitionistic calculi into the
simply-typed λ-calculus. These intuitionistic calculi are successive extensions of
the simply-typed λ-calculus that lead to λJmse, as illustrated in the diagram
below, and include both natural deduction systems and other sequent calculi.

λJmse ¾e
λJms ¾ s

λJm ¾ m
λJ ¾ J

λ

Each extension step adds both a new feature and a reduction rule to the
preceding calculus. The following table summarizes these extensions.

calculus reduction rules feature added
λ β
λJ β, π generalised application
λJm β, π, µ multiarity
λJms β, π, µ, σ explicit substitution
λJmse β, π, µ, σ, ε empty lists of arguments

The scheme for naming systems and reduction rules intends to be systematic
(and in particular explains the name λJmse).

The path between the two end-points of this spectrum visits and organizes
systems known from the literature. λJ is a variant of the calculus ΛJ of [14].
λJm is a variant of the system in [8]. λJmse is studied in [7] under the name
λGtz. This path is by no means unique. Other intermediate systems could have
been visited (like the multiary λ-calculus λm, named λPh in [8]), had the route
been a different one, i. e., had the different new features been added in a different
order.

Each system L ∈ {λJ, λJm, λJms} embeds in the system immediately after it
in this spectrum, in the sense of existing a mapping simulating reduction. Hence,
strong normalisation is inherited from λJmse all the way down to λJ. Also, each
L ∈ {λJ, λJm, λJms} has, by composition, an embedding gL in λJmse. It can be
shown that there is a CGPS translation of each L so that this CGPS translation
is the composition of gL with the CGPS translation of λJmse. It follows that the
CGPS translation of each L simulates reduction, that is, is an embedding of L
in the λ-calculus. Let us see all this with some detail.

λJ-calculus. The terms of λJ are generated by the grammar:

t, u, v ::= x |λx.t | t(u, x.v)

Construction t(u, x.v) is called generalised application. Following [14], (u, x.v)
is called a generalised argument; they will be denoted by the letters R and
S. Typing rules for x and λx.t are as usual and omitted. The typing rule for
generalised application is:

Γ ` t : A ⊃ B Γ ` u : A Γ, x : B ` v : C

Γ ` t(u, x.v) : C
GApp

Reduction rules are as in [14], except that π is defined in the “eager” way:

(β) (λx.t)(u, y.v) → [[u/x]t/y]v (π) tRS → t(R@S)

where the generalised argument R@S is defined by recursion on R:

(u, x.V)@S = (u, x.V S) (u, x.tR′)@S = (u, x.t(R′@S)) ,

for V a value, i. e., a variable or a λ-abstraction. The operation @ is associative,
which allows to join the critical pair of π with itself as before for λJmse. The
other critical pair stems from the interaction of β and π and is joinable as well.

Strong normalisation of typable terms immediately follows from that of ΛJ
in [15], but in the present article, we even get an embedding into λ.

In defining the embeddings m, s and e we omit the clauses for variables and
λ-abstraction, because in these cases the embeddings are defined homomorphi-
cally. Although we won’t use it, we recall the embedding J : λ → λJ just for
completeness: J(tu) = J(t)(J(u), x.x).

λJm-calculus. We offer now a new, lighter, presentation of the system in
[8]. The expressions of λJm are given by the grammar:

(Terms) t, u, v ::= x |λx.t | t(u, l) (Co-terms) l ::= u :: l | (x)v

The application t(u, l) is both generalised and multiary. Multiarity is the ability
of forming a chain of arguments, as in t(u1, u2 :: u3 :: (x)v). By the way, this
term is written t(u1, u2 :: u3 :: [], (x)v) in the syntax of [8]. There are two kinds
of sequents: Γ ` t : A and Γ |l : A ` B. Typing rules are as follows:

Γ ` t : A ⊃ B Γ ` u : A Γ |l : B ` C

Γ ` t(u, l) : C
GMApp

Γ, x : A ` v : B

Γ |(x)v : A ` B
Sel

Γ ` u : A Γ |l : B ` C

Γ |u :: l : A ⊃ B ` C
LIntro

We re-define reduction rules of [8] in this new syntax. Rule µ can now be
defined as a relation on co-terms. Rule π is changed to the “eager” version,
using letters R and S for generalised arguments, i. e., elements of the form (u, l).

(β1) (λx.t)(u, (y)v) → [[u/x]t/y]v (π) tRS → t(R@S)
(β2) (λx.t)(u, v :: l) → ([u/x]t)(v, l) (µ) (x)x(u, l) → u :: l, if x /∈ u, l

β = β1∪β2. The generalised argument R@S is defined with the auxiliary notion
of the co-term l@S that is defined by recursion on l by (u :: l)@S = u :: (l@S),
((x)V)@S = (x)V S, for V a value, and ((x)t(u, l))@S = (x)t(u, l@S). Then,
define R@S by (u, l)@S = (u, l@S). Since the auxiliary operation @ can be
proven associative, this also holds for the operation @ on generalised arguments.
Apart from the usual self-overlapping of π that is joinable by associativity of @,
there are critical pairs between βi and π that are joinable. The last critical pair
is between β1 and µ and needs a β2-step to be joined.

The embedding m : λJ → λJm is given by m(t(u, x.v)) = m(t)(m(u), (x)m(v)).
λJms-calculus. The expressions of λJms are given by:

(Terms) t, u, v ::= x |λx.t | tl (Co-terms) l ::= u :: l | (x)v

The construction tl has a double role: either it is a generalised and multiary
application t(u :: l) or it is an explicit substitution t(x)v. The typing rules for
u :: l and (x)v are as in λJm. Construction tl is typed by:

Γ ` t : A Γ |l : A ` B

Γ ` tl : B
Cut

The reduction rules are as follows:

(β) (λx.t)(u :: l) → u((x)tl) (σ) t(x)v → [t/x]v
(π) (tl)(u :: l′) → t (l@(u :: l′)) (µ) (x)xl → l, if x /∈ l

where the co-term l@l′ is defined by (u :: l)@l′ = u :: (l@l′), ((x)V)@l′ = (x)V l′,
for V a value, and ((x)tl)@l′ = (x)t (l@l′). Again, @ is associative and guarantees

the joinability of the critical pair of π with itself. The critical pairs between β
and π and between σ and µ are joinable as for λJmse. The overlap between σ
and π is bigger than in λJmse since the divergence arises for t((x)v)(u :: l) with
v an arbitrary term whereas in λJmse, there is only a command at that place.
Joinability is nevertheless easily established.

Comparing these reduction rules with those of λJm, there is only one β-
rule, whose effect is to generate a substitution. There is a separate rule σ for
substitution execution. The embedding s : λJm → λJms is characterized by
s(t(u, l)) = s(t)(s(u) :: s(l)).

Finally, let us compare λJms and λJmse. In the former, any term can be in
the scope of a selection (x), whereas in the latter the scope of a selection is a
command. But in the latter we have a new form of co-term []. Since in λJmse

we can coerce any term t to a command t[], we can translate λJms into λJmse,
by defining e((x)t) = (x)e(t)[]. In fact, one has to refine this idea in order to get
simulation of reduction. The embedding e : λJms → λJmse obeys the following:

e(tl) = {e(t)e(l)} e((x)V) = (x)e(V)[] e((x)tl) = (x)e(t)e(l)

Proposition 2. Each of the embeddings m, s and e simulates reduction.

Proof. We just sketch the proof for e (the others are easier). We prove

t → t′ =⇒ e(t) →+ e(t′) and e((x)t) →+ e((x)t′), for any t, t′ ∈ λJms

simultaneously with l → l′ =⇒ e(l) →+ e(l′). In particular, the following fact is
used: [e(t)/x]e(T) →∗

ε e([t/x]T), for T a term or a co-term. ut
Since each of m, s and e preserves typability, it follows from Corollary 1 that:

Corollary 2. The typable terms of λJms, λJm and λJ are strongly normalising.

CGPS translations. We define CGPS translations for λJms, λJm and λJ.
The translation of types is unchanged. In each translation, we just show the
clauses that are new.

1. For λJms one has (the first rule just replaces c by vl in the rule for λJmse):

(t(x)vl : G,K) = (λx.(vl : G,K))t
(t(x)V : G,K) = (λx.(V : s(G),K))t
((x)v : G,K) = λx.(v : s(G),K)

2. For λJm: (t(u, l) : G,K) = (t : s(G), λm.m (l : G, K) u).
3. Finally, for λJ: (t(u, x.v) : G,K) = (t : s(G), λm.m (λx.(v : s(G),K)) u).

These translations are coherent with the CGPS translation for λJmse:

Proposition 3. Let L ∈ {λJms, λJm, λJ}. Let fL be the embedding of L in its
immediate extension and let gL be the embedding of L in λJmse. Then, for all
t ∈ L, t = fL(t). Hence, for all t ∈ L, t = gL(t).

Theorem 2 (Simulation). Let L ∈ {λJms, λJm, λJ}. If t → u in L, then
t →+

β u in the λ-calculus.

Proof. By Propositions 2 and 3 and Theorem 1. ut

6 Further remarks

This article provides reduction-preserving CGPS translations of λJmse and other
intuitionistic calculi, hence obtaining embeddings into the simply-typed λ-calcu-
lus and proving strong normalisation. As a by-product, the connections between
systems like λJ and λJm and the intuitionistic fragment of λµµ̃ are detailed.

In the literature one finds strong normalisation proofs for sequent calculi [5,
6, 16, 17, 22, 25], but not by means of CPS translations; or CPS translations for
natural deduction systems [1, 2, 4, 13, 19].

This article provides, in particular, a reduction-preserving CGPS transla-
tion for the lambda-calculus with generalised applications λJ. [19] covers full
propositional classical logic with general elimination rules and its intuitionis-
tic implicational fragment corresponds to λJ. However, [19] does not prove a
simulation by CPS in our sense (permutative conversions are collapsed), so an
auxiliary argument in the style of de Groote [4], involving a proof in isolation of
SN for permutative conversions, is used.

In Curien and Herbelin’s work [3, 11] one finds a CPS translation ()n of the
call-by-name restriction of λµµ̃. We compare ()n with our (). (i) ()n generalises
Hofmann-Streicher translation [12]; () generalises Plotkin’s call-by-name CPS
translation [21]. (ii) ()n does not employ the colon operator; () does employ
(we suspect that doing administrative reductions at compile time is necessary to
achieve simulation of reduction); (iii) ()n is defined for expressions where every
occurrence of u :: l is of the particular form u :: E; no such restriction is imposed
in the definition of (). (iv) at some points it is unclear what the properties of
()n are, but no proof of strong normalisation is claimed; the CGPS () simulates
reduction and thus achieves a proof of strong normalisation.

The results obtained extend to second-order calculi (this extension is omitted
for space reasons). We plan to extend the technique of continuation-and-garbage
passing to λµµ̃ and to dependently-typed systems. We tried to extend the CGPS
to CBN λµµ̃, described in the appendix, but already for a CPS translation, we
do not see how to profit from the continuation argument for the translation of
co-terms and commands. Moreover, a special case of the rule we call π corre-
sponds to the renaming rule a(µb.M) → [a/b]M of λµ-calculus. This rule is
evidently not respected by the CGPS translation by Ikeda and Nakazawa [13]
(nor by the CPS they recall) since the continuation argument K is omitted in
the interpretation of the left-hand side but not in the right-hand side. So, new
ideas or new restrictions will be needed.

Acknowledgements: We thank the referees for pointing out the work of Nakazawa
and Tatsuta, whom we thank for an advanced copy of [19]. The first and third
authors are supported by FCT through the Centro de Matemática da Universi-
dade do Minho. The second author thanks for an invitation by that institution to
Braga in October 2006. All authors are also supported by the European project
TYPES.

References

1. G. Barthe, J. Hatcliff, and M. Sørensen. A notion of classical pure type system
(preliminary version). In S. Brookes and M. Mislove, editors, Proc. of the 30th
Conf. on the Mathematical Foundations of Programming Semantics, volume 6 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1997. 56 pp.

2. G. Barthe, J. Hatcliff, and M. Sørensen. Cps translations and applications: The
cube and beyond. Higher-Order and Symbolic Computation, 12(2):125–170, 1999.

3. P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of 5th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP ’00), Montréal, pages
233–243. IEEE, 2000.

4. P. de Groote. On the strong normalisation of intuitionistic natural deduction with
permutation-conversions. Information and Computation, 178:441–464, 2002.

5. A. Dragalin. Mathematical Intuitionism., volume 67 of Translations of Mathemat-
ical Monographs. AMS, 1988.

6. R. Dyckhoff and C. Urban. Strong normalisation of Herbelin’s explicit substitu-
tion calculus with substitution propagation. Journal of Logic and Computation,
13(5):689–706, 2003.

7. J. Esṕırito Santo. Completing Herbelin’s programme (in this volume).

8. J. Esṕırito Santo and L. Pinto. Permutative conversions in intuitionistic multiary
sequent calculus with cuts. In M. Hofmann, editor, Proc. of TLCA’03, volume
2701 of Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, 2003.

9. M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continu-
ations. In 1st Symposium on Logic and Computer Science, pages 131–141. IEEE,
1986.

10. T. Griffin. A formulae-as-types notion of control. In ACM Conf. Principles of
Programming Languages, pages 47–58. ACM Press, 1990.

11. H. Herbelin. C’est maintenant qu’on calcule, 2005. Habilitation Thesis, Paris XI.

12. M. Hofmann and T. Streicher. Continuation models are universal for lambda-mu-
calculus. In Proc. of LICS 1997, pages 387–395. IEEE, 1997.

13. S. Ikeda and K. Nakazawa. Strong normalization proofs by CPS-translations.
Information Processing Letters, 99:163–170, 2006.

14. F. Joachimski and R. Matthes. Standardization and confluence for a lambda-
calculus with generalized applications. In L. Bachmair, editor, Proc. of Int. Conf.
on Rewriting Techniques and Applications (RTA 2000), volume 1833 of Lecture
Notes in Computer Science, pages 141–155. Springer-Verlag, 2000.

15. F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical
Logic, 42(1):59–87, 2003.

16. S. Lengrand. Call-by-value, call-by-name, and strong normalization for the clas-
sical sequent calculus. In B. Gramlich and S. Lucas, editors, Post-proc. of the
3rd Workshop on Reduction Strategies in Rewriting and Programming (WRS’03),
volume 86 of Electronic Notes in Theoretical Computer Science. Elsevier, 2003.

17. S. Lengrand, R. Dyckhoff, and J. McKinna. A sequent calculus for type theory.
In Z. Ésik, editor, Computer Science Logic, 20th Int. Workshop, CSL 2006, Proc.,
volume 4207 of Lecture Notes in Computer Science, pages 441–455. Springer Verlag,
2006.

18. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. The-
oretical Computer Science, 192:3–29, 1998.

19. K. Nakazawa and M. Tatsuta. Strong normalization of classical natural deduction
with disjunctions. Submitted.

20. K. Nakazawa and M. Tatsuta. Strong normalization proof with CPS-translation for
second order classical natural deduction. Journal of Symbolic Logic, 68(3):851–859,
2003. Corrigendum: vol. 68 (2003), no. 4, pp. 1415–1416.

21. G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

22. E. Polonovski. Strong normalization of lambda-mu-mu-tilde with explicit sub-
stitutions. In I. Walukiewicz, editor, Proc. of 7th Int. Conf. on Foundations of
Software Sciences and Computation Structures (FoSSaCS 2004), volume 2987 of
Lecture Notes in Computer Science, pages 423–437. Springer-Verlag, 2004.

23. A. Sabry and P. Wadler. A reflection on call-by-value. In Proc. of ACM SIGPLAN
Int. Conf. on Functional Programming ICFP 1996, pages 13–24. ACM Press, 1996.

24. H. Schwichtenberg. Termination of permutative conversions in intuitionistic
Gentzen calculi. Theoretical Computer Science, 212(1–2):247–260, 1999.

25. C. Urban and G. Bierman. Strong normalisation of cut-elimination in classical
logic. In J.-Y. Girard, editor, Proc. of TLCA’99, volume 1581 of Lecture Notes in
Computer Science, pages 365–380. Springer-Verlag, 1999.

A The call-by-name λµµ̃-calculus

In this appendix we recall the call-by-name restriction of λµµ̃-calculus [3] (with
the subtraction connective left out). Expressions are either terms, co-terms or
commands and are defined by:

t, u, v ::= x |λx.t |µa.c e ::= a |u :: e | µ̃x.c c ::= 〈t|e〉
Variables (resp. co-variables) are ranged over by x, y, z (resp. a, b, c). An eval-
uation context E is a co-term of the form a or u :: e.

There is one kind of sequent per each syntactic class

Γ ` t : A|∆ Γ |e : A ` ∆ c : (Γ ` ∆)

Typing rules are as in [3]. We consider 5 reduction rules:

(β) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉 (µ) µ̃x.〈x|e〉 → e, if x /∈ e
(π) 〈µa.c|E〉 → [E/a]c (µ̃) µa.〈t|a〉 → t, if a /∈ t
(σ) 〈t|µ̃x.c〉 → [t/x]c

These are the reductions considered by Polonovski in [22], with three provisos.
First, the β-rule for the subtraction connective is not included. Second, in the
π-rule, the co-term involved is an evaluation context E; this is exactly what
characterizes the call-by-name restriction of λµµ̃ [3]. Third, the naming of the
rules is non-standard. Curien and Herbelin (and Polonovski as well) name rules
π and σ as µ, µ̃, respectively. The name µ has moved to the rule called se in
[22]. By symmetry, the rule called sv by Polonovski is now called µ̃. The reason
for this change is explained by the spectrum of systems in Section 5: the rule we
now call π (resp. µ) is the most general form of the rule with the same name in
the system λJ (resp. λJm), and therefore its name goes back to [14] (resp. [8],
actually back to [24]).

